ebook img

Stereoselective, Directed Aldol Reaction PDF

24 Pages·2013·1.16 MB·English
by  Fan Liu
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Stereoselective, Directed Aldol Reaction

Myers Stereoselective, Directed Aldol Reaction Chem 115 Reviews: • Note: the enantiomeric transition states (not shown) are, by definition, of equal energies. The Heathcock, C. H. In Comprehensive Organic Synthesis, Trost, B. M.; Fleming, I., Eds., Pergamon pericyclic transition state determines syn/anti selectivity. To differentiate two syn or two anti Press: New York, 1991, Vol. 2, pp. 133-238. transition states, a chiral element must be introduced (e.g., R , R , or L), thereby creating 1 2 diastereomeric transition states which, by definition, are of different energies. Kim, B. M.; Williams, S. F.; Masamune, S. In Comprehensive Organic Synthesis, Trost, B. M.; Fleming, I., Eds., Pergamon Press: New York, 1991, Vol. 2, pp. 239-275. Paterson, I. In Comprehensive Organic Synthesis, Trost, B. M.; Fleming, I., Eds., Pergamon Press: New York, 1991, Vol. 2, pp. 301-319. (E)-enolates R L 1 H O OH M O OH O O L 2 H3C O R1 R2 H3C H H3C H OML2 R2 CH3 H R anti 1 FAVORED CH 3 • The aldol reaction was discovered by Aleksandr Porfir'evich Borodin in 1872 where he first + R L 1 observed the formation of "aldol", 3-hydroxybutanal, from acetaldehyde under the influence of R2 O OH R CHO M catalysts such as hydrochloric acid or zinc chloride. 2 O L H3C O R1 R2 H CH3 H syn DISFAVORED Diastereofacial Selectivity in the Aldol Addition Reaction- Zimmerman-Traxler Chair-Like Transition States • Zimmerman and Traxler proposed that the aldol reaction with metal enolates proceeds via a (Z)-enolates R1 L chair-like, pericyclic process. In practice, the stereochemistry can be highly metal dependent. H O OH M Only a few metals, such as boron, reliably follow the indicated pathways. O L H O R1 R2 R2 CH3 • (Z)- and (E)-enolates afford syn- and anti-aldol adducts, respectively, by minimizing OML2 CH3 1,3-diaxial interactions between R1 and R2 in each chair-like TS‡. syn R CH3 FAVORED 1 + R L 1 R2CHO R2 M O OH O L H R R Zimmerman, H. E.; Traxler, M. D. J. Am. Chem. Soc. 1957, 79, 1920-1923. O 1 2 H CH 3 CH3 Dubois, J. E.; Fellman, P. Tetrahedron Lett. 1975, 1225-1228. anti DISFAVORED Heathcock, C. H.; Buse, C. T.; Kleschnick, W. A.; Pirrung, M. C.; Sohn, J. E.; Lampe, J. J. Org. Chem. 1980, 45, 1066-1081. M. Movassaghi Myers Stereoselective, Directed Aldol Reaction Chem 115 Preparation of (Z)- and (E)-Boron Enolates (Z)-Selective Preparation of Boron Enolates from Evans' Acyl Oxazolidinones (Imides) n-Bu n-Bu Et O CH3 iP(nr-BNuE)2t,B EOtTOf Et OB(n-CBHu)32 P–h7C8 HºCO Et O OHPh Bn O O BO –OTf 