ebook img

Stellar velocity dispersions and emission line properties of SDSS-III/BOSS galaxies PDF

2.3 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Stellar velocity dispersions and emission line properties of SDSS-III/BOSS galaxies

Mon.Not.R.Astron.Soc.000,1–14(2012) Printed27July2012 (MNLATEXstylefilev2.2) Stellar velocity dispersions and emission line properties of SDSS-III/BOSS galaxies D. Thomas1,2, O. Steele1, C. Maraston1,2, J. Johansson1,3, A. Beifiori1,4, J. Pforr1,5, 2 G. Stro¨mba¨ck1, C. A. Tremonti6, D. Wake7, D. Bizyaev8, A. Bolton9, H. Brewington8, 1 J. R. Browstein9, J. Comparat10, J.-P. Kneib10, E. Malanushenko8, V. Malanushenko8, 0 2 D. Oravetz8, K. Pan8, J. K. Parejko7, D. P. Schneider11,12, A. Shelden8, A. Simmons8, ul S. Snedden8, M. Tanaka13, B. A. Weaver14, R. Yan14 J 1InstituteofCosmologyandGravitation,UniversityofPortsmouth,DennisSciamaBuilding,BurnabyRoad,Portsmouth,PO13FX,UK 5 2SEPnet,SouthEastPhysicsNetwork,(www.sepnet.ac.uk) 2 3Max-Planck-Institutfu¨rAstrophysik,D-85748Garching,Germany 4Max-Planck-Institutfu¨rextraterrestrischePhysik,Giessenbachstrae,D-85748Garching,Germany ] O 5NOAO,950NorthCherryAve.,Tucson,AZ85719,USA 6DepartmentofAstronomy,UniversityofWisconsin-Madison,1150UniversityAve,Madison,WI53706,USA C 7YaleCenterforAstronomyandAstrophysics,YaleUniversity,NewHaven,CT,USA . 8ApachePointObservatory,P.O.Box59,Sunspot,NM88349-0059,USA h 9DepartmentofPhysicsandAstronomy,UniversityofUtah,115South1400East,SaltLakeCity,UT84112,USA p 10LaboratoiredAstrophysiquedeMarseille,CNRS/Aix-MarseilleUniversite´,38rueFre´de´ricJoliot-Curie,13388,Marseillecedex13,France - o 11DepartmentofAstronomyandAstrophysics,ThePennsylvaniaStateUniversity,UniversityPark,PA16802 r 12InstituteforGravitationandtheCosmos,ThePennsylvaniaStateUniversity,UniversityPark,PA16802 t 13InstituteforthePhysicsandMathematicsoftheUniverse,TheUniversityofTokyo,5-1-5Kashiwanoha,Kashiwa-shi,Chiba277-8583,Japan s a 14CenterforCosmologyandParticlePhysics,DepartmentofPhysics,NewYorkUniversity,NewYork,NY,10003 [ 1 Accepted...Received...;inoriginalform20July2012 v 5 1 ABSTRACT 1 We perform a spectroscopic analysis of 492,450 galaxy spectra from the first two years of 6 . observationsoftheSloanDigitalSkySurvey-III/BaryonicOscillationSpectroscopicSurvey 7 (BOSS)collaboration.ThisdatasetisreleasedintheninthSDSSdatareleaseinJuly2012, 0 thefirstpublicdatareleaseofBOSSspectra.BOSSgalaxieshaveredshiftsuptoz ∼0.7.We 2 showthatthetypicalsignal-to-noiseratioofBOSSspectra,despitebeinglow,issufficientto 1 measurestellarvelocitydispersionandemissionlinefluxesforindividualobjects.Weverify : v thereliabilityofvelocitydispersionmeasurementsonindividualBOSSspectrathroughcom- i parisonwithhighsignal-to-noisespectrafromrepeat-plateobservationsinBOSS.Weshow X thatthetypicalvelocitydispersionofaBOSSgalaxyis∼240kms−1.Thetypicalerrorinthe r a velocitydispersionmeasurement14percent,and93percentofBOSSgalaxieshavevelocity dispersions with an accuracy of better than 30 per cent. The distribution in velocity disper- sionisredshiftindependentbetweenredshifts0.15and0.7,whichreflectsthesurveydesign targeting massive galaxies with an approximately uniform mass distribution in this redshift interval.WeshowthatemissionlinescanbemeasuredonBOSSspectra.However,themajor- ityofBOSSgalaxieslackdetectableemissionlines,asistobeexpectedbecauseofthetarget selectiondesigntowardmassivegalaxies.Weanalysetheemissionlinepropertiesforasub- samplebelowz =0.45andpresenttheclassicaldiagnosticdiagramswiththeemissionlines Hβ,[OIII],Hα,and[NII](detectedin5percentofthegalaxies)toseparatestar-formingob- jectsandAGN.Forthissubsetweshowthattheemissionlinepropertiesarestronglyredshift dependentandthatthereisaclearcorrelationbetweenobservedframecoloursandemission lineproperties.Ingeneral,thefractionofstarforminggalaxiesdecreasesandthefractionof AGNincreaseswithincreasingredshift,mostlyowingtoselectioneffects.Withininthelow- z sample (LOWZ), the majority of emission-line galaxies have some AGN component, the fractionofpurelystarforminggalaxiesatz >0.15onlybeingafewpercent.Thefractionof star-forminggalaxiesamongtheemission-linegalaxieswithinthehigh-z sample(CMASS), instead, is ∼ 20 per cent. We show that these objects typically have blue observed g − r coloursandarewellseparatedintheg−rvsr−itargetselectiondiagram. Key words: surveys – galaxies: general – galaxies: evolution – galaxies: kinematics and dynamics–galaxies:ISM–galaxies:activeevolution (cid:13)c 2012RAS 2 Thomasetal. 1 INTRODUCTION detail in Padmanabhan et al. (2012), we refer the reader to these papers for a comprehensive description. Here we summarise the Within the framework of hierarchical galaxy formation theory major aspects of galaxy target selection that are relevant for the (White&Rees1978;Frenketal.1985),theformationandevolu- presentpaper.TargetsareselectedfromSDSSimaging(Fukugita tionofgalaxiesisdrivenbytheinterplaybetweendarkmatterand et al. 1996; Gunn et al. 1998) from the eighth data release (DR8 baryonphysicsinvolvingcomplexprocessessuchasgasaccretion, Aihara et al. 2011). Galaxy target selection is based on the two star formation, black hole accretion, chemical enrichment, galac- colours g − r and r − i, which have been shown to provide a tic winds etc. Progress in our understanding of galaxy formation powerfulcolour-colourspacetoselectluminousgalaxiesuptored- cruciallyreliesontheobservationalconstraintsthatcanbeseton shiftz ∼0.7intheconstructionoftheSDSSluminousredgalax- theoretical models. Traditionally, this can be done either through ies (LRG) sample (Eisenstein et al. 2001) and in the 2dF-SDSS detailed studies of local galaxies (e.g. Kuntschner 2000; Davies LRGandQSOsurvey(Cannonetal.2006,2SLAQ).BOSSreaches et al. 2001; Thomas