Myers Stereoselective, Directed Aldol Reaction Chem 115 Reviews: • Note: the enantiomeric transition states (not shown) are, by definition, of equal energies. The Heathcock, C. H. In Comprehensive Organic Synthesis, Trost, B. M.; Fleming, I., Eds., Pergamon pericyclic transition state determines syn/anti selectivity. To differentiate two syn or two anti Press: New York, 1991, Vol. 2, pp. 133-238. transition states, a chiral element must be introduced (e.g., R , R , or L), thereby creating 1 2 diastereomeric transition states which, by definition, are of different energies. Kim, B. M.; Williams, S. F.; Masamune, S. In Comprehensive Organic Synthesis, Trost, B. M.; Fleming, I., Eds., Pergamon Press: New York, 1991, Vol. 2, pp. 239-275. Paterson, I. In Comprehensive Organic Synthesis, Trost, B. M.; Fleming, I., Eds., Pergamon Press: New York, 1991, Vol. 2, pp. 301-319. (E)-enolates R L 1 H O OH M O OH O O L 2 H3C O R1 R2 H3C H H3C H OML2 R2 CH3 H R anti 1 FAVORED CH 3 • The aldol reaction was discovered by Aleksandr Porfir'evich Borodin in 1872 where he first + R L 1 observed the formation of "aldol", 3-hydroxybutanal, from acetaldehyde under the influence of R2 O OH R CHO M catalysts such as hydrochloric acid or zinc chloride. 2 O L H3C O R1 R2 H CH3 H syn DISFAVORED Diastereofacial Selectivity in the Aldol Addition Reaction- Zimmerman-Traxler Chair-Like Transition States • Zimmerman and Traxler proposed that the aldol reaction with metal enolates proceeds via a (Z)-enolates R1 L chair-like, pericyclic process. In practice, the stereochemistry can be highly metal dependent. H O OH M Only a few metals, such as boron, reliably follow the indicated pathways. O L H O R1 R2 R2 CH3 • (Z)- and (E)-enolates afford syn- and anti-aldol adducts, respectively, by minimizing OML2 CH3 1,3-diaxial interactions between R1 and R2 in each chair-like TS‡. syn R CH3 FAVORED 1 + R L 1 R2CHO R2 M O OH O L H R R Zimmerman, H. E.; Traxler, M. D. J. Am. Chem. Soc. 1957, 79, 1920-1923. O 1 2 H CH 3 CH3 Dubois, J. E.; Fellman, P. Tetrahedron Lett. 1975, 1225-1228. anti DISFAVORED Heathcock, C. H.; Buse, C. T.; Kleschnick, W. A.; Pirrung, M. C.; Sohn, J. E.; Lampe, J. J. Org. Chem. 1980, 45, 1066-1081. M. Movassaghi Myers Stereoselective, Directed Aldol Reaction Chem 115 Preparation of (Z)- and (E)-Boron Enolates (Z)-Selective Preparation of Boron Enolates from Evans' Acyl Oxazolidinones (Imides) n-Bu n-Bu Et O CH3 iP(nr-BNuE)2t,B EOtTOf Et OB(n-CBHu)32 P–h7C8 HºCO Et O OHPh Bn O O BO –OTf 2 2 (n-Bu) BOTf –78 ºC, 30 min 77% CH3 N CH3 2 O N CH3 CH Cl >97% (Z) syn >99% O 2 2 O Bn O (c-Hex)2BCl OB(c-Hex)2 PhCHO O OH CH n-Bu n-Bu Et 3 Et3N, Et2O Et –78 ºC Et Ph H H n-Bu n-Bu –78 ºC, 10 min CH CH B O B O 3 75% 3 O O O N O N >99% (E) anti >97% H3C H H H CH3 H Bn Bn FAVORED DISFAVORED • Dialkylboron triflates typically afford (Z)-boron enolates, with little sensitivity toward the amine i-Pr NEt i-Pr NEt 2 2 used or the steric requirements of the alkyl groups on the boron reagent. • In the case of dialkylboron chlorides the geometry of the product enolates is much more sensitive to variations in the amine and the alkyl groups on boron. n-Bu n-Bu n-Bu n-Bu B B • The combination of (c-Hex) BCl and Et N provides the (E)-boron enolate preferentially. O O O O 2 3 CH O N 3 O N CH 3 Bn Bn Evans, D. A.; Vogel, E.; Nelson, J. V. J. Am. Chem. Soc. 1979, 101, 6120-6123. • Observed selectivity > 100:1 Z : E. Evans, D. A.; Takacs, J. M.; McGee, L. R.; Ennis, M. D.; Mathre, D. J.; Bartroli, J. Pure & Appl. Chem. 1981, 53, 1109-1127. Evans, D. A.; Takacs, J. M.; McGee, L. R.; Ennis, M. D.; Mathre, D. J.; Bartroli, J. Pure Appl. Brown, H. C.; Dhar, R. K.; Bakshi, R. K.; Pandiarajan, P. K.; Singaram, B. J. Am. Chem. Soc. Chem. 1981, 53, 1109-1127. 1989, 111, 3441-3442. M. Movassaghi Myers Stereoselective, Directed Aldol Reaction Chem 115 Syn-Selective Aldol Reactions of Imide-Derived Boron (Z)-Enolates • Chiral controller group biases enolate !-faces such that one of the two diastereomeric (syn) transition states is greatly favored. Open coordination site required for pericyclic aldol rxn • Dipole-dipole interactions within the imide are minimized in the reactive conformation (see: n-Bu n-Bu Noe, E. A.; Raban, M J. Am. Chem. Soc. 1975, 97, 5811-5820). Li B O O Bn OB(n-Bu)2 O O O N CH3 N CH3 O N CH3 O H3C CH3 H3C CH3 Bn O Bn O 1. n-Bu2BOTf, i-Pr2NEt O OH UNREACTIVE cf. reactive enolate in N CH3 CH2Cl2, 0 °C N R Evans' asymmetric RCHO O A 2. RCHO O CH alkylation O –78 " 23 °C O 3 CH3 O 1. n-Bu2BOTf, i-Pr2NEt CH3 O OH O Bn H O Ph N CH3 CH2Cl2, 0 °C Ph N R N H n-Bu n-BuBn N O O B 2 . –R7C8H "O 23 °C O O CH3 O H vs. H O O B n-Bu n-Bu B O H O O H R R diastereomerica CH3 CH3 imide aldehyde ratio yield (%) FAVORED DISFAVORED A (CH3)2CHCHO 497:1 78 B (CH3)2CHCHO <1:500 91 A n-C4H9CHO 141:1 75 n-Bu n-Bu n-Bu n-Bu B n-C4H9CHO <1:500 95 B B A C6H5CHO >500:1 88 Bn O O Bn O O B C6H5CHO <1:500 89 N R N R aRatio of major syn product to minor syn product. O CH O CH 3 3 O O • A variety of chiral imides can be used for highly selective aldol reactions. • Anti products are typically formed in less than 1% yield. Bn O OH Bn O OH N R N R • Often, a single crystallization affords diastereomerically pure product. O CH O CH 3 3 O O Evans, D. A.; Bartroli, J.; Shih, T. L. J. Am. Chem. Soc. 1981, 103, 2127-2129. Evans, D. A.; Gage, J. R. Org. Syn. 1990, 68, 83. Evans, D. A.; Takacs, J. M.; McGee, L. R.; Ennis, M. D.; Mathre, D. J. Bartroli, J. Pure & Appl. Chem. 1981, 53, 1109-1127. M. Movassaghi Myers Stereoselective, Directed Aldol Reaction Chem 115 Carboximide Hydrolysis with Lithium Hydroperoxide Other Methods for Removal of the Chiral Auxiliary • Reductive cleavage: O O LiOOH O O O O N R LioOrH HO R + OH NH R O N Br LiAlH4, THF HO Br O A B Bn CH CH3 CH2 –78 ! 0 °C CH3 CH2 3 90% substrate reagent yield of A (%)a yield of B (%)a • Esterification: Bn O H CH 3 H LiOOH 76 16 H C N 3 O H LiOH 0 100 H C O CH3 3 OBOMOBn O CH O 3 H C CH3 O OH LiOOH 98 <1 O 3N OH O H CH3 CH3 CH3 Ph O N Ph O LiOH 43 30 CH3 CH Ph BnOLi O 3 THF, 0 °C aYield of diastereomerically pure (>99:1) product. 77% H C 3 CH • LiOOH displays the greatest regioselectivity for attack of the exocyclic carbonyl group. H C O 3 3 OBOMOBn O H C • This selectivity is most pronounced with sterically congested acyl imides. 3 O CH H H 3 BnO O CH3 CH3 • This is a general solution for the hydrolysis of all classes of oxazolidinone-derived carboximides and allows for efficient recovery of the chiral auxiliary. • Transamination: O Bn O O O OH O OH Al(CH ) CH 33 N OH O N 3 CH3O N CH3 H3CO N3 O O LiOOH H3CO N3 Bn CH3OBn CH3 CHC3HO2NCHl2C, H0 3°•CHCl CH3 OBn CH3 O THF, H O; O NHBoc Na SO2 NHBoc 92% OBn 02 °C 3 OBn O 96% O • A free "-hydroxyl group is required. • The selective hydrolysis of carboximides can be achieved in the presence of unactivated • Weinreb amides can be readily converted into ketones or aldehydes (see: Nahm, S.; esters using LiOOH. Weinreb, S. M. Tetrahedron Lett. 1981, 22, 3815-3818). Evans, D. A.; Bender, S. L.; Morris, J. J. Am. Chem. Soc. 1988, 110, 2506-2526. Evans, D. A.; Britton, T. C.; Ellman, J. A. Tetrahedron Lett. 1987, 28, 6141-6144. Gage, J. R.; Evans, D. A. Org. Syn. 1990, 68, 83-91. M. Movassaghi Myers Stereoselective, Directed Aldol Reaction Chem 115 H C Cytovaricin: 3 CH3 O O H3C O H + H3C O NCHO3 Ph Ph OCHN3 O CH3 +PMBH =O p-MethoOxPybMeBnzyl TBSO H3C O N OO+ DEOIPSOHH HHO CH3 Ph O NO CH3 + H OBn O O H O 1. n-Bu2BOTf, Et3N n - BCuH2B2COl2T,f ,0 E °tC3N; n - BCuH2B2COl2T,f ,0 E °tC3N; H3C Ph H CH3OCH2OCH2CCl3 2 . A C ClH(CHOH2C3N)lH23,, CT–H7H8F• °HCCl RCHO, –78; RCHO 1. n-Bu2BOTf, Et3N 3 3 H2O2, 0 °C –78 ! 23 °C; CH2Cl2, –78 °C; 83% H2O2, 0 °C RCHO O OH 92% 2. Al(CH ) , THF 87% CH O3NH3CH •HCl H3CO N OBn 3 3 OH O CH3 CH3 O OH CH3 CH3 H3C N Ph Ph N OPMB H3C 92% CH O O CH 3 3 DEIPSO O O H 1. Al(CH3)3 OH HH O CH3 t-Bu t-Bu CH3ONHCH3•HCl H THF, 0 °C TBSO O Si 2. TESCl, Im. DMF H O O H3C O N CH3CH OCH2OCH2CCl3 OBn H3C CH3 CH3 91% OCH 3 O O N N CH OTESO 3 CH3 CH3 3 H3C CH3 + CH3O N OPMB CH3 LDA, Et O, CH3 CH3 2 CH THF, 0 °C; 3 TESO CH –45, 90 % H3C H O OCH OCH CCl HO 3OSi t-tB-Buu 2 2 3 H3C HO3C COH3H3C CNHN3 H OTESO TBSDOEIHPS3CO CHHHO HO CH3 + O TEHS3OC OO HOOCH3COHT3ES OPMB CH CH3 CH3 OPMB PhSO2 OTES3 CH 3 HF, H O, CH CN 2 3 H 25 °C H3C O O H3C 92% H3C HHO HH O O OCHH HO DEIPSO H3C O H CH3CH3 OH3 H H HO HH O CH3 O HH HO CH3 Cytovaricin OH OHOOHOOCH3COHH3 PMBO H O H H O CH3 O OCH OCH CCl CH3 CH3 2 2 3 Evans, D. A.; Kaldor, S. W.; Jones, T. K.; Clardy, J.; Stout, T. J. J. Am. Chem. Soc. 1990, 112, DEIPS = diethylisopropylsilyl 7001-7031. M. Movassaghi Myers Stereoselective, Directed Aldol Reaction Chem 115 Diastereoselective Syn-Aldol Reaction of !-Ketoimides Diastereoselective Anti-Aldol Reaction of !-Ketoimides Xp O O O 1. (c-Hex)2BCl O O O OH O O O OH EtS3Nn,( OCTHf2)2Cl2 SnL HH3HC O O O N O O OHR O N CH CH3 E0 t°NC(,C 1H h3)2, Et2O O N CH CH R + O N CH CH R O 3 2. RCHO 3 3 3 3 RCHO, –20 °C L O H CH3 CH3 Bn –78 °C, 3h Bn Bn R Bn anti-anti syn-anti O O O CH3 anti-syn O N CH3 ratio aldehyde yield %a anti-anti : syn-anti CH3 Xp Bn i-Pr NTEitC, lC4H Cl HH3C O Cl O O O OH (CH3)2CHCHO 78 84:16 2 2 2 H O TI Cl O N R CH2=C(CH3)CHO 72 92:8 –7R8 C"H 0O °C H R O Cl Bn CH3 CH3 CH3CH2CHO 70b 80:20 CH3 syn-syn PhCH CH CHO 84b 88:12 2 2 CHO enolization ratio Ph 84 97:3 conditions RCHOa yield %b anti-syn : syn-syn CH 3 aIsolated yield of major diastereomer. bYield of A H3C CHO 83 95:5 purified mixture of diastereomers. B CH 86 <1:99 3 • Enolization of the less hindered side of the ketone under Brown's conditions affords the A H3C CHO 77c 95:5 (E)-boron enolate. B CH 64c 2:98 2 • The C2 stereocenter is the dominant control element in these aldol reactions; "matched" vs. A 71 79:21 "mismatched" effects of the remote auxiliary are negligible. H C CHO 3 O OH B 86 <1:99 RCHO R Si face L R A CHO 85 89:11 CH CH 3 3 B 81 4:96 O M syn-anti, predicted O H A: Sn(OTf)2, Et3N; B: TiCl4, i-Pr2NEt. a1.0-1.1 equiv bIsolated yield of RL H3C CH + major diastereomer (>99% purity). c3-5 equiv of RCHO was used. CH3 CH3 RL H 3 O OH • Both enolization methods provide (Z)-enolates and (diastereomeric) syn aldol products. Re face RCHO RL R CH CH 3 3 • The stereochemical outcome of both reactions is dominated by the C methyl-bearing 2 anti-anti, observed stereocenter, as shown in the proposed transition states above. • The sense of asymmetric induction observed in these reactions was unexpected • The chirality of the oxazolidinone has little influence on the diastereoselectivity of these and opposite to a prediction based on a reactant-like transition state model minimizing reactions. A strain. (1,3) Evans, D. A.; Clark, J. S.; Metternich, R.; Novack, V. J.; Sheppard, G. S. J. Am. Chem. Soc. Evans, D. A.; Ng, H. P.; Clark, J. S.; Reiger, D. L. Tetrahedron 1992, 48, 2127-2142. 1990, 112, 866-868. M. Movassaghi Myers Stereoselective, Directed Aldol Reaction Chem 115 Directed Reduction of !-Hydroxy Ketones O O O O O Internal hydride delivery: CH O N 3 BnO CH3 BzO CH3 • In addition to B!n-ketCoHim3ides, the two chiral ethyCl kHe3tones above are known CtoH u3ndergo aldol R1 HOO+HHOBA–OcAc R1 OH OHR2 reactions at the unexpected Re face of the enolate, deilvering anti-anti aldol products. OH O R2 1,3-anti-diol (CH ) NBH(OAc) FAVORED 34 3 Paterson, I.; Goodman, J. M.; Isaka, M. Tet. Lett. 1989, 30, 7121-7124. R1 R2 Paterson, I.; Wallace, D. J.; Cowden, C. J. Synthesis 1998, 639-652. H OAc OH OH R2 – R1 O B OAc R1 R2 Syn-Anti-Selective Aldol Reactions of Chiral Ethyl Ketones H + H O 1,3-syn-diol 1. (c-Hex) BCl DISFAVORED 2 TBSO O Et3N, Et2O TBSO O OH H3C CH3 0 °C H3C CH3 • The reactivity of the reagent is attenuated such that the reduction of ketones proceeds at convenient rates only intramolecularly, favoring formation of 1,3-anti-diols. CH3 CH3 2. i-PrCHO CH3 CH3 CH3 CH3 –78 °C 90%, 88% de External hydride delivery: 1. (c-Hex) BCl 2 TBSO O E0 t°3CN, Et2O TBSO O OH OH O HBH4– L OH OH H3C CH3 H3C CH3 Zn(BH4)2 CH CH 2. i-PrCHO CH CH CH CH R1 R2 R1 O Zn L R1 R2 3 3 3 3 3 3 O –78 °C 75%, 92% de R2 1,3-syn-diol • The C2 stereocenter is believed to be the dominant control element for both substrates. • Chelated transition state, axial attack provides 1,3-syn-diol. CH(i-Pr)OTBS H TBSO OB(c-Hex)2 CH3 c-Hex TBSO O OH • These directed reductions are applicable to #-hydroxy-!