ebook img

StellaR: a Package to Manage Stellar Evolution Tracks and Isochrones PDF

0.27 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview StellaR: a Package to Manage Stellar Evolution Tracks and Isochrones

CONTRIBUTEDARTICLE 1 StellaR: a Package to Manage Stellar Evolution Tracks and Isochrones byMatteoDell’Omodarme,andGiadaValle Get stellar evolutionary data Abstract We present the R package stellaR, The Pisa low-mass database contains computations whichisdesignedtoaccessandmanipulatepub- classified according to four parameters: the metal- licly available stellar evolutionary tracks and licity z of the star, its initial helium value y, the isochrones from the Pisa low-mass database. value of α-enhancement of the heavy elements mix- The procedures of the extraction of impor- ture with respect to the reference mixture and the tant stages in the evolution of a star from the mixinglengthparameterαml usedtomodelexternal database, of the isochrones construction from convection efficiency. The values of the parameters 3 stellar tracks and of the interpolation among availableinthedatabasecanbedisplayedusingthe 1 tracksarediscussedanddemonstrated. functionshowComposition(): 0 > showComposition() 2 Mixing-length values: n Due to the advance in the instrumentation, nowa- 1.7, 1.8, 1.9 a days astronomers can deal with a huge amount of J high-quality observational data. In the last decade 6 impressiveimprovementsofspectroscopicandpho- alpha-enhancement values: 1 0, 1 (i.e. [alpha/Fe] = 0.0 tometric observational capabilities made available [alpha/Fe] = 0.3) data which stimulated the research in the globu- ] R lar clusters field. The theoretical effort of recov- Chemical compositions: S ering the evolutionary history of the cluster bene- z y.1 y.2 y.3 y.4 y.5 y.6 . fits by the computation of extensive databases of h 1e-04 0.249 0.25 0.27 0.33 0.38 0.42 p stellar tracks and isochrones, such as Pietrinferni 2e-04 0.249 0.25 0.27 0.33 0.38 0.42 - etal.(2006);Dotteretal.(2008);Bertellietal.(2008). o 3e-04 0.249 0.25 0.27 0.33 0.38 0.42 We recently computed a large data set of stellar r 4e-04 0.249 0.25 0.27 0.33 0.38 0.42 t tracksandisochrones,“ThePisalow-massdatabase” s 5e-04 0.250 0.25 0.27 0.33 0.38 0.42 a (Dell’Omodarme et al., 2012), with up to date phys- [ ical and chemical inputs, and made available all 6e-04 0.250 0.25 0.27 0.33 0.38 0.42 1 the calculations to the astrophysical community at 7e-04 0.250 0.25 0.27 0.33 0.38 0.42 8e-04 0.250 0.25 0.27 0.33 0.38 0.42 v theCentredeDonnéesastronomiquesdeStrasbourg 9e-04 0.250 0.25 0.27 0.33 0.38 0.42 5 (CDS)1,adatacenterdedicatedtothecollectionand 9 1e-03 0.250 0.25 0.27 0.33 0.38 0.42 worldwidedistributionofastronomicaldata. 6 2e-03 0.252 0.25 0.27 0.33 0.38 0.42 In most databases, the management of the in- 3 3e-03 0.254 0.25 0.27 0.33 0.38 0.42 . formation and the extraction of the relevant evolu- 1 4e-03 0.256 0.25 0.27 0.33 0.38 0.42 tionary properties from libraries of tracks and/or 0 5e-03 0.258 0.25 0.27 0.33 0.38 0.42 3 isochrones is the responsibility of the end users. 