STOCHASTICA PPROXIMATION AND NONLINEAR REGRESSION STOCHASTIC APPROXIMATION AND NONLINEAR REGRESSION ARTHUR E.A LBERT LELAND A.G ARD�ER,J R. IIIIII I RESEARCH l\'IO�OGRAPH NO.4 2 THE I\U.T.P RESS,C AMBRIDGE, MASSACHUSETTS Copyrig©h t1 967 TheM assachusIeltltsst iolfTl elcthel lology Seti lTli meNse wR omall Prillatmeidb oulilldtl h eU llitSetda te0/sA mericbay TheR iversPirdees Cs,a mbridgeA,- fassac!lusetts Allr ighrtess ervNeod p.a r0t/ t hibso omka yb e reproduocreI d/ Iiliilz(lel dif loYr mo rb ya llmYe allS, electroorlm leicch alliiclallc,/ updhioltlogc opyillg, recordiolrlb gya, l liYl l/ormasttioorla(lg med r etrieval systewmi,t /lpOeumrti ssiiollwllr iti/lrlogmt hep ubliesrh. LibraorfyC Ollgrceaswsl omgr dl Iumbe6r7:- 16501 ISB0N-:2 62-51148-7 (Paperback) ToL ise ToM argie Foreword Thiiss t hef orty-sevcoolnudm ien t heM .I.TR.e searMcohn ograph Seripeusb lisbhyet dh eM .I.TP.r esTsh.e o bjectoifvt eh isse riiests o contribtuott hee p rofessilointaelr aat nuurmeb eorf s ginificapnite ces ofr esearlcahgre,r i ns copteh anj ournaarlt icbluetsn ormallleys s ambitiotuhsa nfi nishbeodo ksW.e belietvhea stu chs tudideess erve a widecri rculatthiaocnna nb ea ccomplisbhyi endf ormcahla nnealnsd, weh opet hatth ifso rmo fp ublicawtiilomlna ket hemr eadialcyc essible tor esearocrhg anizatliiobnrsa,ra inedsi ,n dependweonrtk ers. HOWARWD. JOHNSON Preface Thism onograpahd drestsheesp robleomf "r eal-ticmuer"v fiet ting int hep resenocfen oisfer,o mt hec omputatiaonndas lt atisvtiiecwal pointSsp.e cificawlel eyx,a minteh ep robleomf n onlineraerg ression whereo bservat{iY onnn:s= I,2 ,. .}. a rem adeo na timsee riwehso se mean-vafluunec ti{oFnn (6i)s}k nowne xcepfto ra finitneu mbero f paramet(eBrlsB> 2• ,• •, Bp=) 6'W.e wantt o estimattheip sa rameter. Inc ontratsott h et raditifoonramlu latwieo inm,a gitnhede a taa rriving int emporsaulc cessWieo nr.e quitrhea tth ee stimatbieoc na rrioeudti n reatli mseo t haatt,e acihn statnhte,p arameteesrt imaftuel ly reafllelc ts oft hec urrenatvlayi ladbaltea . Thec onventimoentahlo dosfl east-sqaunadrm easx imum-likelihood estimatailotnh,o ucgohm putatiofneaalsliybi lnce a sewsh erea single estimaitste ob ec omputeadft erth ed ata hbaeveean c cumulaatreedi ,n applicaibnls eu cha situatTihoen s.y steomfsn ormal equations that mustb es olveidno rdetro p roducteh esees timataorrgese neralsloy completxh aitti si mpracttioct arlyt os olvteh em agaanidna gaians eacnhe wd atumar ri(veessp eciiaftl hlery a toef d atcao llectiisho ing h). Consequenwtel ya,r el ed: 0 consideesrt imatoofrt sh e" differential correctitoynp"Se u.c he stimataorreds e finerde cursiTvheel( yn+. I)st estim(abtaes eodn t hefi rsn to bservatiisod nesfi)n eidnt ermosf t