Steering Bell-diagonal states Quan Quan1, Huangjun Zhu2,3*, Si-Yuan Liu1‡, Shao-Ming Fei4,5, Heng Fan6,7,1, and Wen-Li Yang1,8 1InstituteofModernPhysics,NorthwestUniversity,Xi’an710069,China 2InstituteforTheoreticalPhysics,UniversityofCologne,Cologne50937,Germany 3PerimeterInstituteforTheoreticalPhysics,Waterloo,OntarioN2L2Y5,Canada 4SchoolofMathematicalSciences,CapitalNormalUniversity,Beijing100048,China 6 5Max-Planck-InstituteforMathematicsintheSciences,Leipzig04103,Germany 1 6InstituteofPhysics,ChineseAcademyofSciences,Beijing 100190,China 0 2 7CollaborativeInnovationCenterofQuantumMatter,Beijing100190,China 8CenterforMathematicsandInformationInterdisciplinarySciences,Beijing,100048,China b e *Correspondingauthor: [email protected],[email protected] F ‡[email protected] 5 2 ABSTRACT ] h p We investigate the steerability of two-qubit Bell-diagonal states under projective measurements by the steering party. In - thesimplestnontrivialscenariooftwoprojectivemeasurements,wesolvethisproblemcompletelybyvirtueoftheconnection t n betweenthesteeringproblemandthejoint-measurementproblem.Anecessaryandsufficientcriterionisderivedtogetherwith a asimplegeometricalinterpretation. OurstudyshowsthataBell-diagonalstateissteerablebytwoprojectivemeasurements u iffitviolatestheClauser-Horne-Shimony-Holt(CHSH)inequality,insharpcontrastwiththestricthierarchyexpectedbetween q steering and Bell nonlocality. We also introduce a steering measure and clarify its connections with concurrence and the [ volumeofthesteeringellipsoid. Inparticular,wedeterminethemaximalconcurrenceandellipsoidvolumeofBell-diagonal 2 statesthatarenotsteerablebytwoprojectivemeasurements.Finally,weexplorethesteerabilityofBell-diagonalstatesunder v threeprojectivemeasurements. Asimplesufficientcriterionisderived,whichcandetectthesteerabilityofmanystatesthat 3 are not steerableby two projectivemeasurements. Our studyoffersvaluableinsighton steeringof Bell-diagonalstates as 1 wellastheconnectionsbetweenentanglement,steering,andBellnonlocality. 1 0 0 . Introduction 1 0 Einstein-Podolsky-Rosen(EPR) steering,1 as noticed bySchro¨dinger,2 is an intermediatetypeof nonlocalcorrelationsthat 6 1 sitsbetweenentanglementandBellnonlocality.Intheframeworkofmodernquantuminformationtheory,this“spookyaction” : canbedescribedasataskofentanglementverificationwithanuntrustedparty,asexplainedbyWisemanetal. 3,4 Ithinges v onthequestionofwhetherAlicecanconvinceBobthattheyshareanentangledstate,despitethefactthatBobdoesnottrust i X Alice. In order to achieve this task, Alice needs to change Bob’s state remotely in a way that would be impossible if they r sharedclassicalcorrelationsonly. ContrarytoentanglementandBellnonlocality,steeringfeaturesafundamentalasymmetry a becausethetwoobserversplaydifferentrolesinthesteeringtest.3–5 Recently,growingattentionhasbeendirectedtosteering because of its potential applications in quantum information processing, such as quantum key distribution (QKD),6 secure teleportation,7andentanglementassistedsubchanneldiscrimination.8 Two basic questions concerning steering are its detection and quantification. One approach for detecting steering is to provetheimpossibilityofconstructinganynon-steeringmodel.3,4 Apracticalalternativeistodemonstratetheviolationsof varioussteeringinequalities.9–14 ThefirststeeringinequalitywasderivedbyReidin1989,9whichisapplicabletocontinuous variablesystems,asconsideredinEPR’soriginalargument. Generaltheoryofexperimentalsteeringcriteriaweredeveloped in Ref.,10 followed by many other works.11–14 In line with theoretical development, a loophole-free steering experiment wasreportedinRef.,15 andone-waysteeringwasdemonstratedinRef.16 Inaddition,steeringdetectionbasedonall-versus- nothingargumentwasproposedinRefs.,17,18alongwithanexperimentaldemonstration.19 Meanwhile,steeringquantification hasreceivedincreasingattentioninthepastfewyears,8,20,21whichleadstoseveralusefulsteeringmeasures,suchassteerable weight20andsteeringrobustness.8 Despitethesefruitfulachievements,steeringdetectionandquantificationhaveremainedchallengingtasks,andmanybasic questionsarepoorlyunderstood.Forexample,noconclusivecriterionisknownfordeterminingthesteerabilityofgenerictwo- qubitstatesexceptforWernerstates.3,4 EvenforBell-diagonalstates, onlya fewpartialresultsareknownconcerningtheir steerability,includingseveralnecessarycriteriaandseveralsufficientcriteria;22–24furtherprogressesarethushighlydesirable. Inaddition,manyresultsintheliteraturerelyheavilyonnumericalcalculationandlackintuitivepictures. Analyticalresults