2 2 (n-Bu) BOTf –78 ºC, 30 min 77% CH3 N CH3 2 O N CH3 CH Cl >97% (Z) syn >99% O 2 2 O Bn O (c-Hex)2BCl OB(c-Hex)2 PhCHO O OH CH n-Bu n-Bu Et 3 Et3N, Et2O Et –78 ºC Et Ph H H n-Bu n-Bu –78 ºC, 10 min CH CH B O B O 3 75% 3 O O O N O N >99% (E) anti >97% H3C H H H CH3 H Bn Bn FAVORED DISFAVORED • Dialkylboron triflates typically afford (Z)-boron enolates, with little sensitivity toward the amine i-Pr NEt i-Pr NEt 2 2 used or the steric requirements of the alkyl groups on the boron reagent. • In the case of dialkylboron chlorides the geometry of the product enolates is much more sensitive to variations in the amine and the alkyl groups on boron. n-Bu n-Bu n-Bu n-Bu B B • The combination of (c-Hex) BCl and Et N provides the (E)-boron enolate preferentially. O O O O 2 3 CH O N 3 O N CH 3 Bn Bn Evans, D. A.; Vogel, E.; Nelson, J. V. J. Am. Chem. Soc. 1979, 101, 6120-6123. • Observed selectivity > 100:1 Z : E. Evans, D. A.; Takacs, J. M.; McGee, L. R.; Ennis, M. D.; Mathre, D. J.; Bartroli, J. Pure & Appl. Chem. 1981, 53, 1109-1127. Evans, D. A.; Takacs, J. M.; McGee, L. R.; Ennis, M. D.; Mathre, D. J.; Bartroli, J. Pure Appl. Brown, H. C.; Dhar, R. K.; Bakshi, R. K.; Pandiarajan, P. K.; Singaram, B. J. Am. Chem. Soc. Chem. 1981, 53, 1109-1127. 1989, 111, 3441-3442. M. Movassaghi Myers Stereoselective, Directed Aldol Reaction Chem 115 Syn-Selective Aldol Reactions of Imide-Derived Boron (Z)-Enolates • Chiral controller group biases enolate !-faces such that one of the two diastereomeric (syn) transition states is greatly favored. Open coordination site required for pericyclic aldol rxn • Dipole-dipole interactions within the imide are minimized in the reactive conformation (see: n-Bu n-Bu Noe, E. A.; Raban, M J. Am. Chem. Soc. 1975, 97, 5811-5820). Li B O O Bn OB(n-Bu)2 O O O N CH3 N CH3 O N CH3 O H3C CH3 H3C CH3 Bn O Bn O 1. n-Bu2BOTf, i-Pr2NEt O OH UNREACTIVE cf. reactive enolate in N CH3 CH2Cl2, 0 °C N R Evans' asymmetric RCHO O A 2. RCHO O CH alkylation O –78 " 23 °C O 3 CH3 O 1. n-Bu2BOTf, i-Pr2NEt CH3 O OH O Bn H O Ph N CH3 CH2Cl2, 0 °C Ph N R N H n-Bu n-BuBn N O O B 2 . –R7C8H "O 23 °C O O CH3 O H vs. H O O B n-Bu n-Bu B O H O O H R R diastereomerica CH3 CH3 imide aldehyde ratio yield (%) FAVORED DISFAVORED A (CH3)2CHCHO 497:1 78 B (CH3)2CHCHO <1:500 91 A n-C4H9CHO 141:1 75 n-Bu n-Bu n-Bu n-Bu B n-C4H9CHO <1:500 95 B B A C6H5CHO >500:1 88 Bn O O Bn O O B C6H5CHO <1:500 89 N R N R aRatio of major syn product to minor syn product. O CH O CH 3 3 O O • A variety of chiral imides can be used for highly selective aldol reactions. • Anti products are typically formed in less than 1% yield. Bn O OH Bn O OH N R N R • Often, a single crystallization affords