-ketoimides: H C H H C 3 B 3 R O c-Hex CH3 CH3 CH3 H3C O CH3 CH3 CH3 CH3 O O OH CH3 O OH OH R Ph N CH3 NaBH(OAc)3 Ph N CH3 AcOH, CH CN • Minimization of A(1,3) interactions in the enolate biases the approach of the aldehyde to the O O CH3 CH3 25 °C, 30 3min O O CH3 CH3 methyl-bearing "-face of the enolate, while the (E)-enolate geometry affords anti-aldol products. 99%, >96% de Evans, D. A.; Weber, A. E. J. Am. Chem. Soc. 1986, 108, 6757-6761. Evans, D. A.; Chapman, K. T.; Carreira, E. M. J. Am. Chem. Soc. 1988, 110, 3560-3578. Jaron Mercer, M. Movassaghi Myers Stereoselective, Directed Aldol Reaction Chem 115 Premonensin Anti-Aldols with Magnesium Enolates O O O O O O 1. MgCl (10-20 mol%), O O OH O 2 O N CH3 + H CH3 O N CH3 + Et3N, TMSCl O N R H R CH CH CH EtOAc, 23 ºC CH 3 3 3 3 Bn Sn(OTf) Bn 2. TFA; CH OH Bn 2 3 N-ethylpiperidine CH2Cl2, –78 °C aldehyde dr yield (%) 94%, 94% de CHO X = CH3 24:1 - O O O OH X = OCH 32:1 91 CH 3 O N 3 X CH CH CH CH X = NO2 7:1 71 3 3 3 3 Bn NaBH(OAc) 3 AcOH Y X = Ph, Y = H 21:1 92 91%, >94 de X CHO X = Ph, Y = CH3 28:1 92 O O OH OH X = H, Y = CH3 16:1 77 CH O N 3 CH CH CH CH "-napthaldehyde 14:1 91 3 3 3 3 Bn furfural 6:1 80 H C CH 3 3 • Silylation of the magnesium alkoxide in the aldol product turns over the magnesium. NO2 O O O O O H3CO OCH3 • The aldehyde component is limited to non-enolizable aromatic and ",#-unsaturated aldehydes. O H + H3C CH3 CH3 CH3 CH3 CH3 H C CH3 CH3 CH3 Evans, D. A.; Tedrow, J. S.; Shaw, J. T.; Downey, C. W. J. Am. Chem. Soc. 2002, 124, 392-393. 2, LDA, THF 3 1 –78 °C; 1 2 57% (+19% undesired diastereomer) • Use of the analogous N-acylthiazolidinethione chiral auxiliary affords products of the opposite H C CH 3 3 anti-stereochemistry in comparable yields and with high selectivities. NO2 O O O OH O H3CO OCH3 O CH 3 S O 1. MgBr •Et O, (10 mol%), S O OH CH3 CH3 CH3 CH3 H3C CH3 CH3 CH3 S N CH3 + O Et3N, 2TMS2Cl, S N R h!, THF, 0 °C; H R EtOAc, 23 ºC CH H O, HCl, 25 °C 3 2 Bn 2. 5:1 THF/1 N HCl Bn 58% O OH OH OH O O • Both reactions are proposed to proceed through boat transition states. See: Evans, D. A.; HO CH 3 Downey, W. C.; Shaw, J. T.; Tedrow, J. S. Org. Lett. 2002, 4, 1127-1130. CH CH CH CH CH CH CH 3 3 3 3 H C 3 3 3 3 Premonensin Evans, D. A.; DiMare, M. J. Am. Chem. Soc. 1986, 108, 2476-2478. M. Movassaghi Chris Coletta, Jaron Mercer Myers Stereoselective, Directed Aldol Reaction Chem 115 Open Transition State Aldol Reactions Synthesis of Oxazolidinethione and Thiazolidinethione Chiral Auxiliaries • Heathcock and coworkers reported that complexation of the aldehyde with an added Lewis S acid allows access to non-Evans syn and anti aldol products via open transition states. Cl CS, Et N 2 3 O NH Bu Bu CH2Cl2 B O 95% Bn O O N O CH3 Bu2BOCTHf2, Ci-lP2;r2NEt, O O N O H CH3LA O O N O OHR HO BnNH2 NaTBHHF4, I2 HO BnNH2 Lewis acid, RCHO R H O CH3 95% S t-Bu t-Bu t-Bu CS , KOH 2 S NH 1, favored for small non-Evans syn Lewis acids H2O 80% Bn aldehyde Lewis acid anti:syn* yield (%)* Crimmins, M. T; King, B. W.; Tabet, E. A.; Chaudhary, K. J. Org. Chem. 2001, 