ebook img

Stein manifolds and holomorphic mappings : the homotopy principle in complex analysis PDF

569 Pages·2017·6.291 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Stein manifolds and holomorphic mappings : the homotopy principle in complex analysis

Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge A Series of Modern Surveys in Mathematics 56 Franc Forstnerič Stein Manifolds and Holomorphic Mappings The Homotopy Principle in Complex Analysis Second Edition Ergebnisse der Mathematik und Volume 56 ihrer Grenzgebiete 3.Folge A Series of Modern Surveys in Mathematics EditorialBoard L.Ambrosio,Pisa V.Baladi,Paris G.-M.Greuel,Kaiserslautern M.Gromov,Bures-sur-Yvette G.Huisken,Tübingen J.Jost,Leipzig J.Kollár,Princeton G.Laumon,Orsay U.Tillmann,Oxford J.Tits,Paris D.B.Zagier,Bonn Forfurthervolumes: www.springer.com/series/728 Franc Forstnericˇ Stein Manifolds and Holomorphic Mappings The Homotopy Principle in Complex Analysis Second Edition FrancForstnericˇ FacultyofMathematicsandPhysics UniversityofLjubljana Ljubljana Slovenia ISSN0071-1136 ISSN2197-5655(electronic) ErgebnissederMathematikundihrerGrenzgebiete.3.Folge/ASeriesofModernSurveys inMathematics ISBN978-3-319-61057-3 ISBN978-3-319-61058-0(eBook) DOI10.1007/978-3-319-61058-0 LibraryofCongressControlNumber:2017953831 Mathematics Subject Classification: Primary 32E10, 32H02, 32L05, 32M12, 32M17, Secondary 14M17,58D15 ©Springer-VerlagBerlinHeidelberg2011 ©SpringerInternationalPublishingAG2017 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade. Printedonacid-freepaper ThisSpringerimprintispublishedbySpringerNature TheregisteredcompanyisSpringerInternationalPublishingAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Preface to the Second Edition Themainstimulusforpreparingthisneweditionwasthelivelydevelopmentofthe subjectsincethepublicationofthefirsteditionin2011.Ihavetriedtoincorporate the new results as much as possible, although some of them could only be men- tioned or sketched due to their complexity and space limitations. For the sake of consistencyandcompleteness,Ialsoaddedsomematerialpredating2011thatwas notincludedinthefirsteditionduetoaself-imposedlimitationonthesize.Onthe otherhand,someinessentialmaterialhasbeenremoved,soneithereditionisasub- setoftheotherone.Needlesstosay,Ieliminatedtheerrors,gapsandinconsistencies whichhadbeenfound. Letmenowdescribethemainchangesinthisedition. Chapter2,whichsummarizesthebasicSteinmanifoldtheory,hasbeenslightly expanded.Inparticular,Iaddedthestatementandproofoftheparametricversionof theCartan-Oka-WeiltheoreminSect.2.8.Althoughtheseextensionsfolloweasily from the classical theory, it seems impossible to find them in the literature. Since theyareveryimportantinOkatheory,Idecidedtoincludethemhere. Chapter 3 is basically unchanged, except for Sect. 3.12 where some important recentworksarementioned. In the theory of holomorphic automorphisms, discussed in Chap. 4, major new developmentsoccurredinthestudyofthedensitypropertyofSteinmanifoldsand affine algebraic manifolds, and of geometric structures on them; Sect. 4.10 has been rewritten accordingly. The class of complex manifolds called long Cn’s is now somewhat better understood, and these new developments are presented in Sect.4.21.ThereareseveralotherimprovementsandnewresultsinChap.4which are too numerous to mention here. This beautiful and very useful subject would clearlydeserveabookinitsownright. Chapters 5 and 6, which constitute the core of the book, received some topical improvements,minorrearrangements,andadditionsofnewlydiscoveredexamples ofOkamanifolds.ThepresentationoftherelativeOkaprincipleon1-convexman- ifoldsinSect.6.13reflectsnewdevelopmentswhichcompletetheoutlineofproof giveninthefirstedition.IaddedSect.6.14wherearelativeOkaprincipleforsec- tionsofbranchedholomorphicmapsispresented.Thisresultwasoriginallyproved v vi PrefacetotheSecondEdition in2003,butwasnotincludedinthefirstedition.Inthemeantimenewapplications havebeenfound,twoofwhichareincludedhere.Thisresultmayhavethepotential ofextendingtheOkaprincipleforOkapairsofsheavesduetoForsterandRamspott; however,furtherinvestigationsareneeded. Chapter 7 is new. Sections 7.1–7.2 contain a discussion of the known relation- shipsbetweentheOkapropertyandseveralotherholomorphicflexibilityproperties (bywhichImeananti-hyperbolicityproperties)ofcomplexmanifolds.Section7.3 bringsasummaryofwhatweknowaboutwhichcompactcomplexsurfacesareOka manifolds. There is an expanded version of Sect. 7.4 on Oka maps. In Sect. 7.5, which was contributed by Finnur Lárusson, the reader can find a homotopy theo- retic point of view on Oka theory. The final Sect. 7.6 contains miscellaneous new resultsandacollectionofopenproblems. Chapters 8–10 roughly correspond to Chaps. 7–9 in the first edition. Sec- tions8.10–8.13arenew,althoughthematerialpredates2011.Section9.1hasbeen expanded and moved here from the last chapter. This enabled me to simplify the topologicalaspectsofproofsofsomeofthesubsequentresults.Section9.7offersa newandconsiderablysimplerproofofthesplittinglemmaforbiholomorphicmaps closetotheidentityonCartanpairs,alsoincomplexspaceswithsingularities.Be- sides its original use in the construction of holomorphic submersions from Stein manifolds,manynewapplicationsofthisgluingtechniquehavebeenfound,espe- ciallytotheproblemofexposingboundarypointsofdomains.Theseresultsplaya majorroleinthestudyoftheso-calledsqueezingfunctionandoftheboundarybe- haviorofinvariantmetrics.IhaverewrittenSect.9.8inlightofthenewresultscon- cerningtheexistenceofproperholomorphicimmersionsandembeddingsofStein manifoldsintoSteinmanifoldswiththe(volume)densityproperty.Also,thereisa newapplicationtotheHodgetheoryofq-completemanifolds.Section9.11contains several new recent results on the existence of proper holomorphic embeddings of openRiemannsurfacesintotheaffineplaneC2.Inparticular,ithasbeenprovedby Woldandtheauthorthananycircularplanardomain(possiblyinfinitelyconnected) withatmostfinitelymanypuncturesembedsproperlyholomorphicallyintoC2. The changes in Chap. 10 pertain mainly to the soft Oka principle in Sects. 10.9–10.11. A more complete presentation of this subject is now available in the book by Cieliebak and Eliashberg, From Stein to Weinstein and back, pub- lishedin2012.Theimprovementswhichconcernthistextaredescribedattherele- vantplaces,buttheoverallpresentationandtheproofshavenotbeenchangedsince the interested reader can consult their book. These improvements mainly pertain tocomplexdimension2wherethereis anabundanceofexoticSteinstructureson surfacesofsuitabletopologicaltype. TheOkaprincipleforsectionsofholomorphicmapsoverSteinspaces,presented inChaps.5and6,hasreachedamaturestageandhasessentiallybeenaxiomatized. Forstratifiedfibrebundles,consideredinChap.5,therelevantconditionimplying theOkaprincipleisthatthefibressatisfytheConvexApproximationProperty,CAP, characterizingtheclassofOkamanifoldswhichbecameoneofthecentralnotions ofthetheory.Forholomorphicsubmersions,therelevantconditionistheHomotopy ApproximationProperty,HAP,forsectionsoversmallopensetsinthebase.Thegist PrefacetotheSecondEdition vii oftheproofsinthesetwochapters,whichfollowideasofGrauert,HenkinandLeit- erer,andGromov,isthattheselocalconditionsimplytheOkaprincipleforglobal sections. This reduces the problem to finding geometric conditions implying CAP or HAP. The notions of ellipticity and subellipticity continue to play an important role,althoughsomefinerconditionssuchasholomorphicflexibilityandthedensity propertyhavebecomemajornewsourcesofexamples.Apossiblenextstepwould betoaxiomatizetherelevantgeometricconditionsonthesourceside;hereweare talking of Cartan pairs and C-strings in Stein spaces. This has the potential of ex- tendingtheOkaprinciplewaybeyonditscurrentscope.Ileavethistaskforanother dayandanotherperson. I wish to thank the numerous colleagues who have contributed to this book by collaboration, discussions, or simply by pointing out the deficiencies and propos- ing improvements. First and foremost, I thank Finnur Lárusson for having con- tributedSect.7.5andforhislivelyinterestandcollaborationonthissubject,Frank Kutzschebauchforhavingexplainedtomethedevelopmentsconcerningtheflexibil- itypropertiesofaffinealgebraicandSteinmanifoldsandfornumerousdiscussions ofothertopics,andthecollaboratorsandcolleagueswhoseideasandcommunica- tionscontributedinanessentialwaytothistext:RafaelAndrist,LukaBocThaler, Gregery Buzzard, Barbara Drinovec Drnovšek, Josip Globevnik, Jürgen Leiterer, Erik Løw, Takeo Ohsawa, Jasna Prezelj, Tyson Ritter, Jean-Pierre Rosay, Marko Slapar,DrorVarolin,JörgWinkelmann,andErlendF.Wold.IsincerelythankPeter Landweberwhocarefullyreadthedraftandproposednumerousimprovements. A major part of the preparationof this editionwas made during my visit at the Centre for Advanced Study in Oslo, Norway, as a Fellow of the program Several ComplexVariablesandComplexDynamicsduringFall2016.IwishtothankErlend F.WoldandBeritStensønesfortheirkindinvitationandtheinstitutionforexcellent workingconditions. Finally, my sincere thanks to the staff of Springer-Verlag for their professional workinthetechnicalpreparationofthebook. Ljubljana FrancForstnericˇ May1,2017 Preface to the First Edition ThisbookisanattempttopresentacoherentaccountofOkatheory,fromtheclas- sicalOka-GrauerttheoryoriginatingintheworksofKiyoshiOkaandHansGrauert tothecontemporarydevelopmentsinitiatedbyMikhaelGromov. AtthecoreofOkatheoryliestheheuristicOkaprinciple,atermcoinedbyJean- PierreSerrein1951:AnalyticproblemsonSteinmanifoldsadmitanalyticsolutions if there are no topological obstructions. The Cartan-Serre Theorems A and B are primary examples. The main exponent of the classical Oka-Grauert theory is the equivalence between topological and holomorphic classification of principal fiber bundlesoverSteinspaces.OntheinterfacewithaffinealgebraicgeometrytheOka principle holds only rarely, while in projective geometry we have Serre’s GAGA principle, the equivalence of analytic and algebraic coherent sheaves on compact projectivealgebraicvarieties.Insmoothgeometrythereistheanalogoushomotopy principleoriginatingintheSmale-Hirschhomotopyclassificationofsmoothimmer- sions. ModernOkatheoryfocusesonthosepropertiesofacomplexmanifoldY which ensure that any continuous map X→Y from a Stein source space X can be de- formed to a holomorphic map; the same property is considered for sections of a holomorphic submersion Y →X. By including the Runge approximation and the CartanextensionconditiononeobtainsseveralostensiblydifferentOkaproperties. Gromov’smainresultisthatageometricconditioncalledellipticity—theexistence of a dominating holomorphic spray on Y—implies all forms of the Oka principle formapsorsectionsX→Y.Subsequentresearchculminatedintheresultthatall OkapropertiesofacomplexmanifoldY areequivalenttothefollowingRungeap- proximationproperty: AcomplexmanifoldY issaidtobeanOkamanifoldifeveryholomorphicmap f: K →Y from a neighborhood of a compact convex set K ⊂Cn to Y can be approximateduniformlyonK byentiremapsCn→Y. TherelatedconceptofanOkamappertainstotheOkaprincipleforliftingholo- morphicmapsfromSteinsources.TheclassofOkamanifoldsisdualtotheclassof Steinmanifoldsinasensethatcanbemadeprecisebymeansofabstracthomotopy ix x PrefacetotheFirstEdition theory.FinnurLárussonconstructedamodelcategorycontainingallcomplexman- ifolds in which Stein manifolds are cofibrant, Oka manifolds are fibrant, and Oka mapsarefibrations.Thismeansthat Steinmanifoldsarethenaturalsourcesofholomorphicmaps,whileOkamani- foldsarethenaturaltargets. Oka manifolds seem to be few and special; in particular, no compact complex manifold of Kodaira general type is Oka. However, special and highly symmetric objectsareoftenmoreinterestingthanaveragegenericones. A few words about the content. Chapter 1 contains some preparatory material, and Chap. 2 is a brief survey of Stein space theory. In Chap. 3 we construct open SteinneighborhoodsofcertaintypesofsetsincomplexspacesthatareusedinOka theory. Chapter 4 contains an exposition of the theory of holomorphic automor- phismsofEuclideanspacesandofthedensityproperty,asubjectcloselyintertwined withourmaintheme.InChap.5wedevelopOkatheoryforstratifiedfiberbundles withOkafibers(thisincludestheclassicalOka-Grauerttheory),andinChap.6we treat Oka-Gromov theory for stratified subelliptic submersions over Stein spaces. Chapters7and8containapplicationsrangingfromclassicaltotherecentones.In Chap.8wepresentresultsonregularholomorphicmapsofSteinmanifolds;high- lightsincludetheoptimalembeddingtheoremsforSteinmanifoldsandSteinspaces, properholomorphicembeddingsofsomeborderedRiemannsurfacesinto C2,and the construction of noncritical holomorphic functions, submersions and foliations onSteinmanifolds.InChap.9weexploreimplicationsofSeiberg-Wittentheoryfor the geometry of Stein surface, and we present the Eliashberg-Gompf construction ofSteinstructuresonmanifoldswithsuitablehandlebodydecomposition.Apartof thisstoryistheSoftOkaprinciple. This book would not have existed without my collaboration with Jasna Prezelj who explained parts of Gromov’s work on the Oka principle in her dissertation (University of Ljubljana, 2000). Josip Globevnik suggested that we look into this subject, while many years earlier Edgar Lee Stout proposed that I study the Oka- Grauert principle. My very special thanks go to the colleagues who read parts of the text and offered suggestions for improvements: Barbara Drinovec-Drnovšek, FrankKutzschebauch,FinnurLárusson,TakeoOhsawa,MarkoSlapar,andErlend FornæssWold.IamgratefultoReinholdRemmertforhisinvitationtowriteavol- ume for the Ergebnisse series, and to the staff of Springer-Verlag for their profes- sionalhelp. Finally,IthankAngelaGheorghiuforallthoseincomparablybeautifularias,and myfamilyfortheirpatience. Ljubljana FrancForstnericˇ May1,2011 Contents PartI SteinManifolds 1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.1 ComplexManifoldsandHolomorphicMaps. . . . . . . . . . . 3 1.2 ExamplesofComplexManifolds. . . . . . . . . . . . . . . . . 7 1.3 SubvarietiesandComplexSpaces . . . . . . . . . . . . . . . . 10 1.4 HolomorphicFibreBundles . . . . . . . . . . . . . . . . . . . 13 1.5 HolomorphicVectorBundles . . . . . . . . . . . . . . . . . . . 16 1.6 TheTangentBundle . . . . . . . . . . . . . . . . . . . . . . . 21 1.7 TheCotangentBundleandDifferentialForms . . . . . . . . . . 24 1.8 PlurisubharmonicFunctionsandtheLeviForm . . . . . . . . . 27 1.9 VectorFields,FlowsandFoliations . . . . . . . . . . . . . . . 32 1.10 WhatistheH-Principle? . . . . . . . . . . . . . . . . . . . . . 39 2 SteinManifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 2.1 DomainsofHolomorphy . . . . . . . . . . . . . . . . . . . . . 45 2.2 SteinManifoldsandSteinSpaces . . . . . . . . . . . . . . . . 49 2.3 HolomorphicConvexityandtheOka-WeilTheorem . . . . . . 50 2.4 EmbeddingSteinManifoldsintoEuclideanSpaces . . . . . . . 51 2.5 CharacterizationbyPlurisubharmonicFunctions . . . . . . . . 52 2.6 Cartan-SerreTheoremsA&B . . . . . . . . . . . . . . . . . . 54 2.7 The∂-Problem . . . . . . . . . . . . . . . . . . . . . . . . . . 58 2.8 Cartan-Oka-WeilTheoremwithParameters . . . . . . . . . . . 59 3 SteinNeighborhoodsandApproximation . . . . . . . . . . . . . . 65 3.1 Q-CompleteNeighborhoods . . . . . . . . . . . . . . . . . . . 65 3.2 SteinNeighborhoodsofSteinSubvarieties. . . . . . . . . . . . 70 3.3 HolomorphicRetractionsontoSteinSubmanifolds . . . . . . . 73 3.4 ASemiglobalHolomorphicExtensionTheorem . . . . . . . . . 75 3.5 ApproximationonTotallyRealSubmanifolds . . . . . . . . . . 79 3.6 SteinNeighborhoodsofLaminatedSets . . . . . . . . . . . . . 82 3.7 SteinCompactswithTotallyRealHandles. . . . . . . . . . . . 86 xi

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.