diastereomerically pure product. O CH O CH 3 3 O O Evans, D. A.; Bartroli, J.; Shih, T. L. J. Am. Chem. Soc. 1981, 103, 2127-2129. Evans, D. A.; Gage, J. R. Org. Syn. 1990, 68, 83. Evans, D. A.; Takacs, J. M.; McGee, L. R.; Ennis, M. D.; Mathre, D. J. Bartroli, J. Pure & Appl. Chem. 1981, 53, 1109-1127. M. Movassaghi Myers Stereoselective, Directed Aldol Reaction Chem 115 Carboximide Hydrolysis with Lithium Hydroperoxide Other Methods for Removal of the Chiral Auxiliary • Reductive cleavage: O O LiOOH O O O O N R LioOrH HO R + OH NH R O N Br LiAlH4, THF HO Br O A B Bn CH CH3 CH2 –78 ! 0 °C CH3 CH2 3 90% substrate reagent yield of A (%)a yield of B (%)a • Esterification: Bn O H CH 3 H LiOOH 76 16 H C N 3 O H LiOH 0 100 H C O CH3 3 OBOMOBn O CH O 3 H C CH3 O OH LiOOH 98 <1 O 3N OH O H CH3 CH3 CH3 Ph O N Ph O LiOH 43 30 CH3 CH Ph BnOLi O 3 THF, 0 °C aYield of diastereomerically pure (>99:1) product. 77% H C 3 CH • LiOOH displays the greatest regioselectivity for attack of the exocyclic carbonyl group. H C O 3 3 OBOMOBn O H C • This selectivity is most pronounced with sterically congested acyl imides. 3 O CH H H 3 BnO O CH3 CH3 • This is a general solution for the hydrolysis of all classes of oxazolidinone-derived carboximides and allows for efficient recovery of the chiral auxiliary. • Transamination: O Bn O O O OH O OH Al(CH ) CH 33 N OH O N 3 CH3O N CH3 H3CO N3 O O LiOOH H3CO N3 Bn CH3OBn CH3 CHC3HO2NCHl2C, H0 3°•CHCl CH3 OBn CH3 O THF, H O; O NHBoc Na SO2 NHBoc 92% OBn 02 °C 3 OBn O 96% O • A free "-hydroxyl group is required. • The selective hydrolysis of carboximides can be achieved in the presence of unactivated • Weinreb amides can be readily converted into ketones or aldehydes (see: Nahm, S.; esters using LiOOH. Weinreb, S. M. Tetrahedron Lett. 1981, 22, 3815-3818). Evans, D. A.; Bender, S. L.; Morris, J. J. Am. Chem. Soc. 1988, 110, 2506-2526. Evans, D. A.; Britton, T. C.; Ellman, J. A. Tetrahedron Lett. 1987, 28, 6141-6144. Gage, J. R.; Evans, D. A. Org. Syn. 1990, 68, 83-91. M. Movassaghi Myers Stereoselective, Directed Aldol Reaction Chem 115 H C Cytovaricin: 3 CH3 O O H3C O H + H3C O NCHO3 Ph Ph OCHN3 O CH3 +PMBH =O p-MethoOxPybMeBnzyl TBSO H3C O N OO+ DEOIPSOHH HHO CH3 Ph O NO CH3 + H OBn O O H O 1. n-Bu2BOTf, Et3N n - BCuH2B2COl2T,f ,0 E °tC3N; n - BCuH2B2COl2T,f ,0 E °tC3N; H3C Ph H CH3OCH2OCH2CCl3 2 . A C ClH(CHOH2C3N)lH23,, CT–H7H8F• °HCCl RCHO, –78; RCHO 1. n-Bu2BOTf, Et3N 3 3 H2O2, 0 °C –78 ! 