66, 894-902. SnCl 10:90 66 H C CHO 4 3 TiCl 12:88 72 4 Asymmetric Aldol Reactions with Titanium Enolates of N-Acylthiazolidinethiones Ph CHO TiCl4 8:92 65 S O 1. TiCl4 (1.1 equiv) S O OH S O OH (–)-sparteine S N CH3 CH2Cl2, 0 °C S N R + S N R BuBBu Bn 2. RCHO, 0 °C Bn CH3 Bn CH3 O O Bu BOTf, i-Pr NEt, O O O O OH A B 2 2 R O N CH3 CH2Cl2; O N CH3 O N R Lewis acid, RCHO H H O CH RCHO (–)-sparteine (equiv) yield (%) A : B 3 i-Pr i-Pr LA i-Pr CH =CHCHO 1.0 49 >99:1 2, favored for large anti 2 Lewis acids i-PrCHO 1.0 60 98:2 aldehyde Lewis acid anti:syn* yield (%)* CH =CHCHO 2.0 77 <1:99 2 H3C CHO Et2AlCl 88:12 81 i-PrCHO 2.0 75 3:97 • Selectivities are generally >95:5 for syn:anti products. PhCHO Et AlCl 74:26 62 2 • Both the yield and diastereoselectivities are high and synthetically useful, although they are *Determined by 1H NMR. Yield given is the total yield of diastereomeric aldol mixture. typically lower than the corresponding oxazolidine aldol reactions. • Gauche interactions around the forming C-C bond dictate which face of the aldehyde reacts. For • An advantage of this method is that a single acyloxazolidinethione can provide either syn small Lewis acids, transition state 1 is favored. For large Lewis acids, transition state 2 is aldol product by changing the amount of sparteine in the reaction mixture. favored. Walker, M. A.; Heathcock, C. H. J. Org. Chem. 1991, 56, 5747-5750. Jaron Mercer, M. Movassaghi Myers Stereoselective, Directed Aldol Reaction Chem 115 • Proposed transition states provide a rationale for the selectivity dependence on amine equivalents: Anti-Selective Aldol Reactions with Titanium Enolates of N-Glycolyloxazolidinethiones S O S N CH3 S O 1. TiCl , (–)-sparteine S O OH S O OH 4 TiCl4 TiCl O N OR O N R' + O N R' (–)-sparteine (1 equiv) Bn (–)-sparteine4 (2 equiv) 2. TiCl4, R'CHO OR OR RCHO RCHO Bn Bn Bn A B S Bn S R aldehyde A : B : syn yield (%) H S H HBn N TIClCl S NH allyl H3CCHO 94 : 6 : 0 84 O TiL HR O x O Cl H O allyl Ph CHO 65 : 24 : 11 56 CH R 3 CH3 allyl CHO 94 : 6 : 0 74 CH 3 allyl CHO 95 : 5 : 0 58 S O OH S O OH Bn CHO 88 : 12 : 0 64 S N R S N R CH3 CH3 CH3 Bn CHO 74 : 26 : 0 48 Bn Bn CH CHO 84 : 11 : 5 63 • The thiazolidinethione auxiliary is easily removed under mild conditions: 3 CH3 OH O OH CH3 CHO 88 : 12 : 0 59 i-Pr HO Ph BnHN CH NaBH PhCH NH CH 3 4 2 2 3 • Complexation of the aldehyde with excess titanium occurs in situ to give anti products with high 83% 79% selectivity. i-Bu O OH • The proposed transition state is analogous to that of the anti-selective Heathcock aldol. N R S CH CH3ONHCH3•HCl DI6B9A%L-H S 3 imidazole L 77% 4 O OH imCiHda3OzoHle O OH STi OR' R H i-Pr 79% CH3O N i-Pr O N O TiL4 CH3 O OH CH3 CH3 H H O t-Bu i-Pr CH O 3 CH 3 • The thiazolidinethione auxiliary is recovered by basic extraction (1 M NaOH) of the product Crimmins, M. T.; McDougall, P. J. Org. Lett. 2003, 5, 591-594. mixture. Crimmins, M. T.; King, B. W.; Tabet, E. A. J. Am. Chem. Soc. 1997, 119, 7883-7884. Crimmins, M. T.; Chaudhary, K. Org. Lett. 2000, 2, 775-777. M. Movassaghi, Jaron Mercer
Description: