ebook img

Stochastic control theory. Dynamic programming principle PDF

263 Pages·2015·1.362 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Stochastic control theory. Dynamic programming principle

Probability Theory and Stochastic Modelling 72 Makiko Nisio Stochastic Control Theory Dynamic Programming Principle Second Edition Probability Theory and Stochastic Modelling Volume 72 Editors-in-Chief SørenAsmussen,Aarhus,Denmark PeterW.Glynn,Stanford,CA,USA ThomasKurtz,Madison,WI,USA YvesLeJan,Paris,France AdvisoryBoard JoeGani,Canberra,Australia MartinHairer,Coventry,UK PeterJagers,Gothenburg,Sweden IoannisKaratzas,NewYork,NY,USA FrankP.Kelly,Cambridge,UK AndreasE.Kyprianou,Bath,UK BerntØksendal,Oslo,Norway GeorgePapanicolaou,Stanford,CA,USA EtiennePardoux,Marseille,France EdwinPerkins,Vancouver,Canada HalilMeteSoner,Zurich,Switzerland The Stochastic Modelling and Probability Theory series is a merger and con- tinuation of Springer’s two well established series Stochastic Modelling and Applied Probability and Probability and Its Applications series. It publishes research monographsthat make a significant contribution to probability theory or an applications domain in which advanced probability methods are fundamental. Booksinthisseriesareexpectedtofollowrigorousmathematicalstandards,while alsodisplayingtheexpositoryqualitynecessarytomakethemusefulandaccessible toadvancedstudentsaswellasresearchers.Theseriescoversallaspectsofmodern probabilitytheoryincluding (cid:129) Gaussianprocesses (cid:129) Markovprocesses (cid:129) RandomFields,pointprocessesandrandomsets (cid:129) Randommatrices (cid:129) Statisticalmechanicsandrandommedia (cid:129) Stochasticanalysis aswellasapplicationsthatinclude(butarenotrestrictedto): (cid:129) Branchingprocessesandothermodelsofpopulationgrowth (cid:129) Communicationsandprocessingnetworks (cid:129) Computational methods in probability and stochastic processes, including simulation (cid:129) Geneticsandotherstochasticmodelsinbiologyandthelifesciences (cid:129) Informationtheory,signalprocessing,andimagesynthesis (cid:129) Mathematicaleconomicsandfinance (cid:129) Statisticalmethods(e.g.empiricalprocesses,MCMC) (cid:129) Statisticsforstochasticprocesses (cid:129) Stochasticcontrol (cid:129) Stochasticmodelsinoperationsresearchandstochasticoptimization (cid:129) Stochasticmodelsinthephysicalsciences Moreinformationaboutthisseriesathttp://www.springer.com/series/13205 Makiko Nisio Stochastic Control Theory Dynamic Programming Principle 123 MakikoNisio(emeritus) KobeUniversity Kobe,Japan OsakaElectro–CommunicationUniversity Osaka,Japan FirsteditionpublishedintheseriesISILectureNotes,No9,byMacMillanIndiaLimitedpublishers, Delhi,(cid:2)c MakikoNisio,1981 ISSN2199-3130 ISSN2199-3149(electronic) ISBN978-4-431-55122-5 ISBN978-4-431-55123-2(eBook) DOI10.1007/978-4-431-55123-2 SpringerTokyoHeidelbergNewYorkDordrechtLondon LibraryofCongressControlNumber:2014953914 MathematicsSubjectClassification:93E20,60H15 ©SpringerJapan2015 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped.Exemptedfromthislegalreservationarebriefexcerptsinconnection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’slocation,initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer. PermissionsforusemaybeobtainedthroughRightsLinkattheCopyrightClearanceCenter.Violations areliabletoprosecutionundertherespectiveCopyrightLaw. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. While the advice and information in this book are believed to be true and accurate at the date of publication,neithertheauthorsnortheeditorsnorthepublishercanacceptanylegalresponsibilityfor anyerrorsoromissionsthatmaybemade.Thepublishermakesnowarranty,expressorimplied,with respecttothematerialcontainedherein. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) Preface Thepurposeofthisbookistoprovideanintroductiontostochasticcontrolstheory, via the method of dynamic programming. The dynamic programming principle, originated by R. Bellman in 1950s, is known as the two stage optimization procedure.Whenwecontrolthebehaviorofastochasticdynamicalsysteminorder to optimize some payoff or cost function, which depends on the control inputs to the system, the dynamic programming principle gives a powerful tool to analyze problems. Exploiting the dependence of the value function (optimal payoff) on its terminal cost function, we will construct a nonlinear semigroup which allows onetoformulatethedynamicprogrammingprincipleandwhosegeneratorprovides theHamilton–Jacobi–Bellmanequation.Herewearemainlyconcernedwithfinite timehorizonstochasticcontrols.Wealsoapplythesemigroupapproachtocontrol- stopping problems and stochastic differential games, and provide with examples fromtheareaoffinancialmarketmodels. Thisbookisorganizedasfollows.Chapters1–4dealwithcompletelyobservable finite-dimensional controlled diffusions. Chapters 5 and 6 are concerned with Hilbert space valued stochastic processes, related to partially observable control problems. Chapter1isareviewofstochasticanalysisandstochasticdifferentialequations withrandomcoefficientsforlateruses.Chapter2dealswithcontrolproblemswith finite-time horizon. By a time-discretization method we construct a semigroup, associatedwiththevaluefunction,whosegeneratorprovidestheHamilton–Jacobi– Bellman equation. When the value function is smooth, it becomes a classical solutionoftheHamilton–Jacobi–Bellmanequation.However,itsatisfies theequa- tioninviscositysenseevenifitisnotsmooth.Chapter3isconcernedwithviscosity solutions of nonlinear parabolic equation, including Hamilton–Jacobi–Bellman equationsofstochasticcontrolsandalsostochasticoptimalcontrol-stoppingprob- lems. Chapter 4 presents zero sum, two-player, time-homogeneous, stochastic differential games and the Isaacs equations. We consider stochastic differential games by using progressive strategies. Then we construct semigroups associated with the upper and lower values, by using a semidiscretization method. These semigroups lead to the formulation of the dynamic programming principle and v vi Preface to the upper and lower Isaacs equations. The link between stochastic control and differential game is given via the risk sensitive control. Chapter 5 is a review on stochastic evolutionequationson Hilbertspaces, in particularstochastic parabolic equations with colored Wiener noises. Basic definitions and results and Itô’s formula are presented. Chapter 6 is concerned with control problems for Zakai equations. We again construct semigroups associated with the value functions. The dynamicprogrammingprincipleand viscosity solutionsof Hamilton–Jacobi– Bellman equations on Hilbert spaces are treated by using results obtained in the previouschapters.WeshowtheconnectionbetweencontrolledZakaiequationsand controlofpartiallyobservablediffusions. Kobe,Japan MakikoNisio Acknowledgement This book was planned as a new edition of Stochastic Control Theory, ISI Lecture Notes 9 (1981) following F. Delbaen’s recommendation. I would like to acknowledgehisrecommendationtogetherwithvaluableadviceduringpreparation ofthemanuscript. The author is greatly indebted to W. H. Fleming, who read carefully the manuscript and offered many valuable comments and suggestions, especially for Chap.4, which led to a much improved version. Many thoughtful helps and encouragements had been given by experts and friends, particularly F. Asakura, Y.Fujita,H.Nagai,andT.Urataniwhohelpedtoimprovethebookatvariousstages. H.Morimotoassistedinwritingthemanuscriptbycarefullyreadingitandmaking valuablecomments,especiallyonmathematicaleconomics. vii Contents 1 StochasticDifferentialEquations .......................................... 1 1.1 ReviewofStochasticProcesses ........................................ 1 1.1.1 RandomVariables .............................................. 1 1.1.2 StochasticProcesses............................................ 5 1.1.3 ItôIntegrals ..................................................... 10 1.1.4 Itô’sFormula.................................................... 13 1.2 StochasticDifferentialEquations ...................................... 15 1.2.1 LipschitzContinuousSDEswithRandomCoefficients ...... 15 1.2.2 GirsanovTransformations...................................... 18 1.2.3 SDEswithDeterministicBorelCoefficients .................. 22 1.2.4 BackwardStochasticDifferentialEquations.................. 24 1.3 AssetPricingProblems................................................. 26 1.3.1 Formulation..................................................... 26 1.3.2 BackwardSDEfortheSellingPrice........................... 27 1.3.3 ParabolicEquationAssociatedwith(1.84).................... 29 2 OptimalControlforDiffusionProcesses ................................. 31 2.1 Introduction ............................................................. 31 2.1.1 Formulations.................................................... 32 2.1.2 ValueFunctions:BasicProperties ............................. 34 2.2 DynamicProgrammingPrinciple(DPP)............................... 40 2.2.1 Discrete-TimeDynamicProgrammingPrinciple ............. 41 2.2.2 ApproximationTheorem....................................... 46 2.2.3 DynamicProgrammingPrinciple.............................. 47 2.2.4 BrownianAdaptedControls.................................... 50 2.2.5 CharacterizationoftheSemigroup(V ;™(cid:2)t)............... 53 (cid:2)t 2.3 VerificationTheoremsandOptimalControls.......................... 58 2.3.1 VerificationTheorems.......................................... 58 2.3.2 ExamplesofOptimalControl.................................. 62 2.4 OptimalInvestmentModels............................................ 68 2.4.1 Formulations.................................................... 68 ix

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.