23 °C; CH2Cl2, –78 °C; 83% H2O2, 0 °C RCHO O OH 92% 2. Al(CH ) , THF 87% CH O3NH3CH •HCl H3CO N OBn 3 3 OH O CH3 CH3 O OH CH3 CH3 H3C N Ph Ph N OPMB H3C 92% CH O O CH 3 3 DEIPSO O O H 1. Al(CH3)3 OH HH O CH3 t-Bu t-Bu CH3ONHCH3•HCl H THF, 0 °C TBSO O Si 2. TESCl, Im. DMF H O O H3C O N CH3CH OCH2OCH2CCl3 OBn H3C CH3 CH3 91% OCH 3 O O N N CH OTESO 3 CH3 CH3 3 H3C CH3 + CH3O N OPMB CH3 LDA, Et O, CH3 CH3 2 CH THF, 0 °C; 3 TESO CH –45, 90 % H3C H O OCH OCH CCl HO 3OSi t-tB-Buu 2 2 3 H3C HO3C COH3H3C CNHN3 H OTESO TBSDOEIHPS3CO CHHHO HO CH3 + O TEHS3OC OO HOOCH3COHT3ES OPMB CH CH3 CH3 OPMB PhSO2 OTES3 CH 3 HF, H O, CH CN 2 3 H 25 °C H3C O O H3C 92% H3C HHO HH O O OCHH HO DEIPSO H3C O H CH3CH3 OH3 H H HO HH O CH3 O HH HO CH3 Cytovaricin OH OHOOHOOCH3COHH3 PMBO H O H H O CH3 O OCH OCH CCl CH3 CH3 2 2 3 Evans, D. A.; Kaldor, S. W.; Jones, T. K.; Clardy, J.; Stout, T. J. J. Am. Chem. Soc. 1990, 112, DEIPS = diethylisopropylsilyl 7001-7031. M. Movassaghi Myers Stereoselective, Directed Aldol Reaction Chem 115 Diastereoselective Syn-Aldol Reaction of !-Ketoimides Diastereoselective Anti-Aldol Reaction of !-Ketoimides Xp O O O 1. (c-Hex)2BCl O O O OH O O O OH EtS3Nn,( OCTHf2)2Cl2 SnL HH3HC O O O N O O OHR O N CH CH3 E0 t°NC(,C 1H h3)2, Et2O O N CH CH R + O N CH CH R O 3 2. RCHO 3 3 3 3 RCHO, –20 °C L O H CH3 CH3 Bn –78 °C, 3h Bn Bn R Bn anti-anti syn-anti O O O CH3 anti-syn O N CH3 ratio aldehyde yield %a anti-anti : syn-anti CH3 Xp Bn i-Pr NTEitC, lC4H Cl HH3C O Cl O O O OH (CH3)2CHCHO 78 84:16 2 2 2 H O TI Cl O N R CH2=C(CH3)CHO 72 92:8 –7R8 C"H 0O °C H R O Cl Bn CH3 CH3 CH3CH2CHO 70b 80:20 CH3 syn-syn PhCH CH CHO 84b 88:12 2 2 CHO enolization ratio Ph 84 97:3 conditions RCHOa yield %b anti-syn : syn-syn CH 3 aIsolated yield of major diastereomer. bYield of A H3C CHO 83 95:5 purified mixture of diastereomers. B CH 86 <1:99 3 • Enolization of the less hindered side of the ketone under Brown's conditions affords the A H3C CHO 77c 95:5 (E)-boron enolate. B CH 64c 2:98 2 • The C2 stereocenter is the dominant control element in these aldol reactions; "matched" vs. A 71 79:21 "mismatched" effects of the remote auxiliary are negligible. H C CHO 3 O OH B 86 <1:99 RCHO R Si face L R A CHO 85 89:11 CH CH 3 3 B 81 4:96 O M syn-anti, predicted O H A: Sn(OTf)2, Et3N; B: TiCl4, i-Pr2NEt. a1.0-1.1 equiv bIsolated yield of RL H3C CH + major diastereomer (>99% purity). c3-5 equiv of RCHO was used. CH3 CH3 RL H 3 O OH • Both enolization methods provide (Z)-enolates and (diastereomeric) syn aldol products. Re face RCHO RL R CH CH 3 3 • The stereochemical outcome of both reactions is dominated by the C methyl-bearing 2 anti-anti, observed stereocenter, as shown in the proposed transition states above. • The sense of asymmetric induction observed in these reactions was unexpected • The chirality of the oxazolidinone has little influence on the diastereoselectivity of these and opposite to a prediction based on a reactant-like transition state model minimizing reactions. A strain. (1,3) Evans, D. A.; Clark, J. S.; Metternich, R.; Novack, V. J.; Sheppard, G. S. J. Am. Chem. Soc. Evans, D. A.; Ng, H. P.; Clark, J. S.; Reiger, D. L. Tetrahedron 1992, 48, 2127-2142. 1990, 112, 866-868. M. Movassaghi Myers Stereoselective, Directed Aldol Reaction Chem 115 Directed Reduction of !-Hydroxy Ketones O O O O O Internal hydride delivery: CH O N 3 BnO CH3 BzO CH3 • In addition to B!n-ketCoHim3ides, the two chiral ethyCl kHe3tones above are known CtoH u3ndergo aldol R1 HOO+HHOBA–OcAc R1 OH OHR2 reactions at the unexpected Re face of the enolate, deilvering anti-anti aldol products. OH O R2 1,3-anti-diol (CH ) NBH(OAc) FAVORED 34 3 Paterson, I.; Goodman, J. M.; Isaka, M. Tet. Lett. 1989, 30, 7121-7124. R1 R2 Paterson, I.; Wallace, D. J.; Cowden, C. J. Synthesis 1998, 639-652. H OAc OH OH R2 – R1 O B OAc R1 R2 Syn-Anti-Selective Aldol Reactions of Chiral Ethyl Ketones H + H O 1,3-syn-diol 1. (c-Hex) BCl DISFAVORED 2 TBSO O Et3N, Et2O TBSO O OH H3C CH3 0 °C H3C CH3 • The reactivity of the reagent is attenuated such that the reduction of ketones proceeds at convenient rates only intramolecularly, favoring formation of 1,3-anti-diols. CH3 CH3 2. i-PrCHO CH3 CH3 CH3 CH3 –78 °C 90%, 88% de External hydride delivery: 1. (c-Hex) BCl 2 TBSO O E0 t°3CN, Et2O TBSO O OH OH O HBH4– L OH OH H3C CH3 H3C CH3 Zn(BH4)2 CH CH 2. i-PrCHO CH CH CH CH R1 R2 R1 O Zn L R1 R2 3 3 3 3 3 3 O –78 °C 75%, 92% de R2 1,3-syn-diol • The C2 stereocenter is believed to be the dominant control element for both substrates. • Chelated transition state, axial attack provides 1,3-syn-diol. CH(i-Pr)OTBS H TBSO OB(c-Hex)2 CH3 c-Hex TBSO O OH • These directed reductions are applicable to #-hydroxy-!-ketoimides: H C H H C 3 B 3 R O c-Hex CH3 CH3 CH3 H3C O CH3 CH3 CH3 CH3 O O OH CH3 O OH OH R Ph N CH3 NaBH(OAc)3 Ph N CH3 AcOH, CH CN • Minimization of A(1,3) interactions in the enolate biases the approach of the aldehyde to the O O CH3 CH3 25 °C, 30 3min O O CH3 CH3 methyl-bearing "-face of the enolate, while the (E)-enolate geometry affords anti-aldol products. 99%, >96% de Evans, D. A.; Weber, A. E. J. Am. Chem. Soc. 1986, 108, 6757-6761. Evans, D. A.; Chapman, K. T.; Carreira, E. M. J. Am. Chem. Soc. 1988, 110, 3560-3578. Jaron Mercer, M. Movassaghi Myers Stereoselective, Directed Aldol Reaction Chem 115 Premonensin Anti-Aldols with Magnesium Enolates O O O O O O 1. MgCl (10-20 mol%), O O OH O 2 O N CH3 + H CH3 O N CH3 + Et3N, TMSCl O N R H R CH CH CH EtOAc, 23 ºC CH 3 3 3 3 Bn Sn(OTf) Bn 2. TFA; CH OH Bn 2 3 N-ethylpiperidine CH2Cl2, –78 °C aldehyde dr yield (%) 94%, 94% de CHO X = CH3 24:1 - O O O OH X = OCH 32:1 91 CH 3 O N 3 X CH CH CH CH X = NO2 7:1 71 3 3 3 3 Bn NaBH(OAc) 3 AcOH Y X = Ph, Y = H 21:1 92 91%, >94 de X CHO X = Ph, Y = CH3 28:1 92 O O OH OH X = H, Y = CH3 16:1 77 CH O N 3 CH CH CH CH "-napthaldehyde 14:1 91 3 3 3 3 Bn furfural 6:1 80 H C CH 3 3 • Silylation of the magnesium alkoxide in the aldol product turns over the magnesium. NO2 O O O O O H3CO OCH3 • The aldehyde component is limited to non-enolizable aromatic and ",#-unsaturated aldehydes. O H + H3C CH3 CH3 CH3 CH3 CH3 H C CH3 CH3 CH3 Evans, D. A.; Tedrow, J. S.; Shaw, J. T.; Downey, C. W. J. Am. Chem. Soc. 2002, 124, 392-393. 2, LDA, THF 3 1 –78 °C; 1 2 57% (+19% undesired diastereomer) • Use of the analogous N-acylthiazolidinethione chiral auxiliary affords products of the opposite H C CH 3 3 anti-stereochemistry in comparable yields and with high selectivities. NO2 O O O OH O H3CO OCH3 O CH 3 S O 1. MgBr •Et O, (10 mol%), S O OH CH3 CH3 CH3 CH3 H3C CH3 CH3 CH3 S N CH3 + O Et3N, 2TMS2Cl, S N R h!, THF, 0 °C; H R EtOAc, 23 ºC CH H O, HCl, 25 °C 3 2 Bn 2. 5:1 THF/1 N HCl Bn 58% O OH OH OH O O • Both reactions are proposed to proceed through boat transition states. See: Evans, D. A.; HO CH 3 Downey, W. C.; Shaw, J. T.; Tedrow, J. S. Org. Lett. 2002, 4, 1127-1130. CH CH CH CH CH CH CH 3 3 3 3 H C 3 3 3 3 Premonensin Evans, D. A.; DiMare, M. J. Am. Chem. Soc. 1986, 108, 2476-2478. M. Movassaghi Chris Coletta, Jaron Mercer Myers Stereoselective, Directed Aldol Reaction Chem 115 Open Transition State Aldol Reactions Synthesis of Oxazolidinethione and Thiazolidinethione Chiral Auxiliaries • Heathcock and coworkers reported that complexation of the aldehyde with an added Lewis S acid allows access to non-Evans syn and anti aldol products via open transition states. Cl CS, Et N 2 3 O NH Bu Bu CH2Cl2 B O 95% Bn O O N O CH3 Bu2BOCTHf2, Ci-lP2;r2NEt, O O N O H CH3LA O O N O OHR HO BnNH2 NaTBHHF4, I2 HO BnNH2 Lewis acid, RCHO R H O CH3 95% S t-Bu t-Bu t-Bu CS , KOH 2 S NH 1, favored for small non-Evans syn Lewis acids H2O 80% Bn aldehyde Lewis acid anti:syn* yield (%)* Crimmins, M. T; King, B. W.; Tabet, E. A.; Chaudhary, K. J. Org. Chem. 2001, 66, 894-902. SnCl 10:90 66 H C CHO 4 3 TiCl 12:88 72 4 Asymmetric Aldol Reactions with Titanium Enolates of N-Acylthiazolidinethiones Ph CHO TiCl4 8:92 65 S O 1. TiCl4 (1.1 equiv) S O OH S O OH (–)-sparteine S N CH3 CH2Cl2, 0 °C S N R + S N R BuBBu Bn 2. RCHO, 0 °C Bn CH3 Bn CH3 O O Bu BOTf, i-Pr NEt, O O O O OH A B 2 2 R O N CH3 CH2Cl2; O N CH3 O N R Lewis acid, RCHO H H O CH RCHO (–)-sparteine (equiv) yield (%) A : B 3 i-Pr i-Pr LA i-Pr CH =CHCHO 1.0 49 >99:1 2, favored for large anti 2 Lewis acids i-PrCHO 1.0 60 98:2 aldehyde Lewis acid anti:syn* yield (%)* CH =CHCHO 2.0 77 <1:99 2 H3C CHO Et2AlCl 88:12 81 i-PrCHO 2.0 75 3:97 • Selectivities are generally >95:5 for syn:anti products. PhCHO Et AlCl 74:26 62 2 • Both the yield and diastereoselectivities are high and synthetically useful, although they are *Determined by 1H NMR. Yield given is the total yield of diastereomeric aldol mixture. typically lower than the corresponding oxazolidine aldol reactions. • Gauche interactions around the forming C-C bond dictate which face of the aldehyde reacts. For • An advantage of this method is that a single acyloxazolidinethione can provide either syn small Lewis acids, transition state 1 is favored. For large Lewis acids, transition state 2 is aldol product by changing the amount of sparteine in the reaction mixture. favored. Walker, M. A.; Heathcock, C. H. J. Org. Chem. 1991, 56, 5747-5750. Jaron Mercer, M. Movassaghi Myers Stereoselective, Directed Aldol Reaction Chem 115 • Proposed transition states provide a rationale for the selectivity dependence on amine equivalents: Anti-Selective Aldol Reactions with Titanium Enolates of N-Glycolyloxazolidinethiones S O S N CH3 S O 1. TiCl , (–)-sparteine S O OH S O OH 4 TiCl4 TiCl O N OR O N R' + O N R' (–)-sparteine (1 equiv) Bn (–)-sparteine4 (2 equiv) 2. TiCl4, R'CHO OR OR RCHO RCHO Bn Bn Bn A B S Bn S R aldehyde A : B : syn yield (%) H S H HBn N TIClCl S NH allyl H3CCHO 94 : 6 : 0 84 O TiL HR O x O Cl H O allyl Ph CHO 65 : 24 : 11 56 CH R 3 CH3 allyl CHO 94 : 6 : 0 74 CH 3 allyl CHO 95 : 5 : 0 58 S O OH S O OH Bn CHO 88 : 12 : 0 64 S N R S N R CH3 CH3 CH3 Bn CHO 74 : 26 : 0 48 Bn Bn CH CHO 84 : 11 : 5 63 • The thiazolidinethione auxiliary is easily removed under mild conditions: 3 CH3 OH O OH CH3 CHO 88 : 12 : 0 59 i-Pr HO Ph BnHN CH NaBH PhCH NH CH 3 4 2 2 3 • Complexation of the aldehyde with excess titanium occurs in situ to give anti products with high 83% 79% selectivity. i-Bu O OH • The proposed transition state is analogous to that of the anti-selective Heathcock aldol. N R S CH CH3ONHCH3•HCl DI6B9A%L-H S 3 imidazole L 77% 4 O OH imCiHda3OzoHle O OH STi OR' R H i-Pr 79% CH3O N i-Pr O N O TiL4 CH3 O OH CH3 CH3 H H O t-Bu i-Pr CH O 3 CH 3 • The thiazolidinethione auxiliary is recovered by basic extraction (1 M NaOH) of the product Crimmins, M. T.; McDougall, P. J. Org. Lett. 2003, 5, 591-594. mixture. Crimmins, M. T.; King, B. W.; Tabet, E. A. J. Am. Chem. Soc. 1997, 119, 7883-7884. Crimmins, M. T.; Chaudhary, K. Org. Lett. 2000, 2, 775-777. M. Movassaghi, Jaron Mercer

Description:
Heathcock, C. H. In Comprehensive Organic Synthesis, Trost, B. M.; Fleming, I., Eds., Pergamon. Press: New York, 1991, Vol. 2, pp. 133-238.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.