hnet h bya n equatioofnt hef orm (talr bitnr =a 1r,y2;., •)· , wher{ea ins}as uitacbhloys esne quenocfe" smoothnig" vectoTrhs.e ix X PREFACE term. .d ifferentcioarlr ectiroenf"e trso t hep roportionoafl tihtey differebnectew eten+nl a ndt n( thceo rrecttioot nh)ed ifferebnectew een thnet ho bservatYino,an n,d t hev aluteh awto uldb ep redictbeytd h e regressfiuonnc tiiotfnn w erien f actth "e truep"a rametvearl ue. Thec hioceo fs moothivnegc tocrrsi ticaaffleIcytt sh ec omputational simplicaintdys tatisptriocpaelr toifes su chr ecurseisvtei maTthees . mainp urpoosfet himso nograpihst or elattheel arge-sample statistical behavioofrs aide stima(tceosn sisternactyoe,f c onvergenlcaer,g e sampldei stributthieoonra ys,y mptoetffiicci enctyo)t hep ropertoife s ther egressfiuonnc tiaonnd t hec hoicoef s moothivnegc toAr sw.i de claosfss moothivnegc toirses x aminSeodm.e a red eterminainsdts iocm e depenodn ( arfeu nctioofn)st heo bservations. Thet echniquuseesid n t hea nalyasriesf, o rt hem ostp arte,l ementary andb, yn ow,s tandatrodt hosweh oa ref amiliwairt thh el iteraotfu re stochasatpipcr oxiimoantH.o weverf,o rt hes akoef t hen onspecialist, we havet rietdok eepo urt reatmseenltf -contIania nleclda .s ewse, s eke thea symptoptriocp ert(ileasr ng)eo ft hes olutitoont hen onlinear differenecqeu atiwohni crhe lattenls+ t ot n. As a fortuitous by-tphrero edsuuclottf,ts h imso nograpahl ssoe rve toe xtenadn dc omplememnatn yo ft her esuilntt sh es tochastici-approx matiolni terature. The structoufrt eh meo nograpihsa sf olIoPwasr.It dealwsi tht he specicaals oef a scalpaarr ametHeerr.ew e discupsrso babilitayn-do ne mean-square convaenrdga esnycmep todtiisct ributiono ftt hheeo ry estimatfoorrvs a riocuhso icoefst hes moothisnegq uen{caen P}ar.It I dealwsi tht hep robabilitayn-dom neea n-squcaornev geernceo ft he estimationtr hs ev ectocra sfeo rv ariocuhso icoefss moothivnegc tors {anE}xa.m pleasr el iberaslplryi nktlherdo ughotuhteb oko.I nf acatn, enticrhea ptiesrd evotteodt hed iscussoifeo xna mplaetsv ariyngl evels ofg enerality. Theb oko isw rittaettn h fier st-ygeraard ualteev eall,t houtghhil se vel ofm aturityi sn otr equiruendi formCleyr.t aintlhyer eadesrh ould understtahnedc onceopfta limibto tihn t hed eterminainsdtp irco b abilistic Thsiesmn uscehs w.i lals surae c omfortajboluer netyh rgohu Chapte2r asn d3 .Ch apte4r asn d5 requiarceq uaintwaintctheh Cee ntral LimitT heoremF.a miliarwiittyht hes tandatredc hniqoufel sa rge samplteh eorwyi lall spor ovues efbuulti s n ot esseCnhtaipatle.6r asn d 7 arec oucheidn thel anguaogfem atriaxl gebrbau,tn oneo ft he "classicraels"u lutsse da red eepT.h e readewrh o appreciatthees elementaprryo peiresto fe igenvalues, eiagnednm