et al. 2005; Kormendy & Kennicutt 2004; significantlydeeperthantheSDSSLRGsampleandsignificantly Kuntschner et al. 2010; Kormendy et al. 2009, 2010), or through widerthan2SLAQ. theanalysisofremotegalaxiesatlargedistancesusingtheuniverse The galaxy sample is split in a high redshift sample called asatimemachine(e.g.Bundyetal.2006;Cimatti&others.2004; CMASS and a low redshift sample LOWZ. The limiting appar- Genzeletal.2003). ent magnitude for galaxy targets is i = 19.9 mag AB (Oke & Recentlargegalaxysurveyshaveopenedanewavenuetoap- Gunn1983)intheCMASSandr =19.6magintheLOWZsam- proachthisproblem,byprovidinglargedatasetsthatallowstatis- ples.WhiletheSDSSMAINsampleispurelymagnitudelimited, ticalstudiesoflargegalaxysamplesinthenearbyuniverse.Inthe CMASSandLOWZemploycolourcutsinordertotargethigher- lastdecadeanoverwhelmingnumberofstudiesbasedondatafrom z samples without being overwhelmed by low-z contamination. theSloanDigitalSkySurvey(Yorketal.2000,SDSS)haveledto Thesecutsaredesignedtotargetmassivepassivelyevolvinggalax- significantprogressinourunderstandingofthelocalgalaxypopu- ies,butalsoincludesomestar-forminggalaxiesasexploredinthe lation(e.g.Blantonetal.2003;Kauffmannetal.2003a,b;Tremonti presentpaper.Ther−icolourservesasapowerfulandsimplered- etal.2004;Brinchmannetal.2004;Wakeetal.2006;Panteretal. shiftestimator.Atredshiftz ∼ 0.4the4000 A˚ breakmovesfrom 2007;Schawinskietal.2007;Thomasetal.2010).TheBaryonOs- thegintother-band,whichresultsinasteepriseofr−iasafunc- cillationSpectroscopicSurvey(hereafterBOSS),partoftheSloan tionofredshiftbeyondz=0.4.Thetwocuts,LOWZandCMASS, DigitalSkySurveyIIIcollaboration(Eisensteinetal.2011,SDSS- reflectthisdividinglineatz =0.4.Themodeltrajectoryofapas- III), will now extend this database to higher redshifts obtaining sively evolving massive galaxy with M ∼ 1011 M (Maraston spectra of 1.5 million luminous galaxies up to redshifts z ∼ 0.7 (cid:12) et al. 2009b) shows that this galaxy class hits the detection limit by2014.Thiswillallowlarge-scalestatisticalstudiesofthegalaxy of i = 19.9 mag at a redshift of z ∼ 0.7. As a consequence, populationatanepochwhentheuniversehadonlyhalfofitscur- theCMASSsamplecontainsmassivegalaxiesintheredshiftinter- rentage. val0.4 (cid:54) z (cid:54) 0.7.ThenumberdensityofBOSSgalaxiesdrops Inthispaperwepresentthespectroscopicanalysisof492,450 sharply beyond z = 0.7 (Padmanabhan et al. 2010; White et al. galaxy spectra observed in the first 1.5 years of BOSS operation 2011).AboutonethirdoftheLOWZsampleiscoveredwithex- coveringaboutonethirdofthetotalsurveyarea.Weintroducethe isting SDSS-I/II spectroscopy, while most of the CMASS galaxy spectroscopicanalysistoolsdevelopedforthispurposeandpresent spectraareobtainedforthefirsttimewithBOSSobservations. stellar velocity dispersions, emission line fractions, and emission AsubsamplecalledSPARSEhasbeendefinedwithinCMASS lineclassifications.TheaimofthisworkistocharacteriseBOSS inodertoallowustostudygalaxiesbeyondthenominalCMASS galaxiesandtodiscusstheirbasicspectroscopicpropertiesinthe selectioncuts.TheSPARSEsamplecontainsgalaxieswithslightly BOSStargetingcolour-colourandcolour-magnitudespace. bluerr−icoloursfortargetswithani-bandmagnitudefainterthan The paper is organised as follows. We briefly introduce the 19.5 (for details see Padmanabhan et al. 2012). Furthermore, the BOSSprojectinSection2.Section3presentsthemethodologyand BOSS dataset includes a sample obtained during commissioning thecalibrationoftheanalysistool.ResultsareshowninSections4, calledCOMMthatispartoftheCMASSsample.Thecurrentstudy 5and6.ThepaperconcludeswithSection7. includestheSPARSEandtheCOMMsamplesaspartofCMASS. Galaxy target selection is designed to construct a sample of massivegalaxieswithconstantco-movingnumberdensitybetween 2 DATA redshifts 0.1 and 0.7 with a uniform mass distribution at all red- shifts.Theanalysesofnumberdensity(Padmanabhanetal.2010; BOSSisoneoffoursurveysoftheSDSS-IIIcollaborationusingan White et al. 2011) and galaxy masses (Chen et al. 2012; Maras- upgradeofthemulti-objectspectrographonthe2.5mSDSStele- tonetal.2012)fromearlyBOSSdatashowthatthisgoalhasbeen scope(Gunnetal.2006)tocollectspectraofgalaxiesandquasars achieved. Both these constraints are critical for the proper mea- over 10,000 deg2 on the sky. BOSS has started operation in Fall surementoflarge-scalestructureasafunctionofredshiftandthe 2009andby2014itwillhaveobservedabout1.5millionluminous cosmologysciencegoalsofBOSS(Andersonetal.2012).Theuni- galaxiesuptoredshiftsz∼0.7.Acomprehensiveoverviewofthe form mass distribution is crucial for galaxy evolution studies, as project is presented in Eisenstein et al. (2011) and Dawson et al. it provides a sample that is homogeneous in mass, thus minimis- (2012). ingthemassbiaswhenstudyinggalaxypropertiesasafunctionof redshift. 2.1 Targetselection 2.2 Spectroscopy Galaxiesandquasarsaredealtwithseparatelyinthetargetselection forBOSSspectroscopy.QuasarselectionisdescribedinRossetal. BOSS multi-object spectroscopy is being performed with an up- (2012),whilethegalaxytargetselectionalgorithmisexplainedin gradeoftheSDSSfibre-fedspectrograph.Thehardwareupgrade (cid:13)c 2012RAS,MNRAS000,1–14 SpectroscopicpropertiesofSDSS-III/BOSSgalaxies 3 is introduced in Bhardwaj et al. (2010), Roe et al. (2010), and areevaluatedbypPXF.Thesubtractionoftheemissionlinespec- Smeeetal.(2012),whiledetailsaboutthespectroscopicobserva- trumfromtheobservedoneproducesacleanabsorptionlinespec- tions, data reduction, and the spectroscopic pipeline are provided trumfreefromemissionlinecontamination.Thisspectrumwillbe inSchlegeletal.(2012)andBoltonetal.