6e-03 0.260 0.25 0.27 0.33 0.38 0.42 1 Due to its extensive capabilities of data manipula- 7e-03 0.262 0.25 0.27 0.33 0.38 0.42 : tion and analysis, however, R is an ideal choice for v 8e-03 0.264 0.25 0.27 0.33 0.38 0.42 i these tasks. Nevertheless R is not yet well known X 9e-03 0.266 0.25 0.27 0.33 0.38 0.42 inastrophysics;uptoDecember2012onlysevenas- 1e-02 0.268 0.25 0.27 0.33 0.38 0.42 r tronomical or astrophysical-oriented packages have a beenpublishedonCRAN(seethetaskviewChemo- Thetableofchemicalcompositionpresentsallthe y metricsandComputationalPhysics). values available for a given z. For a set of parame- The package stellaR (Dell’Omodarme and Valle, ters,thetracksfilesareidentifiedspecifyingthemass 2012) is an effort to make available to the astro- of the desired model (in the range [0.30, 1.10] M(cid:12) physicalcommunityabasictool-setwiththefollow- (M(cid:12) =1.99·1033 g is the mass of the Sun), step of ing capabilities: retrieve the required calculations 0.05 M(cid:12)),whiletheage(intherange[8.0-15.0]Gyr, from CDS; plot the information in a suitable form; stepof0.5Gyr)isrequiredfortheisochrones. construct by interpolation tracks or isochrones of Uponspecificationoftheaforementionedparam- compositions different to the ones available in the eters,thestellaRpackagecanimportdatafromCDS database; construct isochrones for age not included (via anonymous ftp) from an active Internet con- inthedatabase; extractrelevantevolutionarypoints nection. The CDS data are stored in ASCII format, fromtracksorisochrones. andincludeaheaderwithcalculationmetadata,such 1viaanonymousftptocdsarc.u-strasbg.fr,orviahttp://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/540/A26 TheRJournalVol. X/Y,Month,Year ISSN2073-4859 CONTRIBUTEDARTICLE 2 as the metallicity, the inital helium abundance, the The function getTrk() returns an object of class mixing-length. Theimportisdoneviaaread.table "trk", which is a list containing the track meta- call,skippingtheheaderofthefiles. data, i.e. as the star mass, the metallicity, the ini- The following data objects can be downloaded tial He abundance, the mixing-length and the α- fromthedatabasesite: enhancement, and the computed data in the data framedata.Trackdatacontainsthevaluesof15vari- • Stellar track: a stellar evolutionary track com- ables: puted starting from Pre-Main Sequence (PMS) and ending at the onset of helium flash (for > names(track$data) masses M ≥0.55 M(cid:12)) or at the exhaustion of [1] "mod" "time" "logL" "logTe" centralhydrogen(for0.30M(cid:12)≤M≤0.50M(cid:12)). "mass" "Hc" "logTc" "logRHOc" The functions getTrk() and getTrkSet() can "MHEc" "Lpp" "LCNO" "L3a" be used to access such data; they respectively "Lg" "radius" "logg" returnobjectsofclasses"trk"and"trkset". The included variables are: mod the progressive modelnumber; timethelogarithmofthestellarage • Stellar ZAHB: Zero-Age Horizontal-Branch models. The functions getZahb() can be used (in yr); logL the logarithm of the surface luminos- ity(inunitofsolarluminosity);logTethelogarithm toaccesssuchdata;itreturnsanobjectofclass "zahb". of the effective temperature (in K); mass the stellar mass(inunitofsolarmass);Hcthecentralhydrogen • HBmodels:computedfromZAHBtotheonset abundance (after hydrogen exhaustion: central he- of thermal pulses. The functions getHb() and liumabundance); logTcthelogarithmofthecentral getHbgrid() can be used to access such data; temperature(inK);logRHOcthelogarithmofthecen- theyrespectivelyreturnobjectsofclasses"hb" traldensity(ing/cm3); MHEcthemassofthehelium and"hbgrid". core (in units of solar mass); Lpp the luminosity of ppchain(inunitsofsurfaceluminosity);LCNOthelu- • Stellar isochrones: computed in the age range minosityofCNOchain(inunitsofsurfaceluminos- [8 - 15] Gyr. The functions getIso() and ity); L3a the luminosity of triple-α burning (in units getIsoSet() can be used to access such data; of surface luminosity); Lg luminosity of the gravita- theyrespectivelyreturnobjectsofclasses"iso" tionalenergy(inunitsofsurfaceluminosity);radius and"isoset". the stellar radius (in units of solar radius); logg the logarithmofsurfacegravity(incm/s2). Readers interested in details about the computa- SimilarlythepartofthetrackstartingfromZAHB tion procedure are referred to Dell’Omodarme et al. and ending at the onset of thermal pulses can be (2012). The data gathered from CDS are organized downloadedbythecall: into objects of appropriate classes. The package in- cludes print and plot S3 methods for the classes > hbtk <- getHb(m = 0.80, z = 0.001, "trk","trkset","hb","zahb","hbgrid","iso",and y = 0.25, ml = 1.90, afe = 0) "isoset". > hbtk Asanexample,weillustratetherecoveringofthe Stellar track from ZAHB stellartrackforamodelofmassM=0.80M(cid:12),metal- licity z = 0.001, initial helium abundance y = 0.25, Mass = 0.8 Msun mixing-length α = 1.90, α-enhancement [α/Fe] = Mass RGB = 0.8 Msun ml 0.0. Z = 0.001 , Y = 0.25 Mixing length = 1.9 > track <- getTrk(m = 0.80, z = 0.001, [alpha/Fe] = 0 y = 0.25, ml = 1.90, afe = 0) > track > names(hbtk) Stellar track [1] "mass" "massRGB" "z" "y" "ml" "alpha.enh" "data" Mass = 0.8 Msun Z = 0.001 , Y = 0.25 > class(hbtk) Mixing length = 1.9 [1] "hb" "stellar" [alpha/Fe] = 0 which returns an object of class "hb", which differs > names(track) fromanobjectofclass"trk"onlyforthepresenceof [1] "mass" "z" "y" "ml" thevariablemassRGB,i.e.theRed-GiantBranch(RGB) "alpha.enh" "data" progenitormass. Usually a set of tracks with different mass > class(track) and/ormetallicityareneededforcomputations.The [1] "trk" "stellar" package stellaR provides the function getTrkSet(), TheRJournalVol. X/Y,Month,Year ISSN2073-4859 CONTRIBUTEDARTICLE 3 which can download a set of tracks with differ- > plot(trks, lty = 1:2) ent values of mass, metallicity, helium and mixing- TheoutputofthefunctionisshowninFigure1. The length. Asanexamplethewholesetofmasses(from plotisproducedbyacalltothefunctionplotAstro() 0.30 to 1.10 M(cid:12), step of 0.05 M(cid:12)), for metallicity whichallowstheusertocustomizeseveralaspectsof z=0.001,initialheliumabundancey=0.25,mixing- theplot,suchastheaxeslabel,thenumberofminor lengthα =1.90,α-enhancement[α/Fe]=0.0canbe ml ticksbetweentwomajorticks,thelimitsoftheaxes, downloadedasfollows: thecolorandtypeofthelines(asintheexample),the > mass <- seq(0.3, 1.1, by = 0.05) typeoftheplot(lines,points,both,...). > trks <- getTrkSet(m = mass, z = 0.001, The use of plot() function is further demon- y = 0.25, ml = 1.90, afe = 0) stratedinFigure2,where,forz=0.001,y=0.25,αml > trks = 1.90, [α/Fe] = 0.0, are displayed the evolutionary [[1]] trackfor M=0.80 M(cid:12) fromPMS toHe flash(black Stellar track line)andfromZAHBtothermalpulses(greenline). Thefigureisobtainedasfollows: Mass = 0.3 Msun > plot(track) Z = 0.001 , Y = 0.25 > plot(hbtk, add = TRUE, col = "green") Mixing length = 1.9 [alpha/Fe] = 0 5 3. [[2]] 0 Stellar track 3. 5 Mass = 0.35 Msun 2. Z = 0.001 , Y = 0.25 0 Mixing length = 1.9 un 2. s [alpha/Fe] = 0 L 5 L 1. g o ... l 0 1. 5 0. 4 0 0. 3 5 0. − 3.85 3.80 3.75 3.70 3.65 3.60 3.55 2 log T eff n u s L L 1 Figure 2: (black line): evolutionary tracks for mass g lo M=0.80 M(cid:12),z=0.001,y=0.25,αml=1.90,[α/Fe]= 0.0. fromPMStoHeflash. (greenline): evolutionary 0 trackfromZAHBtothermalpulses. 1 − Apart from the plots discussed before, it is easy todisplayotherrelationbetweenthecomputedvari- 2 ables. In the following example we get the data for − two masses, namely 0.50 and 1.00 M(cid:12) and plot the 3.90 3.85 3.80 3.75 3.70 3.65 3.60 3.55 log T trend of the radius (in units of solar radius) versus eff thelogarithmoftheageforthefirst100models. The resultingplotisdisplayedinFig.3. Figure 1: The evolutionary tracks for masses from M=0.30M(cid:12)toM=1.10M(cid:12)fromPMStoHeflash. > trkr <- getTrkSet(m = c(0.5, 1), z = 0.01, Theparametersofthecalculationsare: z=0.001,y= y = 0.25, ml = 1.8, afe = 0) 0.25,α =1.90,[α/Fe]=0.0. > mydata <- do.call(rbind, lapply(trkr, ml "[[", "data")) The function getTrkSet() returns an object of > D <- mydata[mydata$mod <= 100, ] class "trkset", a list containing objects of class > key <- as.numeric(factor(D$mass)) "trk". The track set can be displayed in the usual > plotAstro(D$time, D$radius, type = "p", (logTeff, logL/L(cid:12)) plane by a call of the function pch = key, ylab = "Radius (Rsun)", plot(): xlab = "log age (yr)") TheRJournalVol. X/Y,Month,Year ISSN2073-4859 CONTRIBUTEDARTICLE 4 > legend("topright", c("M=0.50", "M=1.00"), [1] "logL" "logTe" "mass" "radius" "logg" pch = 1:2) Thefunctionreturnsanobjectofclass"isoset",alist containing objects of class "iso". These last objects 6 l M=0.50 arelistscontainingmetadata(age,metallicity,initial M=1.00 He abundance, mixing-length, and α-enhanchment) and the data frame data, which contains the com- 5 putedtheoreticalisochronesdata.Figure4showsthe setofisochronesplottedwiththecommands: 4 n) > plot(isc, lty = 1:2) u us (Rs 3 l l lllllllllllll > legend(l"ttyop=le1f:t2"), c("9 Gyr", "12 Gyr"), di l a l R 2 llll 4 9 Gyr 12 Gyr l l 1 lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll 3 0 2 4 5 6 7 8 9 un s L log age (yr) 1 L g o l Figure3: Radiusversusthelogarithmoftheagefor 0 thefirst100modelsoftwostarswithdifferentmass (M=0.50 M(cid:12),and M=1.00 M(cid:12))andidenticalcom- 1 position,z=0.01,y=0.25,α =1.8,[α/Fe]=0.0. − ml IsochronescanbeobtainedfromCDSandplotted 2 − inasimilarway. Asanexample,letgetisochronesof 3.85 3.80 3.75 3.70 3.65 3.60 3.55 9and12Gyrforz=0.001,y=0.25,α =1.90,[α/Fe] ml log T =0.0: eff > isc <- getIsoSet(age = c(9, 12), z = 0.001, Figure 4: Isochrones in the theoretical plane for 9 y = 0.25, ml = 1.90, afe = 0) and12Gyr. Calculationsperformedforz=0.001,y= > isc 0.25,α =1.90,[α/Fe]=0.0. ml [[1]] Stellar isochrone Tools for interpolating among data Age = 9 Gyr structures Z = 0.001 , Y = 0.25 Mixing length = 1.9 Even if the database provides a fine grid of mod- [alpha/Fe] = 0 els it is possible that the specific model needed for a comparison with observational data has not [[2]] been calculated. To address this issue, the package Stellar isochrone stellaR includes tools for construction of new sets of isochrones. The simplest case is whenever one Age = 12 Gyr desires an isochrone for ages not included in the Z = 0.001 , Y = 0.25 database, but for a combination of metallicity, He Mixing length = 1.9 abundance,mixing-lengthandα-enhanchmentexist- [alpha/Fe] = 0 ing in the database. The function makeIso() is able to compute the required isochrones by mean of in- attr(,"class") terpolationonatracksset. Theinterpolationcanbe [1] "isoset" "stellar" performedforageintherange[7-15]Gyr. Theuser hasthechoicetoexplicitlyprovidetothefunctiona > names(isc[[1]]) set of tracks, previously downloaded from CDS, or [1] "age" "z" "y" "ml" to specify the required composition of the tracks to "alpha.enh" "data" be downloaded for the interpolation. To show the usage of the function we use the object trks down- > names(isc[[1]]$data) loadedbeforetoobtainanisochroneofage9.7Gyr: TheRJournalVol. X/Y,Month,Year ISSN2073-4859 CONTRIBUTEDARTICLE 5 > iso.ip <- makeIso(age = 9.7, tr = trks) rithmproceedsasfollows: > iso.ip Stellar isochrone 8sets 4sets 2sets 1sets (cid:122) (cid:125)(cid:124) (cid:123) (cid:122) (cid:125)(cid:124) (cid:123) (cid:122) (cid:125)(cid:124) (cid:123) (cid:122) (cid:125)(cid:124) (cid:123) Age = 9.7 Gyr Tz,y,αml(M)i→Tz,y,∗(M)i→Tz,∗,∗(M)i→T∗,∗,∗(M)i Z = 0.001 , Y = 0.25 where the symbol ∗ means that interpolation oc- Mixing length = 1.9 curred in the substituted variable. The selection [alpha/Fe] = 0 of the tracks set which enter in the interpolation is based upon the identification of the vertexes of the the call produces a result identical to makeIso(age cellofthe(z,y,α )spacecontainingthepointiden- ml = 9.7,z = 0.001,y = 0.25,ml = 1.9,afe = 0); in tified by the required parameters. Then, for all the thislastcasethedataaretakenfromCDSbeforethe 17 masses at the vertexes, the linear interpolation interpolationprocedure. described above is performed. In the worst case The interpolation technique is based upon the scenario, whenever no one of the supplied parame- fact that all the tracks contain the same number of tersvaluesexistinthedatabase,theinterpolationre- points by construction, and that a given point cor- quires23=8setsof17masses.Thealgorithmishow- responds to the same evolutionary phase on all the everabletoreducethedimensionalityoftheprocess tracks. WedefineS(M)asthesetoftrackstobeused ifsomeofthevariablesvaluesexistinthedatabase. for interpolation, parametrized by the value of the Asademonstration,letuscomputeasetoftracks mass M. Let ti(M) be the evolutionary time for the with mixing-length value α = 1.74, z = 0.002, y = ml ithpointonthetrackofmass M,and Abetheageof 0.25,[α/Fe]=0.0: therequiredisochrone.Letkbethepointonthetrack oflowermassofthesetS(M)forwhicht (M)≥ A. > ip.trk <- interpTrk(z = 0.002, y = 0.25, k For each point j≥k on the tracks in S(M), a linear ml = 1.74, afe = 0) interpolationinageofthevaluesofmass,logarithm oftheeffectivetemperatureandlogarithmofthelu- Sincethevaluesofzandyexistinthedatabase,only minosity is performed among tracks. These points an interpolation on the mixing-length value is per- define the required isochrone. A potential problem formedbythecode. Thesetoftrackscanbeusedfor of this simple procedure will occur whenever mas- isochronesconstruction,likeastandardsetoftracks: sivestarsdevelopaconvectivecoreduringtheMain > ip.iso <- makeIso(age = 12, tr = ip.trk) Sequence(MS).Inthiscase,asshownforexamplein Mowlavietal.(2012),themonotonictrendoftheevo- lutionarytime–thatdecreaseswithincreasingstellar Keypoints extraction massattheendoftheMS–invertsatthemiddleof the MS. However the problem will be encountered onlyforearly-timeisochrones,forwhichthemassat Importantstagesintheevolutionofastararedefined theisochroneTurn-Offwillbeintheintervalduring as"keypoints",e.g.hydrogencoreexhuastion,Turn- which the convective core develops. The procedure Offluminosity,RGBtipluminosity. Tosimplifytheir outlined in this Section is adequate for construction extractionthepackagestellaRprovidesthefunction of isochrones throughout the range allowed by the keypoints(), which operates on an object of class function. "trk"or"iso". Thefunctionextractsfromthedatastoredinob- jectsofclass"trk"therowsofthedataframerelative Tracksinterpolation tothefollowingevolutionarystages: ThepackagestellaRprovidesalsoatoolforperform- 1. ZAMS. Zero-Age Main-Sequence, defined as inga3Dinterpolationonthedatabasetoconstructa the point for which the central H abundance set of tracks for values of metallicity, helium abun- dropsbelow99%ofitsinitialvalue. danceandmixing-lengthnotincludedinthecompu- tations available at CDS. The function interpTrk() 2. TO. Turn-Off, defined as the point for which canbeusedforthisprocedure. Acalltothisfunction theeffectivetemperaturereachesitsmaximum causes the download from CDS of the sets of tracks value. If multiple lines satisfy the constraint, neededfortheinterpolation. thevaluesofalltherowsareaveraged. The new set of tracks is computed by mean of a linear interpolation. The metallicity is log- 3. BTO.BrighterTurn-Off,definedasthepointfor transformedbeforetheinterpolationprocedure. Let which the effective temperature drops below T (M) beithpointonthedatasetcontainingthe theoneoftheTOminus100K.Thepointscan z,y,αml i evolutionarytime,theeffectivetemperatureandthe notexistforlowmasses. Detailsontheadvan- logarithmofsurfaceluminosityforthetrackofmass tagesofthisevolutionarypointwithrespectto M, and given composition. The interpolation algo- theTOcanbefoundinChaboyeretal.(1996). TheRJournalVol. X/Y,Month,Year ISSN2073-4859 CONTRIBUTEDARTICLE 6 4. exHc. Central H exhaustion, defined as the > xlab <- expression(italic(M) ~ point for which the central H abundance is (italic(M)[sun])) zero. For low masses the point can coincide > ylab <- "log age (yr)" withTO.Thisisthelastpointofthetrackswith > symbol <- as.numeric(factor(kpH$z)) masslowerorequalto0.50 M(cid:12). > plotAstro(kpH$M, kpH$time, type = "p", pch = symbol, xi = 0.1, xlab = xlab, 5. Heflash. Helium flash, the last point of the ylab = ylab) trackformasseshigherthan0.50 M(cid:12). lab <- levels(factor(format(kpH$z, nsmall = 4, scientific = FALSE))) When the function is called on an object of class > legend("topright", lab, pch = 1:3) "iso"itreturnsadataframecontainingonlyTOand BTOphases. In both cases the function inserts in the re- turned data frame the columns relative to mass (or age for isochrones), metallicity, initial He value, mixing-length, α-enhancement, and evolutionary phaseidentifier. 4 l TO BTO As a demonstration we extract the TO and BTO points from the object isoc generated in a previous 3 example: > kp <- keypoints(isoc) 2 > kp n u logL logTe mass radius Ls 1 TO 0.4044723 3.816652 0.8396903 1.23558 L g BTO 0.5556971 3.809943 0.8561162 1.51671 lo ll TO1 0.2917250 3.803611 0.7772973 1.15234 0 BTO1 0.4495597 3.796545 0.7909500 1.42768 logg age z y ml alpha.enh 1 TO 4.178911 9 0.001 0.25 1.9 0 − BTO 4.009265 9 0.001 0.25 1.9 0 TO1 4.205965 12 0.001 0.25 1.9 0 −2 BTO1 4.027426 12 0.001 0.25 1.9 0 3.85 3.80 3.75 3.70 3.65 3.60 3.55 id log T eff TO 1 BTO 2 5 1. l 0.0001 TO1 1 1 0.0010 0.0100 BTO1 2 The points can be easily superimposed to the 0 isochronesinthetheoreticalplane. Thetoppanelof 11. l Figure5isobtainedwiththefollowingcommands: yr) l > plot(isoc) e ( 5 > points(logL ~ logTe, data = kp, pch = id, ag 10. l g col = id) o l l > legend("topleft", c("TO", "BTO"), pch = 1:2, col = 1:2) 0.0 l 1 l Asalastexampleweextractasetoftracksformasses l in the range [0.40 - 1.10] M(cid:12) and three metallicity z =0.0001,0.001,0.01andwedisplay(bottompanelin 9.5 l Figure5)thetimeofexhaustionofcentralhydrogen 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 asafunctionofthemassofthestar. M (M ) sun > mT <- seq(0.4, 1.1, by = 0.1) > zT <- c(0.0001, 0.001, 0.01) Figure5: Toppanel: sameasFigure4. Theposition > tr <- getTrkSet(m = mT, z = zT, y = 0.25, of Turn-Off (TO) and Brighter TO (BTO) are shown. ml = 1.9, afe = 1) Bottom panel: time to exhaustion of central hydro- > kp <- keypoints(tr) genasafunctionofthemassofthestar.Thesymbols > kpH <- kp[kp$id == 4,] identifythevaluesofthemetallicityzform0.0001to 0.01. TheRJournalVol. X/Y,Month,Year ISSN2073-4859 CONTRIBUTEDARTICLE 7 Summary B.Chaboyer,P.Demarque,P.J.Kernan,L.M.Krauss, and A. Sarajedini. An accurate relative age esti- This paper demonstrated how the package stellaR matorforglobularclusters. MNRAS,283:683–689, can be useful to the astrophysical community as 1996. a tool to simplify the access to stellar tracks and isochrones calculations available on-line. A set of M.Dell’OmodarmeandG.Valle.stellaR:stellarevolu- tools to access, manipulate and plot data are in- tiontracksandisochrones,2012. URLhttp://CRAN. cluded in the package and their usage was shown. R-project.org/package=stellaR. Rpackagever- The interpolation functions included in the package sion0.3-1. canbeusedtosafelyproducetracksorisochronesat compositions not included in the database, without M.Dell’Omodarme, G.Valle, S.Degl’Innocenti, and theneedthatusersdevelopsoftwareontheirown.A P. G. Prada Moroni. The Pisa Stellar Evolution plannedextensionofthepackageisthemodification DataBaseforlow-massstars. A&A,540:A26,2012. of the algorithm of isochrone construction to make A. Dotter, B. Chaboyer, D. Jevremovic´, V. Kostov, feasible the calculation of isochrone of young ages. E.Baron,andJ.W.Ferguson. TheDartmouthStel- This step can be useful in view of a possible exten- larEvolutionDatabase. ApJS,178:89–101,2008. sionofthePisadatabasetohighermasses,ortoma- nipulationofdatastoredinotherdatabases. Infact, N.Mowlavi,P.Eggenberger,G.Meynet,S.Ekström, whilethepackageiscurrentlydevelopedforaccess- C.Georgy,A.Maeder,C.Charbonnel,andL.Eyer. ing data from Pisa low-mass database, other public Stellar mass and age determinations . I. Grids of databases can be in principle accessed in the same stellar models from Z = 0.006 to 0.04 and M = 0.5 way. This step is however complicated by the fact to3.5 M(cid:12). A&A,541:A41,2012. thatnostandardforstellarmodeloutputexistsinthe astrophysicalcommunity,requiringthepersonaliza- A.Pietrinferni, S.Cassisi, M.Salaris, andF.Castelli. tionoftheinterfacefunctionsforeachsetofdata. A Large Stellar Evolution Database for Popu- lation Synthesis Studies. II. Stellar Models and Acknowledgments Isochrones for an α-enhanced Metal Distribution. ApJ,642:797–812,2006. Wearegratefultoouranonymousrefereesformany stimulating suggestions that helped in clarify and MatteoDell’Omodarme improvethepaperandthepackage. WethankSteve DipartimentodiFisica“EnricoFermi”,UniversitàdiPisa Shore for a careful reading of the manuscript and LargoPontecorvo3,PisaI-56127 manyusefulsuggestions. Italy [email protected] Bibliography GiadaValle G.Bertelli,L.Girardi,P.Marigo,andE.Nasi. Scaled DipartimentodiFisica“EnricoFermi”,UniversitàdiPisa solartracksandisochronesinalargeregionofthe LargoPontecorvo3,PisaI-56127 Z-Y plane. I. From the ZAMS to the TP-AGB end Italy for0.15-2.5 M(cid:12) stars. A&A,484:815–830,2008. [email protected] TheRJournalVol. X/Y,Month,Year ISSN2073-4859

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.