arequiteraresincedifficultoptimizationproblemsareofteninvolvedinsolvingsteeringproblems. Inthiswork,weinvestigatethesteerabilityoftwo-qubitBell-diagonalstatesunderprojectivemeasurementsbythesteering party.Thesestatesareappealingtoboththeoreticalandexperimentalstudiessincetheyhavearelativelysimplestructureand are particularly suitable for illustrating ideas and cultivating intuition. In addition, generic two-qubit states can be turned intoBell-diagonalstatesbyinvertiblestochasticlocaloperationandclassicalcommunication(SLOCC),25soanyprogresson Bell-diagonalstatesmaypotentiallyhelpunderstandtwo-qubitstatesingeneral. WefirstconsiderthesteerabilityofBell-diagonalstatesunderthesimplestnontrivialmeasurementsettingonthesteering party, that is, two projective measurements. We solve this problem completely by virtue of the connection between the steering problem and the joint-measurement problem.14,26–28 In particular, we derive a necessary and sufficient steering criterion analytically and provide a simple geometricalinterpretation. Such analyticalresults are valuable but quite rare in the literature on steering. Our study leads to a measure of steering, which turns out to equal the maximal violation of the Clauser-Horne-Shimony-Holt(CHSH)inequality.29,30 Asanimplication,aBell-diagonalstateissteerablebytwoprojective measurementsiffitviolatestheCHSHinequality.Thisconclusionpresentsasharpcontrastwiththeobservationthatsteering isnecessarybutusuallynotsufficientforBellnonlocality.3,4,31 Ontheotherhand,inthespecialcaseofrank-2Bell-diagonal states,entanglementissufficienttoguaranteesteeringandBellnonlocality,inlinewiththespiritofGisin’stheorem.32,33 The relationsbetweenoursteeringmeasureandconcurrenceaswellasthevolumeofthesteeringellipsoidarethenclarified.Quite surprisingly,thesteeringmeasureandthevolumeofthesteeringellipsoidseemtodisplayoppositebehaviorsforstateswith givenconcurrence. Finally,weexplorethesteerabilityofBell-diagonalstatesunderthreeprojectivemeasurements. Althoughsuchproblems are generallyvery difficultto address, we derivea nontrivialsufficientcriterion, which also hasa simple geometricalinter- pretation. Thiscriterioncandetectthesteerabilityofmanystatesthatarenotsteerablebytwoprojectivemeasurements. The relationbetweenentanglementandsteeringinthisscenarioisalsoclarified. Setting up the stage Consider two remote parties, Alice and Bob, who share a bipartite quantum state r with reduced states r and r for the A B two parties, respectively. Alice canperforma collectionoflocalmeasurementsascharacterizedbya collectionofpositive- operator-valued measures (POVMs) A , where x labels the POVM and a labels the outcome in each POVM. Recall ax a,x thata POVM A is composedof{a s|e}t ofpositiveoperatorsthatsum up to the identity,thatis, (cid:229) A =I. The whole ax a a ax collection of P{OV|M}s A is called a measurement assemblage. If Alice performsthe measurement|x and obtains the ax a,x outcomea,thenBob’s{sub|n}ormalizedreducedstateisgivenbyr =tr [(A I)r ]. Notethat(cid:229) r =r isindependent ax A ax a ax B ofthemeasurementchosenbyAlice,asrequiredbythenosignali|ngprinciple|.⊗Thesetofsubnormaliz|edstates r fora ax a givenmeasurementxisanensembleforr ,andthewholecollectionofensembles r isastateassemblag{e.12| } B ax a,x Thestateassemblage r isunsteerableifthereexistsalocalhiddenstate({LH|S})model:3,4,14,26–28 ax a,x { | } r ax=(cid:229) pr (ax,l )s l , (1) | l | where pr (ax,l ) 0,(cid:229) apr (ax,l )=1,ands l areacollectionofsubnormalizedstatesthatsumuptor B andthusforman ensemblefo|rr .≥Thismodelm| eansthatBobcan interprethisconditionalstates r as comingfromthe preexistingstates B ax s l ,whereonlytheprobabilitiesarechangedduetotheknowledgeofAlice’smeasur|ementsandoutcomes. Thesteeringproblemiscloselyrelatedtothejoint-measurementproblem. A measurementassemblage A iscom- ax a,x patibleorjointlymeasurable26–28,34,35 ifthereexistaPOVM Gl andprobabilitiespA(ax,l )with(cid:229) apA({ax,|l})=1such { } | | that Aax=(cid:229) pA(ax,l )Gl . (2) | l | Physically,thismeansthatallthemeasurementsintheassemblagecanbemeasuredjointlybyperformingthemeasurement Gl l and post processing the measurement data. According to the above discussion, determining the compatibility of a { } measurement assemblage is mathematically equivalent to determining the unsteerability of a state assemblage. Therefore, manycompatibilityproblemscanbetranslatedintosteeringproblems,andviceversa.14,26–28 Thisobservationwillplayan importantroleinthepresentstudy. When r is of full rank, the state assemblage r for Bob can be turned into a measurement assemblage as fol- B ax a,x lows,14,28 { | } Bax=r B−1/2r axr B−1/2. (3) | | 2/12 Notethatthesetofoperators B foragivenxformsaPOVM,whichisreferredtoasBob’ssteering-equivalentobservable ax a (or POVM).28 The measurem{en|t}assemblage B is compatible iff the state assemblage r is unsteerable. For ax a,x ax a,x erexaasmonpilne,gi.fTrhai|xs=ob(cid:229)selrvpa(taio|xn,lsu)gsgle,stthseanfBruai|xtf=ul{(cid:229)aplpp|ro(}aa|cxh,lfo)rGulndweirtshtaGnldi=ngrsB−te1e/r2isnlgrvB−ia1/s2t;eethriencgo-{neqvue|rivs}ealfeonltloowbssefrrvoambltehse.same Results SteerBell-diagonalstatesbyprojectivemeasurements Anytwo-qubitstatecanbewritteninthefollowingform r = 1(I I+aaa sss I+I bbb sss + (cid:229) 3 t s s ), (4) ij i j 4 ⊗ · ⊗ ⊗ · ⊗ i,j=1 wheres for j=1,2,3arethreePaulimatrices,sss isthevectorcomposedofthesePaulimatrices,aaaandbbbaretheBlochvectors j associatedwiththereducedstatesofAliceandBob,respectively,andT =(t )isthecorrelationmatrix. Thetwo-qubitstate ij isaBell-diagonalstateiffaaa=bbb=000,36inwhichcasewehave r = 1(I I+ (cid:229) 3 t s s ), (5) ij i j 4 ⊗ ⊗ i,j=1 withtwocompletelymixedmarginals,thatis, r =r =I/2. Bell-diagonalstatesareofspecialinterestbecausetheyhave A B a simple structure and are thus a good starting pointfor understandingstates with more complexstructure. In addition, all two-qubitstatesexceptforasetofmeasurezerocanbeturnedintoBell-diagonalstatesbyinvertibleSLOCC.25 Withasuitablelocalunitarytransformation,thecorrelationmatrixT in(5)canbeturnedintodiagonalform,sothat r = 1(I I+(cid:229) 3 t s s ). (6) j j j 4 ⊗ ⊗ j=1 As an implicationofthisobservation,a Bell-diagonalstate is steerable byonepartyiff it issteerable bythe otherparty, so thereisnoone-waysteering5forBell-diagonalstates. Itdoesnotmatterwhichpartyservesasthesteeringpartyinthepresent study. Inthecaseofaqubit,anyprojectivemeasurement A withtwooutcomes isuniquelydeterminedbyaunitvector x eee on the Bloch sphere as A =(I eee sss )/2. If A{lic±e| }and Bob share the Be±ll-diagonal state (5) and Alice performs x x x the projectivemeasurementd±e|termine±dby·eee , then the two outcomeswill occur with the same probability of 1/2, and the x subnormalizedreducedstatesofBobaregivenbyr =[I (TTeee ) sss ]/4.Accordingly,Bob’ssteering-equivalentobservable x x takesontheform ±| ± · 1 B = (I rrr sss ), rrr =TTeee . (7) ±|x 2 ± x· x x Notethatthisobservableisuniquelycharacterizedbythesubnormalizedvectorrrr , whichdeterminesanunbiasednoisy(or x unsharp)vonNeumannobservable.Here“unbiased”meansthattr(B )=tr(B )=1. Inthisway,thecorrelationmatrixT +x x inducesamapfromprojectivemeasurementsofAlicetonoisyprojecti|vemeasu−re|mentsofBob.AlicecansteerBob’ssystem usingthemeasurementassemblage A iffthesetofnoisyprojectivemeasurements B isincompatible. x x x x Toseethegeometricmeaningof{the±m| }apinducedbyT,notethattheendpointofrrr lie{so±n|a}nellipsoidE centeredatorigin x and characterizedby thesymmetricmatrixTTT: the threeeigenvaluesof TTT are the squaresofthe threesemiaxes(some ofwhichmayvanish),andtheeigenvectorsdeterminetheorientationsofthesesemiaxes;see Fig.1. Thisellipsoidencodes thesetofpotentialnoisyprojectivemeasurementsofBobinducedbyprojectivemeasurementsofAlice. Geometrically,this ellipsoid is identicalto the steeringellipsoid introducedin Refs.,23,37,38 whichencodesthe setof states to whichAlice can steerBob’ssystem. Itisalsoreferredtoasthesteeringellipsoidherealthoughthemeaningisslightlydifferentfromthatin Ref.23,37,38 Sinceitsdiscovery,thesteeringellipsoidhasplayedanimportantroleinunderstandingvariousfeaturespertinent to entanglement and steering.23,24,37–39 To appreciate its significance in the current context, note that the steerability of a Bell-diagonalstatebythemeasurementassemblage A iscompletelydeterminedbythesetofvectorsrrr onthesteering x x x ellipsoid.Moreover,inseveralcasesofprimaryinter{est±to| }us,thesteerabilitycanbedeterminedbypurelygeometricalmeans, asweshallseeshortly. 3/12 Figure1. ThesteeringellipsoidsofthreeBell-diagonalstates. TheellipsoidofaBellstate(left)coincideswiththeBloch sphere;theellipsoidofarank-2Bell-diagonalstateoranedgestate(middle)isrotationallysymmetricwiththelargest semiaxisequaltotheradiusoftheBlochsphere;theellipsoidofaWernerstate(right)isaspherecontainedintheBloch sphere. Steeringbytwoprojectivemeasurements InthissectionwederiveanecessaryandsufficientcriteriononthesteerabilityofaBell-diagonalstateundertwoprojective measurements. We also introduce a steering measure and illustrate its geometrical meaning. Our study shows that a Bell- diagonalstate is steerable by two projectivemeasurementsiff it violatesthe CHSH inequality. Furthermore,we clarifythe relations between entanglement, steering, and Bell nonlocality by deriving tight inequalities between the following three measures:theconcurrence,thesteeringmeasure,andthevolumeofthesteeringellipsoid. Theorem 1. A Bell-diagonal state with correlation matrix T is steerable by two projective measurements iff l +l >1, 1 2 wherel ,l arethetwolargesteigenvaluesofTTT. 1 2 Proof. SupposeAliceperformstwoprojectivemeasurements A 2 = (I eee sss )/2 2 .ThenBob’ssteeringequivalent observablesaregivenby B 2 = (I rrr sss )/2 2 ,wh{ere±rrr|x}=x=T1 Teee{,a±sspxe·cified}inx=(17). AccordingtoRef.40 (seealso Refs.35,41–43),thetwoob{ser±va|xb}lxe=s1are{com±paxti·bleiff}x=1 x x rrr +rrr + rrr rrr 2. (8) 1 2 1 2 | | | − |≤ Notethatrrr andrrr aretwovectorsonthesteeringellipsoid,andthelefthandsideoftheinequalityishalfoftheperimeter 1 2 ofaparallelograminscribedonthesteeringellipsoid,withtheplanespannedbytheparallelogrampassingthecentreofthe ellipsoid.SotheBell-diagonalstateissteerableiffthemaximalperimeterofsuchparallelogramsislargerthan4.Interestingly, themaximumcanbederivedwithasimilarmethodusedforderivingthemaximalviolationoftheCHSHinequality,30,44 max rrr1+rrr2 + rrr1 rrr2 =max TT(eee111+eee222) + TT(eee111 eee222) = max 2cosc TTccc +2sinc TTccc⊥ eee111,eee222{| | | − |} eee111,eee222{| | | − |} c ,ccc,ccc⊥{ | | | |} =2mccc,cccaxq|TTccc|2+|TTccc⊥|2=2mccc,cccaxpcccTTTTccc+ccc⊥TTTTccc⊥=2pl 1+l 2, (9) ⊥ ⊥ where2c istheanglespannedbyeee andeee ;cccandccc arethedirectionvectorsof(eee +eee )and(eee eee ),respectively,which 1 2 ⊥ 111 222 111 222 − arealwaysorthogonal. Herethemaximuminthelaststepisattainedwhencccandccc spanthesamespaceasthatspannedby ⊥ thetwoeigenvectorsassociatedwiththetwolargesteigenvaluesofTTT. Themaximumovereee andeee canbeattainedwhen 1 2 thetwovectorsareeigenvectorscorrespondingtothetwolargesteigenvaluesofTTT. TheBell-diagonalstateissteerableby twoprojectivemeasurementsiff2√l +l >2,thatis,l +l >1. 1 2 1 2 The choicesof ccc andccc thatmaximize (9) are highlynotunique. Therefore,the optimalprojectivemeasurementsthat ⊥ Aliceneedstoperformarealsonotunique.Althoughtheoptimalmeasurementscanalwaysbechosentobemutuallyunbiased asshownintheaboveproof,itisusuallynotnecessarytodoso. Asanexample,considertheBell-diagonalstatecharacterized bythecorrelationmatrixT =diag(t ,t ,t )witht t t . Onechoiceofcccandccc readsccc=(1,0,0)andccc =(0,1,0), 1 2 3 1 2 3 ⊥ ⊥ ≥ ≥| | whichleadstotheoptimalmeasurementdirectionseee =(t ,t ,0)/ t2+t2 andeee =(t , t ,0)/ t2+t2. Notethateee and 1 1 2 q1 2 2 1 −2 q1 2 1 eee arenotorthogonalingeneral,sothecorrespondingprojectivemeasurementsarenotmutuallyunbiased. 2 The proof of Theorem 1 also suggests a steering measure of a Bell-diagonal state under two projective measurements, namely,S:=2√l +l . Thismeasurehasasimplegeometricalmeaning: (S/2)2 isequaltothesumofsquaresofthetwo 1 2 largestsemiaxesofthesteeringellipsoid.ABell-diagonalstateissteerableinthisscenarioiffS>2. Themaximum2√2ofS isattainedwhenl =l =1,whichcorrespondstoaBellstate. Toobtainanormalizedmeasureofsteering,wemayoptfor 1 2 4/12 max 0,(S 2)/(2√2 2) . AccordingtoRef.,30themaximalviolationoftheCHSHinequalitybytheBell-diagonalstateis equa{lto2√−l +l (c−f.Re}f.45 forageometricalinterpretation),whichcoincideswiththesteeringmeasureSintroducedhere. 1 2 ThisobservationhasanimportantimplicationfortherelationbetweensteeringandBellnonlocality. Corollary1. ABell-diagonalstateissteerablebytwoprojectivemeasurementsiffitviolatestheCHSHinequality. ToclarifythegeometricmeaningofTheorem1andthesteeringmeasureS,itisconvenienttochooseaconcreteBellbasis. Hereweshalladoptthefollowingchoice,46 1 b mn = (0,n +( 1)m 1,1 n ), m ,n =0,1. (10) | i √2 | i − | ⊕ i Notethat b isthesinglet.ThankstothechoiceoftheBellbasis,thecorrelationmatricesofthefourBellstatesarediagonal 11 asgivenb|ydiiag(( 1)m , ( 1)m +n ,( 1)n ). Uptoalocalunitarytransformation,anyBell-diagonalstateisamixtureofthe − − − − fourBellstates. Withoutlossofgenerality,wecanfocusonBell-diagonalstatesofthisform,whosecorrelationmatricesare alsodiagonal,asin(6). Figure2. GeometricillustrationofBell-diagonalstatessteerablebytwoprojectivemeasurements.(left)Theregular tetrahedronrepresentsthesetofBell-diagonalstates. Theoctahedroningreenrepresentsthesetofseparablestates. Theblue regionsrepresentthosestatesthataresteerablebytwoprojectivemeasurements.(right)Afaceoftheregulartetrahedron whichrepresentsthesetofrank-3Bell-diagonalstates. Geometrically, the set of Bell-diagonal states forms a regular tetrahedron, whose vertices correspond to the four Bell states.36,46 ThesetofseparableBell-diagonalstatesformsanoctahedroninsidethetetrahedron.36,46 Thetetrahedroncanbe embeddedintoacubewhosesidesarealignedwiththethreeaxeslabelledbyt ,t ,t ,asshowninFig.2. Inthisway,aBell- 1 2 3 diagonalstateisuniquelyspecifiedbyitsthreecoordinates(t ,t ,t ). ThehalfsteeringmeasureS/2ofthisBell-diagonalstate 1 2 3 isequaltothemaximumover t2+t2, t2+t2,and t2+t2,whichisequaltothemaximallengthofthethreeprojections q1 2 q2 3 q3 1 of (t ,t ,t ) onto the three coordinateplanes. Note that S is convexint ,t ,t and definesa normin the three-dimensional 1 2 3 1 2 3 vector space that accommodates Bell-diagonal states. Each level surface of this norm is determined by three orthogonal cylindersofequalradius.Inparticular,thesetofunsteerableBell-diagonalstates(determinedbythelevelsurfacewithS=2) iscontainedintheintersectionofthethreesolidcylindersspecifiedbythefollowingthreeinequalities,respectively, t2+t2 1, t2+t2 1, t2+t2 1. (11) 1 2 ≤ 2 3 ≤ 3 1 ≤ In the rest of this section we clarify the relations between the following three measures: the concurrence, the steering measureS,andthe volumeof thesteeringellipsoid. SinceS isequalto themaximalviolationof theCHSH inequality,our discussionisalsoofinteresttostudyingBellnonlocality. Recallthatatwo-qubitstateisentanglediffithasnonzeroconcurrenceandthattheconcurrenceofaBell-diagonalstate is givenbyC=max 0,2p 1 , where p is the maximaleigenvalueof the state.47 Givena Bell-diagonalstate with max max correlationmatrixT,{the norm−aliz}edvolumeV of the steeringellipsoid isdefinedasV := det(T).23 IfT isdiagonal, say | | T =diag(t ,t ,t ), thenV = t t t . Theconstraints t 1for j=1,2,3implythat0 V 1,wheretheupperboundis 1 2 3 12 3 j | | | |≤ ≤ ≤ saturatedonlyforBellstates. 5/12 Figure3. RelationsbetweenthreeentanglementandsteeringmeasuresforBell-diagonalstates. HereCistheconcurrence, Sisthesteeringmeasure,andV isthenormalizedvolumeofthesteeringellipsoid. Theorangeregionineachplotindicates therangeofvalues.ThedashedlinesrepresentedgestatesandthesolidlinesrepresentWernerstates. CalculationshowsthatC,S,V satisfythefollowinginequalities(seeMethodssectionformoredetails): 2√2 (1+2C) S 2 1+C2, (12) 3 ≤ ≤ p 1+2C 3 C2 V , (13) ≤ ≤(cid:16) 3 (cid:17) 2√2√3V S 2√1+V. (14) ≤ ≤ Here the lower boundin (12) is applicable to entangledBell-diagonalstates, while the other five boundsin (12), (13), and (14) are applicable to all Bell-diagonal states. The inequality C2 V was also derived in Ref.39 As an implication of ≤ the aboveinequalities, anyBell-diagonalstate with concurrencelargerthan (3 √2)/(2√2) is steerable by two projective − measurements. ThenormalizedvolumeofthesteeringellipsoidofanyseparableBell-diagonalstateisboundedfromabove by1/27,inagreementwiththeresultinRef.,23 whilethatofanyunsteerableBell-diagonalstate isboundedfromaboveby 1/(2√2). TwotypesofBell-diagonalstatesdeservespecialattentionastheysaturatecertaininequalitiesin(12),(13),and(14). A Wernerstatehastheform 1 f W = f b b + − (I b b ), (15) f 11 11 11 11 | ih | 3 −| ih | where 0 f 1. Note that f is equal to the singlet fraction when f 1/4. Geometrically, the Werner state lies on a ≤ ≤ ≥ diagonalofthecubeinFig. 2; conversely,anyBell-diagonalstatelyingona diagonalofthecubeisequivalenttoa Werner state undera localunitarytransformation. The correlationmatrix forthe Werner state has the formT =diag(t ,t ,t ) with 1 2 3 t =t =t =(1 4f)/3. Therefore,thesteeringellipsoidreducestoaspherewithradiust =t =t = 4f 1/3;seethe 1 2 3 1 2 3 − | − | rightplotinFig.1. Inaddition, 2√2 4f 13 C=max 0,2f 1 , S= 4f 1, V = | − | . (16) { − } 3 | − | 27 TheWernerstateissteerablebytwoprojectivemeasurementsiff(3√2+2)/8< f 1. Itsaturatesthelowerboundin(14) and,when f 1,alsothelowerboundin(12)andtheupperboundin(13). ≤ ≥ 2 ThosestateslyingonanedgeofthetetrahedroninFig.2arecallededgestates(orrank-2Bell-diagonalstates). Ifanedge statehastwononzeroeigenvalues pand1 pwith p 1/2,thent2 =1andt2 =t2 =(2p 1)2(assumingt t t ). − ≥ 11 22 33 − 1≥ 2≥|3| Therefore, the steering ellipsoid is rotationally symmetric with the largest semiaxis equal to 1 and the other two semiaxes equalto2p 1;seethemiddleplotinFig.1. Inaddition, − C=2p 1, S=2q1+(2p 1)2, V =(2p 1)2. (17) − − − 6/12 Theedgestateissteerablebytwoprojectivemeasurementswheneverp=1/2,thatis,whenitisentangled.Soentanglementis sufficienttoguaranteesteeringandBellnonlocalityinthisspecialcase,6 whichcomplementsGisin’stheorem.32,33 Inaddition, theedgestatesaturatestheupperboundsin(12)and(14)aswellasthelowerboundin(13). Fig.3illustratestherelationsbetweenC,S,V. WhentheconcurrenceCislarge,thethreemeasuresarecloselycorrelated toeachother,whiletheytendtobemoreindependentintheoppositescenario. Quitesurprisingly,thenormalizedvolumeV of the steering ellipsoidseems to have a closer relationwith concurrenceC rather thanthe steering measureS. In addition, forgivenconcurrenceC>0,thevolumeV attainsthemaximumwhenthesteeringmeasureSattainstheminimum,andvice versa. Steeringbythreeprojectivemeasurements InthissectionweexplorethesteerabilityofBell-diagonalstatesunderthreeprojectivemeasurementsbythesteeringparty.To thisend,weneedacriterionfordeterminingthecompatibilityofthreeunbiasednoisyprojectivemeasurements. Fortunately, thisproblemhasbeensolvedinRefs.,48,49accordingtowhich,threenoisybinaryobservables B 3 = (I rrr sss )/2 3 arecompatibleiff { ±|x}x=1 { ± x· }x=1 3 (cid:229) LLL LLL 4. (18) x FT | − |≤ x=0 HereLLL =rrr +rrr +rrr ,LLL =2rrr LLL forx=1,2,3,andLLL denotestheFermat-Toricelli(FT)vectorof LLL 3 ,whichis 0 1 2 3 x x− 0 FT { x}x=0 thevectorLLL thatminimizesthetotaldistance(cid:229) 3 LLL LLL . Ingeneral,LLL hasnoanalyticalexpression.48,49 GivenaBell-diagonalstatewithcorrelationmx=a0tr|ixxxxT−,su|pposeAliceperFfTormsthreeprojectivemeasurements A 3 = (I eee sss )/2 3 . ThenBob’ssteeringequivalentobservablesaregivenby B 3 = (I rrr sss )/2 3 ,{w±he|xr}ex=rrr1= T{Teee±foxr·x=1,}2x,=31.Define { ±|x}x=1 { ± x· }x=1 x x S = 1 max (cid:229) 3 LLL LLL (19) 3 x FT 2rrr1,rrr2,rrr3∈Ex=0| − | asasteeringmeasureoftheBell-diagonalstateunderthreeprojectivemeasurements,whereE isthesteeringellipsoid. Then theBell-diagonalstateissteerablebythreeprojectivemeasurementsiffS >2. Ingeneral,itisnoteasytocomputeS . Here 3 3 we shall derive a nontriviallower bound, which is very useful for understandingthe steerability of Bell-diagonalstates by threeprojectivemeasurements. Whenrrr rrr ,theFTvectorcanbedeterminedexplicitly49(notethatthereisatypoinRef.49 aboutthesign), 3 1,2 ⊥ rrr rrr rrr +rrr LLL FT= |rrr1−rrr2|−+|rrr1+rrr2|rrr3, (20) 1 2 1 2 | − | | | whichimplythat 3 (cid:229) |LLL x−LLL FT|=2q(|rrr1−rrr2|+|rrr1+rrr2|)2+4rrr23. (21) x=0 Theorem2. AnyBell-diagonalstatewith T >1issteerablebythreeprojectivemeasurements,where T = tr(TTT)= F F k k k k p tr(TTT)istheFrobeniusnormofthecorrelationmatrixT. p Proof. Letl ,l ,l betheeigenvaluesofTTT innonincreasingorderandeee ,eee ,eee theassociatedorthonormaleigenvectors. 1 2 3 1 2 3 Letrrr =TTeee forx=1,2,3. Thenrrr ,rrr ,rrr aremutuallyorthogonaland x x 1 2 3 S3≥q(|rrr1−rrr2|+|rrr1+rrr2|)2+4rrr23=2pl 1+l 2+l 3=2kTkF. (22) IftheBell-diagonalstateisnotsteerablebythreeprojectivemeasurements,thenS 2,so T 1. 3 F ≤ k k ≤ TheFrobeniusnorm T happenstobetheEuclideannormofthevector(t ,t ,t )thatrepresentstheBell-diagonalstate F 1 2 3 inFigs.2and4;itssquarkeiskequaltothesumofsquaresofthethreesemiaxesofthesteeringellipsoid(cf.Ref.50). Thesetof Bell-diagonalstateswiththesamenorm T liesonasphere. ItisclearfromtheabovediscussionthatS 2 T S,so F 3 F k k ≥ k k ≥ anyBell-diagonalstatethatissteerablebytwoprojectivemeasurementsisalsosteerablebythreeprojectivemeasurements,as expected. Theconverseisnottrueingeneral,asillustratedinFig.4. ConsidertheWernerstatein(15)forexample,wehave 7/12 Figure4. IllustrationofBell-diagonalstatessteerablebythreeprojectivemeasurements(cf.Fig.2). (left)Theregular tetrahedronrepresentsthesetofBell-diagonalstates. Theoctahedroningreenrepresentsthesetofseparablestates. Theblue regionsrepresentthosestatesthataresteerablebytwoprojectivemeasurements,andtheredregionsrepresentthosestates thatarenotsteerablebytwoprojectivemeasurementsbutsteerablebythreeprojectivemeasurementsasspecifiedinthe proofofTheorem2. (right)Afaceoftheregulartetrahedronwhichrepresentsthesetofrank-3Bell-diagonalstates. T = 4f 1/√3,sotheWernerstateissteerablebythreeprojectivemeasurementsif1 f >(√3+1)/4.Bycontrast,it F k k | − | ≥ issteerablebytwoprojectivemeasurementsonlyif1 f >(3√2+2)/8. ≥ Therelationsbetween T andC,V canbederivedwithsimilarmethodsusedinderiving(12)and(14),withtheresults F k k 1 (1+2C) T 1+2C2, (23) √3 ≤k kF≤p √3V1/3 T √1+2V. (24) F ≤k k ≤ Herethelowerboundin(23)isapplicabletoentangledBell-diagonalstates,whiletheotherthreeboundsareapplicabletoall Bell-diagonalstates. Asin(12)and(14), thetwo lowerboundsaresaturatedbyWernerstates, whilethetwoupperbounds aresaturatedbyedgestates;seeFig.5. TheseinequalitiesarequiteinstructivetounderstandingthesteeringofBell-diagonal statesbythreeprojectivemeasurementsgiventhatS 2 T .Asanimplication,anyunsteerableBell-diagonalstatesatisfies 3 F ≥ k k C (√3 1)/2andV 1/(3√3). ≤ − ≤ Discussion In summary, we studied systematically the steerability of Bell-diagonal states by projective measurements on the steering party. In the simplest nontrivialscenarioof two projectivemeasurements, we solvedthe problemcompletelybyderivinga necessaryandsufficientcriterion,whichhasasimplegeometricalinterpretation. Wealsointroducedasteeringmeasureand provedthatit is equalto the maximalviolation of the CHSH inequality. This conclusionimplies thata Bell-diagonalstate issteerablebytwoprojectivemeasurementsiffitviolatestheCHSHinequality. Inthespecialcaseofedgestates,ourstudy showsthatentanglementissufficienttoguaranteesteeringandBellnonlocality.Inaddition,weclarifiedtherelationsbetween entanglementand steeringbyderivingtightinequalitiessatisfied by theconcurrence,our steeringmeasure, andthe volume ofthesteeringellipsoid. Finally,weexploredthesteerabilityofBell-diagonalstatesunderthreeprojectivemeasurements. A simplesufficientcriterionwasderived,whichcandetectthesteerabilityofmanystatesthatarenotsteerablebytwoprojective measurements. Our study provided a number of instructive analytical results on steering, which are quite rare in the literature. These results notonly furnisha simple geometricpicture aboutsteering of Bell-diagonalstates, butalso offervaluableinsight on the relations between entanglement, steering, and Bell nonlocality. They may serve as a starting point for exploring more complicated steering scenarios. In addition, our work prompts several interesting questions, which deserve further studies. Forexample,isthesteeringcriterioninTheorem2bothnecessaryandsufficient? Isthereanyupperboundonthenumberof measurementsthatare sufficientto inducesteeringforall steerableBell-diagonalstates? We hopethatthese questionswill stimulatefurtherprogressonthestudyofsteering. 8/12 Figure5. Rangesofvaluesof2 T versustheconcurrenceC(left)andthenormalizedvolumeV ofthesteeringellipsoid F k k (right)forBell-diagonalstates. Here T istheFrobeniusnormofthecorrelationmatrixT,and2 T isalowerboundfor F F k k k k thesteeringmeasureS ,whichdeterminesthesteerabilityofBell-diagonalstatesunderthreeprojectivemeasurements.The 3 dashedlinesrepresentedgestatesandthesolidlinesrepresentWernerstates. Methods Concurrenceandsteeringmeasure Herewederivetheinequalitiesin(12), (13), and(14)inthemaintext,whichcharacterizetherelationsbetweentheconcur- renceC, the steering measure S (undertwo projectivemeasurements), and the volumeV of the steering ellipsoid. We also determinethoseBell-diagonalstatesthatsaturatetheseinequalities. Similarapproachcanbeappliedtoderive(23)and(24), whicharepertinenttosteeringofBell-diagonalstatesbythreeprojectivemeasurements. Withoutlossofgenerality,wemayassumethatr hastheformin(6)with t t t 1. Thenthespectrumofr is 3 2 1 | |≤ ≤ ≤ givenby 1 1 t t t ,1 t +t +t ,1+t t +t ,1+t +t t , (25) 1 2 3 1 2 3 1 2 3 1 2 3 4(cid:8) − − − − − − (cid:9) wheretheeigenvaluesarearrangedinnondecreasingorder. Theminimalandthemaximaleigenvaluesarerespectivelygiven by p =(1 t t t )/4 0and p =(1+t +t t )/4. min 1 2 3 max 1 2 3 IftheBell−-dia−gona−lstatei≥sseparable,thatisC=0,th−en0 p p 1/2,36whichimpliesthat min max ≤ ≤ ≤ t +t + t 1, t2+t2 1, t t t 1/27. (26) 1 2 |3|≤ 1 2 ≤ |1 23|≤ SotheinequalitiesS 2√1+C2,V (1+2C)3/27,andS 2√1+V in(12),(13),and(14)holdforseparableBell-diagonal states. The inequalit≤yS 2√1+C≤2 is saturated ifft =1≤, t =t =0, in which case r is an edge state with two nonzero 1 2 3 ≤ eigenvaluesequalto1/2.TheinequalityS 2√1+V issaturatedunderthesamecondition.TheinequalityV (1+2C)3/27 issaturatedifft =t = t =1/3,inwhic≤hcaser isaWernerstatewhicheitherhassingletfraction1/2oris≤proportionalto 1 2 3 | | aprojectorofrank3. HerestatesthatareequivalenttoW in(15)underlocalunitarytransformationsarealsocalledWerner f states. TheinequalityC2 V in(13)istrivialforseparablestates;itissaturatediffV =C=0,thatis,t =0,inwhichcase 3 ≤ theBell-diagonalstateliesonacoordinateplaneinFig.2. Theinequality2√2√3V SfollowsfromthedefinitionsofSand V andisapplicabletobothseparableandentangledstates. Itissaturatedifft =t =≤t ,inwhichcaser isaWernerstate. 1 2 3 | | If the Bell-diagonalstate is entangled,then p >1/2,C=2p 1=(t +t t 1)/2, andt =t +t 1 2C. max max 1 2 3 3 1 2 Thepositivityofr andtherequirement t t t leadtothefollowing−setofinequa−lities−, − − 3 2 1 | |≤ ≤ t t t +t 1+C, t +2t 1+2C. (27) 2 1 1 2 1 2 ≤ ≤ ≥ Theseinequalitiesdetermineatriangularregionintheparameterspaceoft ,t withthefollowingthreevertices: 1 2 1 1 (1,C), (1+C,1+C), (1+2C,1+2C). (28) 2 3 The maximum1+C2 oft2+t2 under these constraintsis attained ifft =1,t = t =C, in which case the state has two nonzeroeigenvaluesequal1to(12 C)/2andisthusanedgestate. Them1inimum2 2(−1+32C)2/9isattainedifft =t = t = 1 2 3 ± − 9/12 (1+2C)/3, in whichcase the state hasone eigenvalueequalto (1+C)/2 andthree eigenvaluesequalto (1 C)/6, andis thusaWernerstate. Bycontrast,themaximum(1+2C)3/27of t t t isattainedexactlywhent2+t2 attains−theminimum, |1 23| 1 2 and the minimumC2 of t t t is attained whent2+t2 attains the maximum. Therefore, (12) and (13) hold for entangled |1 2 3| 1 2 Bell-diagonalstates. Asanimmediatecorollary,(14)alsoholdsinthiscase. Insummary,thelowerboundin(12)isapplicabletoentangledBell-diagonalstates, whiletheotherfiveboundsin(12), (13),(14)areapplicabletoallBell-diagonalstates. ThetwoinequalitiesS 2√1+C2 andS 2√1+V aresaturatedonly for edge states. The inequalityC2 V is saturated only for edge states an≤d those states with≤V =0. The two inequalities ≤ 2√2(1+2C)/3 S andV (1+2C)3/27 are saturated only for Werner states that have singlet fractions at least 1/2 or ≤ ≤ Wernerstates thatare proportionaltorank-3projectors. Theinequality2√2√3V S is saturatedonlyforWernerstates. In ≤ particular,amongentangledBell-diagonalstates,onlyedgestatesandWernerstateswithsingletfractionslargerthan1/2can saturatetheseinequalities. References 1. Einstein,A.,Podolsky,B.&Rosen,N.CanQuantum-MechanicalDescriptionofPhysicalRealityBeConsideredCom- plete? Phys.Rev.47,777(1935). 2. Schro¨dinger,E.DiscussionofProbabilityRelationsbetweenSeparatedSystems.Math.Proc.Cambr.Philos.Soc.31,555 (1935). 3. Wiseman, H. M., Jones, S. J. & Doherty,A. C. Steering, Entanglement,Nonlocality, andthe Einstein-Podolsky-Rosen Paradox.Phys.Rev.Lett.98,140402(2007). 4. Jones, S. J., Wiseman, H. M., & Doherty, A. C. Entanglement, Einstein-Podolsky-Rosencorrelations, Bell nonlocality, andsteering.Phys.Rev.A76,052116(2007). 5. Bowles,J.,Ve´rtesi,T.,Quintino,M.T.&Brunner,N.One-wayEinstein-Podolsky-RosenSteering.Phys.Rev.Lett.112, 200402(2014). 6. Branciard,C.,Cavalcanti,E.G.,Walborn,S.P.,Scarani,V.&Wiseman,H.M.One-sideddevice-independentquantum keydistribution:Security,feasibility,andtheconnectionwithsteering.Phys.Rev.A85,010301(2012). 7. Reid,M.D.SignifyingquantumbenchmarksforqubitteleportationandsecurequantumcommunicationusingEinstein- Podolsky-Rosensteeringinequalities.Phys.Rev.A88,062338(2013). 8. Piani, M. & Watrous, J. Necessary and Sufficient Quantum Information Characterization of Einstein-Podolsky-Rosen Steering.Phys.Rev.Lett.114,060404(2015). 9. Reid,M.D.DemonstrationoftheEinstein-Podolsky-Rosenparadoxusingnondegenerateparametricamplification.Phys. Rev.A40,913-923(1989). 10. Cavalcanti,E.G.,Jones,S.J.,Wiseman,H.M.&Reid,M.D.ExperimentalcriteriaforsteeringandtheEinstein-Podolsky- Rosenparadox.Phys.Rev.A80,032112(2009). 11. Walborn,S.P.,Salles,A.,Gomes,R.M.,Toscano,F.&SoutoRibeiro,P.H.RevealingHiddenEinstein-Podolsky-Rosen Nonlocality.Phys.Rev.Lett.106,130402(2011). 12. Pusey,M.F.Negativityandsteering:AstrongerPeresconjecture.Phys.Rev.A88,032313(2013). 13. Kogias,I.,Skrzypczyk,P.,Cavalcanti,D.,Ac´ın,A.&Adesso,G.HierarchyofSteeringCriteriaBasedonMomentsfor AllBipartiteQuantumSystems.Phys.Rev.Lett.115,210401(2015). 14. Zhu,H.,Hayashi,M.&Chen,L.,UniversalSteeringCriteria.Phys.Rev.Lett.116,070403(2016). 15. Wittmann,B. etal.Loophole-freeEinstein-Podolsky-Rosenexperimentviaquantumsteering.NewJ.Phys.14,053030 (2012). 16. Ha¨ndchen,V.etal.Observationofone-wayEinstein-Podolsky-Rosensteering.Nat.Photon.6,596-599(2012). 17. Chen,J.-L.etal.All-Versus-NothingProofofEinstein-Podolsky-RosenSteering.Sci.Rep.3,2143(2013). 18. Wu, C. F. et al. Test of Einstein-Podolsky-Rosen Steering Based on the All-Versus-Nothing Proof. Sci. Rep. 4, 4291 (2014). 19. Sun, K. et al. Experimental Demonstration of the Einstein-Podolsky-Rosen Steering Game Based on the All-Versus- NothingProof.Phys.Rev.Lett.113,140402(2014). 20. Skrzypczyk,P., Navascues, M., & Cavalcanti, D. QuantifyingEinstein-Podolsky-RosenSteering. Phys.Rev. Lett. 112, 180404(2014). 10/12