ebook img

Stochastic Analysis and Diffusion Processes PDF

365 Pages·2014·1.884 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Stochastic Analysis and Diffusion Processes

OXFORD GRADUATE TEXTS IN MATHEMATICS SeriesEditors R.Cohen | S.K.Donaldson | S.Hildebrandt T.J.Lyons | M.J.Taylor OXFORD GRADUATE TEXTS IN MATHEMATICS Booksintheseries 1. KeithHannabuss:AnIntroductiontoQuantumTheory 2. ReinholdMeiseandDietmarVogt:IntroductiontoFunctionalAnalysis 3. JamesG.Oxley:MatroidTheory 4. N.J.Hitchin,G.B.Segal,andR.S.Ward:IntegrableSystems: Twistors,LoopGroups,andRiemannSurfaces 5. WulfRossmann:LieGroups:AnIntroductionthroughLinearGroups 6. QingLiu:AlgebraicGeometryandArithmeticCurves 7. MartinR.BridsonandSimonM.Salamon(eds):InvitationstoGeometry andTopology 8. ShmuelKantorovitz:IntroductiontoModernAnalysis 9. TerryLawson:Topology:AGeometricApproach 10. MeinolfGeck:AnIntroductiontoAlgebraicGeometryandAlgebraicGroups 11. AlastairFletcherandVladimirMarkovic:QuasiconformalMaps andTeichmüllerTheory 12. DominicJoyce:RiemannianHolonomyGroupsandCalibratedGeometry 13. FernandoVillegas:ExperimentalNumberTheory 14. PéterMedvegyev:StochasticIntegrationTheory 15. MartinA.Guest:FromQuantumCohomologytoIntegrableSystems 16. AlanD.Rendall:PartialDifferentialEquationsinGeneralRelativity 17. YvesFélix,JohnOprea,andDanielTanré:AlgebraicModelsinGeometry 18. JieXiong:IntroductiontoStochasticFilteringTheory 19. MaciejDunajski:Solitons,Instantons,andTwistors 20. GrahamR.Allan:IntroductiontoBanachSpacesandAlgebras 21. JamesOxley:MatroidTheory,SecondEdition 22. SimonDonaldson:RiemannSurfaces 23. CliffordHenryTaubes:DifferentialGeometry:Bundles,Connections, MetricsandCurvature 24. GopinathKallianpurandP.Sundar:StochasticAnalysisandDiffusion Processes Stochastic Analysis and Diffusion Processes gopinath kallianpur and p. sundar 3 3 GreatClarendonStreet,Oxford,OX26DP, UnitedKingdom OxfordUniversityPressisadepartmentoftheUniversityofOxford. ItfurtherstheUniversity’sobjectiveofexcellenceinresearch,scholarship, andeducationbypublishingworldwide.Oxfordisaregisteredtrademarkof OxfordUniversityPressintheUKandincertainothercountries ©GopinathKallianpurandP.Sundar2014 Themoralrightsoftheauthorshavebeenasserted FirstEditionpublishedin2014 Impression:1 Allrightsreserved.Nopartofthispublicationmaybereproduced,storedin aretrievalsystem,ortransmitted,inanyformorbyanymeans,withoutthe priorpermissioninwritingofOxfordUniversityPress,orasexpresslypermitted bylaw,bylicenceorundertermsagreedwiththeappropriatereprographics rightsorganization.Enquiriesconcerningreproductionoutsidethescopeofthe aboveshouldbesenttotheRightsDepartment,OxfordUniversityPress,atthe addressabove Youmustnotcirculatethisworkinanyotherform andyoumustimposethissameconditiononanyacquirer PublishedintheUnitedStatesofAmericabyOxfordUniversityPress 198MadisonAvenue,NewYork,NY10016,UnitedStatesofAmerica BritishLibraryCataloguinginPublicationData Dataavailable LibraryofCongressControlNumber:2013943837 ISBN978–0–19–965706–3(hbk.) ISBN978–0–19–965707–0(pbk.) Printedandboundby CPIGroup(UK)Ltd,Croydon,CR04YY Dedicatedto KrishnaKallianpur and Mrs.SundaraPadmanabhan Preface Theideaofwritingabookonstochasticanalysisarosefromasuggestionthatwewrite anenjoyablebookonBrownianmotionandstochasticanalysis.Afterstartingour work,wefeltthattheword“enjoyable”shouldnotbeconstruedasasynonymfor“heur- isticandnon-rigorous”;rather,itshouldmean“readableandconcisewithfulldetails”. Writingsuchabookisatallorder,andatbest,onlypartialsuccessisallthatonecan hopefor. Theoriginofthebookowesitselftoourlecturenotesformedoveranumberofyears anddrawnfrommanyinspiringsources.Inthepresentbook,webuildthebasictheory ofstochasticcalculusinaself-containedmannerinthefirstsixchapters.Startingwith Kolmogorov’sconstructionofstochasticprocesses,Brownianmotionandmartingales are presented with a view to build stochastic integration theory and study stochastic differentialequations.Thiswouldconstitutethefirstpartofthebook. Thenextsixchaptersdealwiththeprobabilisticbehaviorofdiffusionprocessesand certainfineraspects,applications,andextensionsofthetheory.Onecanviewitasthe second part of this book. The selection of material for the second part of the book reflectsourowntastesandprovidesonlyaglimpseofsomeoftheactiveareasofresearch. Stochasticanalysisbeingsovast,importanttopicssuchasMalliavincalculus,stochastic control,andfilteringtheory,thoughofinteresttous,hadtobeleftout.Instead,westart withmartingaleproblems,amethoduniquetostochasticanalysis,andproceedtodis- cuss the connection between stochastic analysis and partial differential equations and thenstudyGaussiansolutionsofstochasticequations.JumpMarkovprocesses,invari- ant measures, and large deviations principle for diffusions are presented in successive chapters,thougheachofthesecaneasilyformthesubjectmatterforawholebook. Thebookiswrittenforgraduatestudents,appliedmathematicians,andanyoneinter- ested in learning stochastic calculus. The reader is assumed to be knowledgeable in probabilitytheoryatagraduatelevel.Acourseonstochasticanalysiscanbedesigned usingthefirstpartofthisbookalongwithpartsofChapter8.Aselectionofthelastsix chapterscanbeusedforasecondcourseonstochasticanalysis. Regardinginterdependenceofchapters,thefirstpartofthebookisconnectednatur- allyasasequencewithoneexception:Chapter4isnotneededtoreadChapters5and 6.Agoodknowledgeofthefirstpartisrequiredtoreadanyofthefollowingchapters. However,thesecondpartaffordsmoreflexibilityinreading.Forinstance,eachofthe Chapters9,10,and12canbereadindependentlyoftheothers. viii | Preface Wearequiteindebtedtoseveralofourfriendsandcolleagueswhohelpedandinspired ustowritethisbook.Wethankseveralofourcolleagues,especiallyG.Ferreyra,H.-H. Kuo,U.Manna,P.E.Protter,B.Rüdiger,A.Sengupta,S.S.Sritharan,W.Woyczynski, andH.Yin.Severalofourgraduatestudentsreadpartsofthebookandspottednumerous typos.Weappreciatetheireffortsandthankthemfortheircarefulreading.Wethankour families,especiallyKrishna,Kathy,andVijayforbeingpatientwithusandhelpingus cheerfullywhilethebookwaswritten.ThankstoMs.ElizabethFarrellforathorough proofreadingoftheentiremanuscript. Contents 1 IntroductiontoStochasticProcesses 1 1.1 TheKolmogorovConsistencyTheorem 1 1.2 TheLanguageofStochasticProcesses 11 1.3 SigmaFields,Measurability,andStoppingTimes 14 Exercises 17 2 BrownianMotion 19 2.1 DefinitionandConstructionofBrownianMotion 20 2.2 EssentialFeaturesofaBrownianMotion 27 2.3 TheReflectionPrinciple 34 Exercises 39 3 ElementsofMartingaleTheory 41 3.1 DefinitionandExamplesofMartingales 41 3.2 WienerMartingalesandtheMarkovProperty 44 3.3 EssentialResultsonMartingales 49 3.4 TheDoob-MeyerDecomposition 54 3.5 TheMeyerProcessforL2-martingales 67 3.6 LocalMartingales 71 Exercises 73 4 AnalyticalToolsforBrownianMotion 75 4.1 Introduction 75 4.2 TheBrownianSemigroup 76 4.3 ResolventsandGenerators 79 4.4 PregeneratorsandMartingales 87 Exercises 89 5 StochasticIntegration 90 5.1 TheItôIntegral 90 5.2 PropertiesoftheIntegral 98 5.3 Vector-valuedProcesses 105 5.4 TheItôFormula 106

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.