(2012).Themostimpor- usedforanyfurtheranalysisofabsorptionfeatures(Thomasetal. tantfeaturesoftheupgradeincludetheincreaseofthenumberof 2012).Thefitsaccountfortheimpactofdiffusedustinthegalaxy fibresto1,000perplate,thedecreaseoffibrediameterto2”,and onthespectralshapeadoptingaCalzetti(2001)obscurationcurve. theemploymentofanewCCDwithextendedwavelengthcoverage Thecodefurtherdeterminesthekinematicsofthegas(velocityand tospan3600to10,000 A˚ andmuchimprovedthroughput.Large velocitydispersion)andmeasuresemissionlinefluxesandequiva- format VPH gratings and thick, fully-depleted CCDs are special lentwidths(EWs)ontheresultingGaussianemissionlinetemplate. features of the upgrade (Roe et al. 2010). The SDSS pipeline is used for data reduction and simple measurements. Standard stars aretargetedoneachplate,sothattheBOSSspectrahavebeenflux- 3.1 Stellarpopulationtemplates calibrated. Thestellarpopulationtemplateisacriticalingredientinthispro- Theupgradeimpliesthatspectraofreasonablesignal-to-noise cedure.WeadoptthenewstellarpopulationmodelsfromMaraston ratiocanbeobtainedin1-hourexposuresdowntothelimitingmag- &Stro¨mba¨ck(2011)basedontheMILESstellarlibrary(Sa´nchez- nitudeinthei-bandof19.9mag.Thetypicalsignal-to-noiseratios Bla´zquez et al. 2006). The wavelength range covered by these ofaBOSSgalaxyspectrumareabout5perA˚,whichissufficient templates is 3,500 − 7,500 A˚. As this blue limit corresponds foranaccurateredshiftdetermination.Infactthedesiredredshift to a relatively red rest-frame wavelength of ∼ 5,200 A˚ around efficiencyof95percenthasbeenaccomplished(Rossetal.2011; z ∼ 0.5, Maraston & Stro¨mba¨ck (2011) have augmented their Whiteetal.2011;Mastersetal.2011).Thequalityofthespectrais templates with theoretical spectra at wavelengths λ < 3,500 A˚ sufficientforthedetectionofemissionlinesandthemeasurement usingthemodelbyMarastonetal.(2009a)basedonthetheoreti- ofsimpledynamicalquantitiessuchasstellarvelocitydispersion, callibraryUVBLUE(Rodr´ıguez-Merinoetal.2005).Weusethis which are subject of the present paper. The spectral resolution is hybridmodelinthepresentstudy. R∼2,000,hencehighenoughforanaccuratederivationofthese Aproperstellarpopulationfitrequiresalargesetoftemplates basicquantities. spanning a wide range in the parameter space of formation ages, The typical signal-to-noise ratio clearly does not allow for starformationhistories,metallicities,stellarinitialmassfunctions more detailed spectroscopic studies of individual objects. How- and dust attenuations (Maraston et al. 2006; Tojeiro et al. 2009; ever,veryhighsignal-to-noiseratiospectracanbeobtainedthrough Marastonetal.2010).Suchananalysisiscomputationallyexpen- stacking(Thomasetal.2012;Munaetal.2011).Thisapproachis sive. However, for the purpose of this work, we merely need the necessaryforabsorptionlinemeasurementsandstudiesofelement stellarpopulationfitstoseparatetheabsorptionspectrumfromthe abundance ratios and other stellar population parameters, which emissionspectrum,andtoperformasimpleanalysisofstellarkine- willbepresentedinfuturework(Thomasetal.2012). matics.Tothisenditismostcriticaltoobtainagoodrepresenta- tionoftheabsorptionspectrum.Henceinthiscasewecanbenefit from the age-metallicity degeneracy, and exclude redundant age- 2.3 Thepresentsample metallicitycombinationsandcomplexstarformationhistoriesfrom BOSS began in December 2009, and has taken 534,474 galaxy ourtemplates.Thefinaltemplatesetweuseconsistsofsimplestel- spectraintotalbyJuly2011,observing813platesover3,275deg2 lar populations with fixed solar metallicity and a Salpeter (1955) onthesky,whichcorrespondstoaboutonethirdofthefinalsurvey initialmassfunction,butspanningawiderangeinagesfrom1Myr footprint.Wewillusethisdatasetinthepresentwork,whichcor- to15Gyr.Wehaveverifiedthatthequantitiesderivedherearenot respondstothedatavolumethatwillbereleasedintheninthSDSS affectedbythischoice,whilethegainincomputingtimeissignifi- datarelease(DR9Ahnetal.2012),thefirstpublicdatareleaseof cant. BOSSspectra.Weselectthoseobjectsthatareclassifiedasgalax- iesandforwhichtheZWARNING NQSOflagissetzero(reliable redshiftsandexcludingQSOs)resultingin492,450uniqueobjects 3.2 Stellarvelocitydispersion (excluding repeat observations). This includes all BOSS galaxies StellarkinematicsareevaluatedbypPXF.Theline-of-sightveloc- fromDR9thathavebeenselectedthroughtheLOWZandCMASS itydistributionisfitteddirectlyinpixelspace,whichisalternative selectioncuts.TheSPARSEsampleisincludedwithintheCMASS to but consistent with Fourier methods (e.g. Bender 1990; Rix & selection.WedonotconsiderLOWZorCMASStargetswithspec- White1992). trafromSDSSI/II. Apreciseknowledgeofthespectralresolutionoftheunderly- ingstellarlibraryisessentialfortheaccuratederivationofstellar velocitydispersion.Forthisreason,Beifiorietal.(2011)haveper- formedacarefulanalysisofthespectralresolutionoftheMaras- 3 ANALYSISTOOLS ton&Stro¨mba¨ck(2011)stellarpopulationmodels.Theyhavede- FollowingtheapproachesofSchawinskietal.(2007)andThomas terminedresolutionsforstellarspectrafromtheMILESlibraryas et al. (2010), we use the publicly available codes pPXF (Cappel- wellastheMaraston&Stro¨mba¨ck(2011)stellarpopulationmod- lari&Emsellem2004)andGANDALFv1.5(Sarzietal.2006)to elsthroughtemplatefitswithindependent,high-resolutionempir- calculatestellarkinematicsandtoderiveemissionlineproperties. icalandtheoreticalspectra.ThespectralresolutionoftheMILES Werefertothosepapersformoreinformation.Inbrief,GANDALF librarycorrespondstoawavelengthindependentdispersion∆λof fitsstellarpopulationandGaussianemissionlinetemplatestothe 2.54 A˚ (FWHM). This is slightly larger than the ∆λ = 2.3 A˚ galaxyspectrumsimultaneouslytoseparatestellarcontinuumand indicated in Sa´nchez-Bla´zquez et al. (2006) resulting in a lower absorptionlinesfromtheionizedgasemission.Stellarkinematics spectralresolution.Thisnewresolutionvaluehasalsobeenfound (cid:13)c 2012RAS,MNRAS000,1–14 4 Thomasetal. 120 Table1.Emissionlinesmeasured. 40 Index Name λ(A˚) free/tied 7) 20 1 HeII 3203.15 free R D 2 [NeV] 3345.81 free S 3 [NeV] 3425.81 free S D 0 60 4 [OII] 3726.03 free S ort - 56 [N[OeIIII]I] 33782688..7639 ffrreeee P σ ( -20 7 [NeIII] 3967.40 free 8 H5 3889.05 free 9 H(cid:15) 3970.07 free -40 10 Hδ 4101.73 free 0 11 Hγ 4340.46 free 0 100 200 300 400 12 [OIII] 4363.15 free σ (SDSS DR7) 13 HeII 4685.74 free 14 [ArIV] 4711.30 free Figure1.VelocitydispersionsmeasuredinthisworkforasubsetofSDSS 15 [ArIV] 4740.10 free galaxiesincomparisonwiththemeasurementspublishedintheDataRe- 16 Hβ 4861.32 free lease7.Thereisgoodagreementbetweenthemeasurements.Themedian 17 [OIII] 4958.83 tiedto18 offsetinσis2kms−1withadispersionof30kms−1. 18 [OIII] 5006.77 free 19 [NI] 5197.90 free 20 [NI] 5200.39 free byFalco´n-Barrosoetal.(2011)andPrugnieletal.(2011)ininde- 21 HeI 5875.60 free pendentre-analysesoftheMILESlibrary. 22 [OI] 6300.20 free WehaveusedtheresolutionmeasurementfromBeifiorietal. 23 [OI] 6363.67 free (2011)todowngradethestellarpopulationtemplatestotheBOSS 24 [NII] 6547.96 tiedto26 resolution.Notethata∆λof2.54 A˚ correspondstoaresolution 25 Hα 6562.80 free ofR ∼ 2,000at5,000 A˚ (or∼ 65 km s−1),whichisveryclose 26 [NII] 6583.34 free tothenominalSDSSandBOSSresolutionsatthesewavelengths. 27 [SII] 6716.31 free 28 [SII] 6730.68 free The correction is therefore minimal. As a result, the Maraston & Stro¨mba¨ck(2011)templatesonlyrequireamodestdowngradingat longerwavelengthstothecorrectBOSSresolution. Atwavelengthsblueward∼5,000A˚ ourMILES-basedtem- and[NII]6583,aswellastheBalmerlinesH andH .EWsare β α plateshaveslightlyworsespectralresolutionsthanourdata,which calculatedastheratiobetweenlineandcontinuumfluxes.Thecon- canaffectthederivationofstellarvelocitydispersion.However,we tinuumfluxadoptedisthemedianoftheaveragefluxesinthetwo onlyusetherest-framewavelengthrange4,500−6,500A˚ forthe blueandredcontinuumwindowsatadistanceof200kms−1from derivation of stellar velocity dispersion, which is the wavelength thecentreofthelineandwithawidthof200kms−1. rangemostsuitableforstellarkinematicsanalysesbecauseabsorp- In case of a relatively low signal-to-noise ratio as provided tion features are most pronounced (Bender 1990; Bender et al. by SDSS and BOSS spectroscopy, it would generally be prefer- 1994).Therefore,thelossofspectralresolutionoftheMILESli- able to tie the kinematics of most emission lines to stronger re- brary relative to the BOSS resolution at λ (cid:46) 5,000 A˚ is not a latedlinessuchasH 6563A˚ and[NII]6583A˚ (Brinchmannetal. α concernforthepresentwork. 2004; Sarzi et al. 2006; Schawinski et al. 2007). This is not pos- Tocalibratetheprocedure,wehaveusedourtechniquetode- sible for BOSS, however, because of the relatively large redshift rivestellarvelocitydispersionsforasubsetofSDSSgalaxiesfrom rangeprobed.Thesekeyemissionlinescannotbeobservedwithan DataRelease7(DR7Abazajianetal.2009)andfoundgoodagree- optical CCD for objects beyond redshift z ∼ 0.5. Velocities and mentwiththevaluespublishedinDR7.ThemeasurementsinDR7 velocitydispersionsarethereforefreeparametersforallemission arebasedonthedirectfittingmethod,thesameapproachadopted lines, except for [OIII]λ4958.83 and [NII]λ6547.96 that are tied bypPXF.Fig.1showsthiscomparison.Thevelocitydispersions to the stronger nearby lines [OIII]λ5006.77 and [NII]λ6583.34, areingoodagreementwithasmallmedianoffsetinσof2kms−1 respectively (see Column 4 in Table 1). We follow this approach atadispersionof30kms−1. independentlyofredshifttoguaranteehomogeneitywithinthefull sample. The GANDALF code considers two dust components: the 3.3 Emissionlinemeasurements diffuse dust in the galaxy affecting the spectral shape and dust EmissionlinefluxesandEWsofallemissionlinesavailableinthe inemissionlineregionsadditionallyaffectingemissionlinefluxes rest-frame wavelength range covered are measured on the emis- andratios.ThelatterisestimatedthroughtheBalmerdecrementbe- sion line template spectra. Table 1 summarises the list of emis- tweenH andH (whenavailable)(Veilleux&Osterbrock1987). β α sion lines measured, if accessible in the rest-frame spectrum. An However, the relatively low signal-to-noise ratios in the BOSS emissionlinemeasurementismadewhentheamplitude-over-noise spectramakethemeasurementoftheBalmerdecrementhighlyun- (AoN) ratio is larger than two, which implies that many of these certain. Cases in which the Hβ emission line is barely detected, linesaretooweaktobedetectedinBOSS.ReasonableAoNratios theinclusionofthisseconddustcomponenttendstoyieldunrea- can be obtained in a subsample of BOSS galaxies, however, for sonablyhighvaluesfordustextinction.Thus,wedonotconsider someofthestrongerlinessuchastheforbiddenlines[OIII]5007, thisseconddustcomponentinthefitsandfocusonthediffusedust (cid:13)c 2012RAS,MNRAS000,1–14 SpectroscopicpropertiesofSDSS-III/BOSSgalaxies 5 4 500 2.0 200 3 1.5 Port) Port) ux) ( 2 250 W) ( 1.0 100 Hb Fl Hb E log( log( 1 0.5 0 0 0.0 0 0 1 2 3 4 0.0 0.5 1.0 1.5 2.0 log(Hb Flux) (SDSS DR7) log(Hb EW) (SDSS DR7) 4 300 2.0 120 3 1.5 Port) Port) ux) ( W) ( OIII] Fl 2 150 OIII] E 1.0 60 log([ 1 log([ 0.5 0 0 0.0 0 0 1 2 3 4 0.0 0.5 1.0 1.5 2.0 log([OIII] Flux) (SDSS DR7) log([OIII] EW) (SDSS DR7) 4 900 2.0 300 3 1.5 Port) Port) ux) ( 2 450 W) ( 1.0 150 Ha Fl Ha E log( log( 1 0.5 0 0 0.0 0 0 1 2 3 4 0.0 0.5 1.0 1.5 2.0 log(Ha Flux) (SDSS DR7) log(Ha EW) (SDSS DR7) 4 800 2.0 400 3 1.5 Port) Port) NII] Flux) ( 2 400 NII] EW) ( 1.0 200 log([ 1 log([ 0.5 0 0 0.0 0 0 1 2 3 4 0.0 0.5 1.0 1.5 2.0 log([NII] Flux) (SDSS DR7) log([NII] EW) (SDSS DR7) Figure2.EmissionlinefluxesandequivalentwidthsforHβ,[OIII],Hα,and[NII]measuredinthisworkforasubsetofSDSSgalaxiesincomparisonwith themeasurementspublishedintheDataRelease7.Observed,nondust-corrected,valuesareused.Emissionlinefluxesandequivalentwidthsareslightly higherinthisworkby∼0.1dex. (cid:13)c 2012RAS,MNRAS000,1–14 6 Thomasetal. Ang) 6 m^2/ 5 spSpec-4486-55588-152 Density (10^-17 erg/s/c 1234 z: 0.354 Flux 04 2 0 -2 4000 5000 6000 7000 8000 9000 Lambda (λ) Ang) m^2/ 15 spSpec-4629-55630-664 Density (10^-17 erg/s/c 1050 z: 0.267 Flux 4 2 0 -2 4000 5000 6000 7000 8000 9000 Lambda (λ) Figure3.ExamplespectrawithandwithoutemissionlinesforBOSSgalaxiesaroundz ∼ 0.3inobserved-framewavelengthwiththebestfitspectrum composedofthestellarpopulationandtheemissionlinetemplatesoverplotted(redline).Thebottomspectrumisthevariance,theresidualfromthefitis plottedinthebottomsub-panel. componentthatonlyaffectsthespectralshapeadoptingaCalzetti surementsonthelines.ThelineEWestimatesarealsoconsistent (2001)obscurationcurve.Theemissionlinefluxesprovidedhave tobetterthan5percentinthered,andto10−15percentinthe beencorrectedfordustextinctionobtainedinthisway.Notethat blue,againwithdispersionsconsistentwiththemeasurederrors. wedonotcorrectforMilkyWayforegroundextinctionbeforethe emissionlinesanalysis.Thisdoesnotaffecttheemissionlinemea- surements,butdoesimplythattheresultingE(B-V)valuesneedto 3.4 ExamplespectrainBOSS becorrectedforMilkyWayextinctionaposteriori. Fig.3showstwoexamplespectraforBOSSgalaxiesaroundz ∼ WecompareemissionlinemeasurementsonasubsetofSDSS 0.3 with the best fit spectrum composed of the stellar population DR7galaxieswiththeMPA-JHUvaluespublishedinDR8(Brinch- andtheemissionlinetemplatesoverplotted.Itcanbeseenthatthe mann et al. 2004; Tremonti et al. 2004). Observed, not dust- code is successful at identifying true emission line features over corrected,valuesareused.Fig.2showsthiscomparisonforemis- therelativelyhighnoiselevel.Thestellarpopulationfitsaregood sion line fluxes and EWs of H , [OIII], H , and [NII]. It can be enough to make measurement of stellar kinematics and emission β α seenthatthemeasurementsgenerallyagreewellshowingtightcor- line fluxes. Results and reliability will be assessed in the follow- relations with small scatter and only small offsets. Our measure- ingsections.Asmentionedearlier,amorecomprehensiveapproach mentsofemissionlinefluxestendtobeslightlylargerthaninDR7 withawidersetoftemplateswillberequiredtoderivereliablestar by∼ 0.1 dexwithadispersionof∼ 0.2 dex.OurvaluesofEWs formationhistoriesfromthespectra.Note,however,thataccurate showasystematicoffsettoslightlylargervaluesby∼0.05dexfor derivationofstellarpopulationparametersfromindividualBOSS [OIII],H ,[NII]withadispersionof∼0.1dexandby∼0.15dex spectra is challenging because of the modest S/N ratios, and the α forH withadispersionof∼ 0.2 dex.TheoffsetinH EWin- stacking of spectra to obtain better S/N ratios is advisable (Chen β β creasesforsmallvalues.Still,thecomparisonissatisfyingoverall, etal.2012;Thomasetal.2012). andresidualdiscrepancieswillmostlikelybecausedbydifferences inthetreatmentofreddening,absorptionlinecorrection,andcon- tinuumfitting. 4 VELOCITYDISPERSION Wenotethatthissameversionofthecodeisbeingusedwithin Inthissectionwepresentthemeasurementsoftheline-of-sightve- the Galaxy and Mass Assembly (GAMA) project (Driver et al. locitydispersions.Weshowtheirerrordistributions,comparewith 2011)toderivesimplestellarkinematicsandemissionlinefluxes. independentmeasurementsanddiscusstheirredshiftevolutionin TheGAMAspectroscopyandacomparisonofGANDALF-based theBOSSsample. emission line measurements with other independent methods are presented in Hopkins et al. (2012). In this comparison, particular carehasbeentakeninthehomogenisationofthetreatmentofdust 4.1 Errordistribution reddening.Theresultreinforcestheaboveconclusion.Itisshown thatthemeasurementsofemissionlinefluxesareconsistenttobet- Thetypicalsignal-to-noiseratioineachBOSSgalaxyspectrumis terthan5percent,withadispersionconsistentwiththeerrormea- about5A˚−1.Thisisconsiderablylowerthantheaverageprovided (cid:13)c 2012RAS,MNRAS000,1–14 SpectroscopicpropertiesofSDSS-III/BOSSgalaxies 7 1200 1100 2.5•104 400 400 452786 35639 2.0•104 92.7% 7.3% mber of galaxies11..05••110044 σ (Port) (km/s)230000 600 σ (Port) (km/s)230000 550 nu 5.0•103 100 100 0 0 0 0 0 0.0 0.1 0.2dσ / σ0.3 0.4 0.5 0 100σ (SDSS2 0p0ipeline) (3k0m0/s) 400 0 100 σ (C2h0e0n) (km/s3)00 400 Figure 4. Left-hand panel: Distributions of the relative error in the velocity dispersion measurements. Centre and right-hand panels: Comparison with independentmeasurementsofvelocitydispersionsbasedontheoriginalSDSSDR7pipelinecodebyBoltonetal.(2012)andthecodebyChenetal.(2012). 25 20 Stacked Spectrum z = 0.511 15 SNR = 21.24 400 10 Flux Density (10^-17 erg/s/cm^2/AA)---05101234510123451012345345 sSsSsSsSppppNNNNSSSSRRRRpppp eeee====cccc ----65543333 ....66661569111496305557----55555555124170489851----777777775535 vidual median - stack) (km/s) -2200000 -101245 spSpec-3 647-55241-775 σ (indi 23 SNR = 5.43 -400 1 0 0 100 200 300 400 4-5100 5000 5500 6000 6500 7000 σ (median of individuals in stack) (km/s) LLLLLaaaaammmmmbbbbbdddddaaaaa (((((AAAAAAAAAA))))) Figure5.IndividualspectraandtheirstackofasingleBOSSgalaxywith Figure6.MedianvelocitydispersionmeasuredonindividualBOSSspec- repeated1-hourobservations.TheS/Nratioperresolutionelementisgiven traversusthedifferencebetweenmeasurementsonindividualandstacked bythelabels.TheS/Nratioofthestackedspectrumishigherbyabouta spectra.Eachstackedspectrumisthesumofindividualspectraofthesame factorfourcomparedtotheindividualspectra. objectfromrepeatedplateobservations.SeeFig.5foranexample.Theblue symbolsarethemedianinbinsofvelocitydispersion.Theagreementisvery good,hencevelocitydispersionmeasurementsarereliableevenattypical BOSSσ.Theoffsetatthehigh-σendisatthetailofthedistributionand bySDSS-IspectroscopyowingtothefaintnessoftheBOSStargets. onlyaffectsasmallfractionofBOSSgalaxies(seeFig.reffig:sigmared). Despitethislimitation,measurementsofstellarvelocitydispersion canbemade.ThisisdemonstratedbyFig.4,whereweshowthe distribution in formal measurement errors in the left-hand panel. 4.3 ComparisonwithhigherS/Nspectra Errorsarerelativelylarge,asexpectedfromthelowsignal-to-noise ratios,butstillacceptable.Thereisastrongpeakatatypicalrelative Additionallytothecomparisonwithindependentmeasurementswe errorof14percent,and93percentoftheobjectshavearelative investigatedthedependenceonS/Nratio.Tothisendwemadeuse errorbelow30percent. ofrepeatedplateobservationsinthecourseofthelasttwoyears. Weconstructedasampleof574BOSSgalaxiesmainlyfromplates 3615and3647withatleastsix1-hourobservationseach.Wethen stacked the spectra from the individual exposures to a high S/N 4.2 Comparisonwithindependentmeasurements spectrumforeachobject.Fig.5showstheindividualspectraand Totestthereliabilityofthesemeasurementswecompareourve- thefinalstack.Itcanbeseenthattheresultingspectrumhasasig- locitydispersionswithalternativemeasurements.Inthecentreand nificantly higher S/N ratio. The latter increases by about a factor right-handpanelsofFig.4wecompareourresultswithtwoinde- fourfrom∼ 5to∼ 20perresolutionelement.Itisimportantto pendent measurements, one from Shu et al. (2011); Bolton et al. notethatthisstackedspectrumrepresentsthestackforoneindivid- (2012) based on the original SDSS pipeline and the other from ualobject. Chenetal.(2012).Thevelocitydispersionsareslightlyhigherby Finally, we measured stellar velocity dispersion on both the ∼ 10 km s−1 than the ones of Bolton et al. (2012) at a disper- individualandthestackedspectra.Theresultofthisexerciseispre- sionof20 kms−1 andslightlysmallerby∼ 10 kms−1 thanthe sentedinFig.6,whereweplotthemediandifferencebetweenthe onesofChenetal.(2012)atadispersionof20kms−1.Boththese measurementsonindividualandstackedspectraasafunctionofthe offsetsareacceptablewithinthemeasurementerror.Thisresultis measurementsonindividualspectra.Theagreementisverygood. encouragingandunderlinesthereliabilityofstellarvelocitydisper- Thereisnosystematicoffsetbetweenmeasurementsonindividual sionmeasurementsontheBOSSspectradespitetherelativelylarge (lowS/N)andstacked(highS/N)spectra.Thereissomeincrease errorandlowsignal-to-noiseratio. atthehigh-σend,suggestingthatwetendtooverestimatevelocity (cid:13)c 2012RAS,MNRAS000,1–14 8 Thomasetal. 1.0 1.0 1.0 0.8 0.00 < z < 0.15 0.8 0.15 < z < 0.30 0.8 0.30 < z < 0.45 7236 objects 35146 objects 86569 objects 0.6 0.6 0.6 fraction0.4 fraction0.4 fraction0.4 0.2 0.2 0.2 0.0 0.0 0.0 0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500 σ (km/s) σ (km/s) σ (km/s) 1.0 1.0 1.0 0.8 0.45 < z < 0.60 0.8 0.60 < z < 0.75 0.8 0.75 < z < 2.00 242943 objects 77062 objects 3829 objects 0.6 0.6 0.6 fraction0.4 fraction0.4 fraction0.4 0.2 0.2 0.2 0.0 0.0 0.0 0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500 σ (km/s) σ (km/s) σ (km/s) Figure7.Distributioninvelocitydispersionforspectrawithanerroroflessthan30percentintheredshiftintervals0 < z (cid:54) 0.15,0.15 < z (cid:54) 0.3, 0.3<z(cid:54)0.45,0.45<z(cid:54)0.6,0.6<z(cid:54)0.75,andz>0.75.Theredlineindicatesthepositionofthepeakforthefourcentralredshiftintervals.The distributionisapproximatelyGaussianandthereisnoevolutionwithin0.15<z<0.75.Atredshiftsbelowz∼0.15andabovez∼0.75,thedistributions areskewedandslightlyoffsettowardlowerandhighervelocitydispersions,respectively. dispersionsabove∼ 300 kms−1.Thisonlyaffectsasmallfrac- conclusionisdrawninMarastonetal.(2012),whoshowthatthe tionofBOSSgalaxiesinthetailofthedistribution,however(see distributionofphotometricstellarmassesisapproximatelyuniform Fig.7).WefindnoevidenceforasystematictrendwithS/Nratio. uptoz∼0.6.InBeifiorietal.(2012)weusethesevelocitydisper- Hence,overallthisexercisedemonstratesthatvelocitydispersion sionmeasurementsforthederivationofdynamicalgalaxymasses measurementsonBOSSspectraarereliable(withintheirerrors)in anddiscusstheevolutionofthedynamical-to-stellarmassratiosof spiteoftherelativelylowS/Nratios. BOSSgalaxieswithredshift. 4.4 Velocitydispersionsandtheirevolutionwithredshift In Fig. 7 we show the distributions of velocity dispersions with anerrorlessthan30percent,correspondingto93percentofthe sampleintheredshiftintervals0−0.15,0.15−0.3,0.3−0.45, 5 EMISSIONLINEPROPERTIES 0.45−0.6,0.6−0.75,andforz>0.7.Theredlineindicatesthe positionofthepeakforthefourcentralredshiftintervals.Ingen- InthissectionwepresenttheemissionlinepropertiesofourBOSS eral,thedistributioninvelocitydispersionisapproximatelyGaus- galaxy sample. The aim is to discuss the prevalence of various sianwithawellpronouncedpeakatσ=240km/s.Thisrelatively galaxytypesandemissionlineclassesintheBOSStargetselection high value is consistent with the goal of the BOSS galaxy target algorithm.Therefore,inthepresentanalysiswefocusongalaxies selectionalgorithmdesignedtotargetmassivegalaxies(Padman- withredshiftsz<0.45,sothatthefullsetofkeydiagnosticemis- abhanetal.2010,2012;Marastonetal.2012). sionlinesHβ,[OIII],Hα,and[NII]canbemeasuredintheBOSS Fig. 7 further shows that the distribution in velocity disper- spectrum.Thissamplecontains111,476galaxyspectraoutofthe sion is largely independent of redshift within 0.15 < z < 0.75. 492,450analysedinthefullredshiftrange.Itshouldbenotedthat Thepositionofthepeakofthedistributiondoesnotchange,while in this way we deselect a large fraction of CMASS galaxies, the thewidthbecomessomewhatlargerathigherredshiftscausedby redshift distribution of which peaks at z ∼ 0.6. The analysis of slightly larger measurement errors (see also Shu et al. 2011). At AGNfractionsatthesehigherredshiftsrequiresalternativemeth- redshifts below z ∼ 0.15 and above z ∼ 0.75, the distributions odsfortheidentificationofAGN(Trouilleetal.2011),whichgoes are skewed and slightly offset toward lower and higher velocity beyondthescopeofthepresentpaper. dispersions,respectively.Thisuniformityofthedistributioninve- Wefurtherrestrictouranalysistothosespectrawherethefull locity dispersion as a function of redshift between 0.15 and 0.75 setofkeydiagnosticemissionlinesH ,[OIII],H ,and[NII]can β α is an important feature of the BOSS target selection, as it estab- bedetectedwithanAoNabove2toallowforaproperanalysisof lishesadirectlinkbetweenthegalaxysamplesatvariousredshift, theemissionlinecharacteristicsthroughemissionlineratiodiag- whichallowsustoaccuratelyprobetheredshiftevolutionofmas- nosticdiagrams(Baldwinetal.1981).Thisresultsinasampleof sivegalaxies.TargetselectioninBOSShasbeendesignedtothis 4,237spectra(3.8percentofthetotal).Thefractionsofgalaxies purpose and, using stellar velocity as proxy for galaxy mass, the withsignificantdetectionsoftheemissionlinesH and[NII]are α present results shows that this goal has been achieved. A similar considerablyhigher(around30percent). (cid:13)c 2012RAS,MNRAS000,1–14 SpectroscopicpropertiesofSDSS-III/BOSSgalaxies 9 2 2 2 CMASS Seyfert CMASS Seyfert CMASS Seyfert 0.00 < z ≤ 0.15 1.21% 0.15 < z ≤ 0.30 3.53% 0.30 < z ≤ 0.45 59.37% 1 1 1 βH) βH) βH) OIII]/ 0 OIII]/ 0 OIII]/ 0 log([ log([ log([ Star Forming LINER Star Forming LINER Star Forming LINER -1 95.77% 0.40% -1 77.34% 1.63% -1 21.89% 6.84% Composite Composite Composite 2.62% 17.50% 11.89% % AoN>2: 6.03 % AoN>2: 1.97 % AoN>2: 1.06 -2 -2 -2 -2 -1 0 1 -2 -1 0 1 -2 -1 0 1 log([NII]/Hα) log([NII]/Hα) log([NII]/Hα) 2 2 2 LOWZ Seyfert LOWZ Seyfert LOWZ Seyfert 0.00 < z ≤ 0.15 9.49% 0.15 < z ≤ 0.30 16.04% 0.30 < z ≤ 0.45 39.50% 1 1 1 βH) βH) βH) OIII]/ 0 OIII]/ 0 OIII]/ 0 log([ log([ log([ Star Forming LINER Star Forming LINER Star Forming LINER -1 19.22% 29.26% -1 4.74% 46.39% -1 3.76% 31.66% Composite Composite Composite 42.02% 32.83% 25.08% % AoN>2: 15.60 % AoN>2: 2.49 % AoN>2: 0.36 -2 -2 -2 -2 -1 0 1 -2 -1 0 1 -2 -1 0 1 log([NII]/Hα) log([NII]/Hα) log([NII]/Hα) Figure8.Emissionlineclassification(Baldwinetal.1981)forBOSSgalaxiesatvariousredshiftbins(redshiftincreasingfromlefttoright)forCMASS galaxies(toppanels)andLOWZgalaxies(bottompanels).Objectsatz<0.45areselectedtowarrantdetectabilityofHαand[NII].Thefractionofobjects forwhichallfouremissionlinesaredetected(requiringtheamplitude-over-noiseratioofallfourlinestobelargerthantwo)isgiveninthebottom-leftcorner ofeachpanel.TheempiricalseparationbetweenstarforminggalaxiesandAGN(dashedline)isfromKauffmannetal.(2003b),andthetheoreticalextreme starburstlinefromKewleyetal.(2001)toidentifypureAGNemission(solidcurvedline).AdividinglinedefinedbySchawinskietal.(2007)isusedto distinguishbetweenLINERandSeyfertemission(solidstraightline).Thefractionofeachgalaxiesineachoftheemissionlineclassesaregivenbythelabels inthepanels.Overall,thefractionofobjectswithdetectedemissionlinesissmallinBOSS.Thereisamarkeddifferenceintheemissionlineproperties betweentheBOSSgalaxysamplesathighandlowredshift,mainlycausedbyselectioneffects.Furthermore,thereisastrikingdifferencebetweentheLOWZ andCMASSsamples(seetextfordetails). 5.1 BPTclassification Furthermore, there is a striking difference between the LOWZ and CMASS samples. Besides the fact that the number of galax- We use the emission lines H , [OIII], H , and [NII] to perform β α iesselecteddecreaseswithincreasingredshiftforLOWZandin- the standard classification based on the diagnostic diagram first creases for CMASS owing to the design of the target selection, introduced by Baldwin et al. (1981) and Veilleux & Osterbrock the overall fraction of galaxies with detected emission lines (see (1987),andwidelyusedinstudiesofSDSSgalaxies(e.g.Kauff- label in bottom-left corner in each panel) is different for LOWZ mannetal.2003b;Milleretal.2003;Hopkinsetal.2003;Brinch- andCMASSandchangeswithredshift.Ingeneral,thefractionof mannetal.2004;Kewleyetal.2006;Schawinskietal.2007;Wild starforminggalaxiesamongBOSSgalaxiescanbeexpectedtobe etal.2007;Stasin´skaetal.2008).Inthismethodtheemissionlines low,independentlyofredshift,becauseofthebiastowardsmassive ratios[OIII]/H and[NII]/H areusedasindicatorsfortheionisa- β α galaxiesatallredshifts. tionsourceoftheinterstellargasingalaxies.Thediagramhasbeen proventobeverypowerfulatseparatingstarforminggalaxiesfrom objectswithAGN. 5.1.1 LOWZ ThevariouspanelsofFig.8showtheBPTclassificationsfor the 4,213 BOSS galaxies in three redshift bins, with redshift in- Not surprisingly, the largest fraction of BOSS galaxies with de- creasing from left to right (see labels in the panels). We adopt tectableemissionlines(15percent)isfoundintheLOWZsample the empirical separation between star forming galaxies and AGN atredshiftsbelow0.15.Thisshouldbeexpectedasthecontamina- (dashedline)asdefinedbyKauffmannetal.(2003b),andthethe- tionwithlower-massgalaxiesislargest(seeFig.7).Themajority oreticalextremestarburstlinebyKewleyetal.(2001)toidentify ofemission-linegalaxieshassomeAGNcomponent,thefraction pureAGNemission(solidcurvedline).Asiscommonlydone,we ofpurelystarforminggalaxiesonlybeing20percent.Thefraction assume that the area between these two separating lines is popu- of galaxies with detected emission lines drops dramatically with latedbygalaxieswithacompositeofstarburstandAGNspectra. increasingredshifttoonlyafewpercent.TheprevalenceofAGN WefurtherusethedividinglinedefinedbySchawinskietal.(2007) andLINER-likeemissionincreasesfurtherwithincreasingredshift todistinguishbetweenLINERandSeyfertemission(solidstraight above0.15. line) based on SDSS galaxy classifications obtained through the WehavealsoexaminedthepresenceofBOSSemission-line [SII]/Hαratio. galaxiesthatarelikelytobeionisedthrougholdstellarpopulations It can be seen that, in contrast to the distribution in galaxy rather than AGN. Following Cid Fernandes et al. (2011), we as- massesandstellarvelocitydispersion,thereisamarkeddifference sumethatsuchgalaxiescanbecharacterisedbyhavingH EWs α in the emission line properties between the BOSS galaxy sam- below3 A˚.Thisthresholdhasbeenderivedfromthedistribution ples at high and low redshift, mainly caused by selection effects. ofH EWsinSDSSgalaxies,whichisstronglybimodal(seealso α (cid:13)c 2012RAS,MNRAS000,1–14 10 Thomasetal. Bamfordetal.2008),withtwopeaksat1and16A˚ andaninterme- diateminimumintheneighbourhoodof3 A˚ (CidFernandesetal. 1.2 2011).Wefindthattheseso-called’retired’galaxiestypicallyhave LINERemission,butonlyaminority(aboutonequarter)ofgalax- 1.0 0.00 < z ≤ 0.15 nt 0.15 < z ≤ 0.30 ieswithLINERemissionlinecharacteristicsisfoundtobebetter u describedbythisobjectclass. y co 0.8 0.30 < z ≤ 0.45 x a al g 0.6 d e s 5.1.2 CMASS ali 0.4 m Interestingly,therearesomeCMASSgalaxiesatlowredshiftsbe- nor low 0.15, even though the selection cuts are designed to target 0.2 galaxiesabovez∼0.4.Fig.8showsthatmostoftheseobjectsare 0.0 starforminggalaxiesthatfellintotheCMASScolourselectioncut 7.5 8.0 8.5 9.0 9.5 despitebeingatlowredshift,mostprobablyduetodustreddening. metallicity These galaxies are also relatively low-mass with velocity disper- sions at the low-end of the distribution. With increasing redshift, Figure 9. Gas metallicities for star forming BOSS galaxies in various thispopulationprogressivelydisappearsfromtheCMASSsample. redshiftbins.Theverticaldashedlineindicatesthesolarvalue.Thelow Atredshiftsabove0.3,closertotheactualredshiftrangetar- andhigh-zsamplesshowsimilarmetallicitydistributions.Thelow-redshift getedbytheCMASSselectioncuts,the(veryfew)galaxieswith sample extends to a low-metallicity wing mainly composed of low-z detectedemissionlinesaremostlyAGN.Interestingly,themajor- CMASSgalaxies. ity of these AGN are Seyfert. It should be emphasised, however, thatAGNfractionsderivedthroughopticalemissionlineratiosare criticallydependentonS/Nratios.InparticularLINERs,typically havingloweremissionlinefluxes,tendtodropoutofthesample astheS/Ndecreases.Hence,therelativelylowfractionofBOSS 6.1 The(g−r)vs(r−i)diagram galaxieswithLINERemissionathighredshiftsismostlikelyase- lection effect, and the effect of S/N ratio needs to be considered In Fig. 10 we present the colour-colour plot g − r vs r − i of carefullyinscientificanalyses. all BOSS galaxies with z < 0.45. Galactic extinction-corrected modelmagsareused.Thesolidlinelabelledd indicatesthemajor ⊥ colourselectioncut 5.2 Gasmetallicities d⊥ ≡(r−i)−(g−r)/8=0.55 (1) Following Saintonge et al. (2011), we use the prescription from that has been used to separate the high-redshift CMASS and Pettini&Pagel(2004)toderivegasmetallicitiesofthestarform- the low-redshift LOWZ samples (Padmanabhan et al. 2012). The inggalaxiesfromthe[OIII]/H and[NII]/H emissionlineratios. β α colour r−i is an excellent redshift indicator aroundredshifts of We caution here, however, that metallicity estimates made using z = 0.4, because the 4000A˚ break passes from the g-band into differentlineratiosshowsomesystematicdifferences(Kewley& ther-band.Asaconsequence,galaxiesbecomesignificantlyred- Ellison 2008). The resulting distributions of gas metallicities for der in r −i and slightly bluer in g −r with increasing redshift various redshift bins are shown in Fig. 9. As is to be expected, beyondaredshiftofz = 0.4(Eisensteinetal.2001).Thispattern metallicitiesarehighandpeakaroundsolarvalues(dashedline). isdisplayedbytheBOSSgalaxydatainFig.10.Galaxiesabove Thereisnonotabledifferencebetweentheredshiftbins0.15−0.3 thesolidline(d (cid:62)0.55)definetheCMASSsampleandtypically ⊥ and0.13−0.45.Thelow-redshiftsamplebelowredshift0.15,in- haveredshiftsz (cid:38) 0.4,whileeverythingbelowthatlineisinthe stead,extendstoalow-metallicitywingmainlycomposedoflow-z LOWZ sample with typical redshifts of z (cid:46) 0.4. The solid lines CMASSgalaxies.Thisextensiontolowmetallicitiesisalsovisible labelled’LRG’and’2SLAQ’aretheselectioncutsusedbyEisen- inFig.8throughthepresenceofstarforminggalaxieswithhigh steinetal.(2001)todefinetheSDSSLRGsampleandbyCannon [OIII]/H andlow[NII]/H ratiosinthelowestredshiftbin(see β α etal.(2006)todefinethe2SLAQLRGsample,respectively.The Fig.8). dashed line is the dividing line between early-type and late-type fromMastersetal.(2011). The correlation seen in the LOWZ sample is a sequence of varyingredshiftinwhichbothg−randr−ibecomeredderwith increasingredshiftuptoz =0.4.Thesequenceisrelativelytight, 6 TARGETSELECTIONCOLOUR-COLOURSPACE becauseredshifteffectsdominatetheobservedcolours.Thedistri- WehaveshownthatasmallbutsignificantfractionofBOSSgalax- butionofCMASSgalaxiesintheg−rvsr−icolour-colourplane ies contains emission lines, encompassing all ionisation classes isquitedifferent.Astheobservedg−r colourdependsstrongly fromstarformingtoAGN.Itisinterestingtoinvestigate,whether onthestarformationhistoryofthegalaxy,awiderangeing−r these emission line properties follow some distinct pattern in the coloursiscovered.Theobservedr−icolour,instead,isgenerally colour-colour diagram used for target selection in BOSS. In the redwitharelativelysmalldynamicalrangeandmuchlessdepen- following we focus on redshifts below z ∼ 0.45 so that we can dentonthestarformationhistory.Passivelyevolvinggalaxiespop- benefitfromthefullBPTclassificationandseparateemission-line ulatethetopright-handsectionofthediagram,asindicatedbythe freegalaxiesfromstarformingandAGN. LRGselectionline. (cid:13)c 2012RAS,MNRAS000,1–14

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.