SPRINGER BRIEFS IN MATHEMATICS Jingrui Sun Jiongmin Yong Stochastic Linear-Quadratic Optimal Control Theory: Open-Loop and Closed-Loop Solutions SpringerBriefs in Mathematics Series Editors Nicola Bellomo, Torino, Italy Michele Benzi, Pisa, Italy Palle Jorgensen, Iowa City, USA Tatsien Li, Shanghai, China Roderick Melnik, Waterloo, Canada Otmar Scherzer, Linz, Austria Benjamin Steinberg, New York City, USA Lothar Reichel, Kent, USA Yuri Tschinkel, New York City, USA George Yin, Detroit, USA Ping Zhang, Kalamazoo, USA SpringerBriefsinMathematicsshowcasesexpositionsinallareasofmathematics andappliedmathematics.Manuscriptspresentingnewresultsorasinglenewresult inaclassicalfield,newfield,oranemergingtopic,applications,orbridgesbetween newresultsandalreadypublishedworks,areencouraged.Theseriesisintendedfor mathematicians and applied mathematicians. BCAM SpringerBriefs Editorial Board EnriqueZuazua DeustoTech UniversidaddeDeusto Bilbao,Spain and DepartamentodeMatemáticas UniversidadAutónomadeMadrid Cantoblanco,Madrid,Spain IreneFonseca CenterforNonlinearAnalysis DepartmentofMathematicalSciences CarnegieMellonUniversity Pittsburgh,USA JuanJ.Manfredi DepartmentofMathematics UniversityofPittsburgh Pittsburgh,USA EmmanuelTrélat LaboratoireJacques-LouisLions InstitutUniversitairedeFrance UniversitéPierreetMarieCurie CNRS,UMR,Paris XuZhang SchoolofMathematics SichuanUniversity Chengdu,China BCAM SpringerBriefs aims to publish contributions in the following disciplines: Applied Mathematics,Finance,StatisticsandComputerScience.BCAMhasappointedanEditorialBoard, whoevaluateandreviewproposals. Typicaltopicsinclude:atimelyreportofstate-of-the-artanalyticaltechniques,bridgebetweennew researchresultspublishedinjournalarticlesandacontextualliteraturereview,asnapshotofahot oremergingtopic,apresentationofcoreconceptsthatstudentsmustunderstandinordertomake independentcontributions. Please submit your proposal to the Editorial Board or to Francesca Bonadei, Executive Editor Mathematics,Statistics,andEngineering:[email protected]. Moreinformationaboutthisseriesathttp://www.springer.com/series/10030 Jingrui Sun Jiongmin Yong (cid:129) Stochastic Linear-Quadratic Optimal Control Theory: Open-Loop and Closed-Loop Solutions 123 Jingrui Sun JiongminYong Department ofMathematics Department ofMathematics SouthernUniversity ofScience University of Central Florida andTechnology Orlando, FL,USA Shenzhen,Guangdong, China ISSN 2191-8198 ISSN 2191-8201 (electronic) SpringerBriefs inMathematics ISBN978-3-030-20921-6 ISBN978-3-030-20922-3 (eBook) https://doi.org/10.1007/978-3-030-20922-3 ©TheAuthor(s),underexclusivelicensetoSpringerNatureSwitzerlandAG2020 Thisworkissubjecttocopyright.AllrightsaresolelyandexclusivelylicensedbythePublisher,whether thewholeorpartofthematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseof illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmissionorinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilar ordissimilarmethodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinor for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland To Our Parents Yuqi Sun and Xiuying Ma Wenyao Yong and Xiangxia Chen Preface Linear-quadratic optimal control theory (LQ theory, for short) has a long history, andthegeneralconsensusisthatLQtheoryisquitemature.Itchieflyinvolvesthree well-known and relevant issues: the existence of optimal controls, the solvability of the optimality system (which is a two-point boundary value problem), and the solvability of the associated Riccati equation. Broadly speaking, these three issues aresomehowequivalent.Forthepastfewyearswe,togetherwithourcollaborators, have been reinvestigating LQ theory for stochastic systems with deterministic coefficients. In this context, we have identified a number of interesting issues, including (cid:129) For finite-horizon LQ problems, open-loop optimal controls may not have a closed-loop representation. (cid:129) For finite-horizon LQ problems, a distinction should be made between open-loop optimal controls and closed-loop optimal strategies. The existence of the latter implies the existence of the former, but not vice versa. (cid:129) For infinite-horizon LQ problems (with constant coefficients), under proper conditions, the open-loop and the closed-loop solvability are equivalent. Moreover, our investigations have revealed some previously unknown aspects; these include but are not limited to the following: (cid:129) For finite-horizon LQ problems, the open-loop solvability is equivalent to the solvability of the optimality system, which is a forward–backward stochastic differential equation (FBSDE), together with the convexity of the cost functional. (cid:129) For finite-horizon LQ problems, the closed-loop solvability is equivalent to the existence of a regular solution to the Riccati differential equation. (cid:129) For infinite-horizon LQ problems (with constant coefficients), both the open-loopandtheclosed-loopsolvabilityareequivalenttothesolvabilityofan algebraic Riccati equation. vii viii Preface The purpose of this book is to systematically present the above-mentioned results and many other relevant ones. We assume that readers are familiar with basic stochastic analysis and stochastic control theory. This work was supported in part by NSFC Grant 11901280 and NSF Grants DMS-1406776 and DMS-1812921. Theauthorswouldalsoliketoexpresstheirgratitudetotheanonymousreferees for their constructive comments, which led to this improved version. Shenzhen, China Jingrui Sun Orlando, USA Jiongmin Yong March 2020 Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Why Linear-Quadratic Problems? . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Standard Results for Deterministic LQ Problems . . . . . . . . . . . . . 4 1.3 Quadratic Functionals in a Hilbert Space . . . . . . . . . . . . . . . . . . . 6 2 Linear-Quadratic Optimal Controls in Finite Horizons . . . . . . . . . . 11 2.1 Formulation of the Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2 Representation of the Cost Functional . . . . . . . . . . . . . . . . . . . . . 18 2.3 Open-Loop Solvability and FBSDEs . . . . . . . . . . . . . . . . . . . . . . 26 2.4 Closed-Loop Solvability and Riccati Equation . . . . . . . . . . . . . . . 28 2.5 Uniform Convexity of the Cost Functional. . . . . . . . . . . . . . . . . . 36 2.6 Finiteness and Solvability Under Other Conditions. . . . . . . . . . . . 49 2.7 An Example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 3 Linear-Quadratic Optimal Controls in Infinite Horizons . . . . . . . . . 61 3.1 Formulation of the Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 3.2 Stability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 3.3 Stabilizability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 3.3.1 Definition and Characterization. . . . . . . . . . . . . . . . . . . . . 68 3.3.2 The Case of One-Dimensional State . . . . . . . . . . . . . . . . . 73 3.4 Solvability and the Algebraic Riccati Equation. . . . . . . . . . . . . . . 75 3.5 A Study of Problem (SLQ)01. . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 3.5.1 A Finite Horizon Approach . . . . . . . . . . . . . . . . . . . . . . . 80 3.5.2 Open-Loop and Closed-Loop Solvability. . . . . . . . . . . . . . 84 3.6 Nonhomogeneous Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 3.7 The One-Dimensional Case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 ix x Contents Appendix: Linear Algebra and BSDEs.. .... .... .... .... ..... .... 105 References.... .... .... .... ..... .... .... .... .... .... ..... .... 115 Index .... .... .... .... .... ..... .... .... .... .... .... ..... .... 119