vaetcrtinoxor rsm,s willf eealt h ome. xi PREFACE Thea uthowriss ht oe xpretshse igrr atittuodN ey leBsa rnerwth,o collaboriantt ehdep roofosfT heorem6s. t1h roug6h. 3t;oS ueM . McKayR,u thJ ohnsoann,dV alerOined rejkwah,os haretdh ec horoef typintgh eo riginmaaln uscritpott ;h eA RCON Corproatiotnh,e M.I.LTi.n colLna boratotrhyeO, ffi ceo fN avaRle searcahn,dt he U.S.A irF orcSey stemCso mmandw,h o contributtote hde a uthors' suppordtu rintgh ew ritionfgt hem onograpahn;d ,fi nalltyo,t he editorsitaaloff f t heA nnaolfsM athematSitcaatli swthio cwser,e principraelslpyo nsfiobrtl heew ritionftg h imso nograph. ARTHUER.A LBERT LELANAD.G ARDNEJRR,. CambriMdagses,a chusetts Octo1b9e6r6 Contents 1. Introduction 1 PARTI THE SCALAR-PARAMETCEARS E 2. Probabilitayn-dOM neea n-SquaCroen vergence 9 2.1Th e BasiAcs sumpti(oAnIsT hrougAhS "') 9 2.2T heorems ConcPerrnoibnagb ilitayn-dMO enaen - SquareC onvergefnocGree nerlGa ains 11 2.3T heP rototDyeptee rministicG ain 17 2.4R eductiiont nh eL ineaCra se 18 2.5G ainTsh aUts eP rioKrn owledge 19 2.6R andomG ains 20 2.7T heoreCmosn cerniPnrogb ability-anOdn Mee an SquareC onvergefnocer P articuGlaairn sA;p - plicatitooPn o lynomiRaelg ressio2n 3 2.8T rigonomeRtergirce ss'i- o2n 4 2.9E xponentiaRle gression2 5 3. MomentC onvergeRnactee s 27 3.1R estriGacitSnee dq uenc2e7 3.2T heorCeomnsc neirnMgo menCotn verengce Rates2 8 3.3P ower-DLearwi vativ3e4s 3.4R elveancteoS tochAapsptriiomcax tion 35 3.5G eneraliza3t7i on xiii xiv CONTENTS 4. AsymptotDiics tribuTthieoonr y 38 4.1 Notfaotrai nodnR elatiBoewntesne Modeosf Convereg en3c9 4.2T heorcCmosn cernAisnygm ptoNtoircm alfiotry GenerGaali ns 39 4.3A lternattoti hveCe o ntinuCoounsv ergAesn-ce sumpitno 47 4.4L arge-SVaamrpilaen fcoPeras r ticular Gains 48 4.5 OtherG ains 53 4.6G ainC ompariasnodn ChooifcG ea inC on- stants5 4 4.7A GenerSatlo chaAsptpirxicom aotni Theorem5 8 5. AsymptotEifficc iency 60 5.1A symptLoitnieca ri6t1y 5.2I ncreased EvffiicaTi reanncsyf ormoaftt ihoen PrametSpearc e 61 a 5.3A symptEoffitciice nacnydS ummary Theorem6 5 5.4I ncreEaffisceide ncy7 2 5.5L argeam-pSleC onfideInnctee rva7l2s 5.6C hoiocfIe n dxeinSge quence7 3 5.7A Single-PaErsatmiemtaePtrri oobnl em7 4 PARTI l THE VECTOR-PARAMETCEARS E 6. Mean-SquaarnedP robabilitCyo-nOvneer gence8 1 6.1T heorCeomn ecrniDnigv ergteonZ cel!ro of P rod- uctosf E lementMaartyr iacnesdA ssumptions (B1 T hrohu g5B) 83 6.2D iscusosfAi sosnmu ptioannsdP roof 84 6.3T heoreCmosn creningM ea-nSqurea andP roba bilityC-onOnvee rgefnocrGe e nerGaali nasn d Assumpt(iColnT sh rouCg6h'a ndD l Through D5) 92 6.4T runcaVteecdtI otre ratio1n0s2 6.5C onjectTuhreeodr eamn dA ssumpti(oE1n s ThrouEg6h' ) 103 6.6B atcPhr ocessi1n04g
Description: