ebook img

Status Report from Tau subgroup of the HFAG PDF

0.13 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Status Report from Tau subgroup of the HFAG

Status Report from Tau subgroup of the HFAG 1 1 0 Swagato Banerjeea, Kiyoshi Hayasakab, Hisaki Hayashiic, Alberto Lusianid, J. Michael Roneya, Boris 2 Shwartze n aUniversity of Victoria, Canada. a J bNagoya University, Japan. 6 2 cNara Womana’s University, Japan. x] dScuola Normale Superiore and INFN Pisa, Italy. e - eBudker Institute of Nuclear Physics, Russia. p e The aim of Tau subgroup of the HFAG is to provide average values of the mass and branching fractions of h [ thetau lepton. Using thebranchingfractions, we present tests of charged current lepton universality and obtain estimatesfor|Vus|. Wealsosummarizethestatusofsearchesforleptonflavorviolatingdecaysofthetaulepton. 1 v 8 3 1 The latest averages from the HFAG have 5 been published in Ref. [1]. Online up- . 1 dates of the Tau Section are available at DELCO 1978 0 http://www.slac.stanford.edu/xorg/hfag/tau/. 1783.00 +3.00 1 ARGUS 1 -94.9002 1 1776.30 ± 2.40 ± 1.40 : 1. Mass of the τ lepton BES 1996 v 1776.96 +0.18 +0.25 -0.21 -0.17 i The mass of the τ lepton has recently been CLEO 1997 X 1778.20 ± 0.80 ± 1.20 measured by the BaBar [2] and Belle [3] exper- OPAL 2000 ar iments using the end-point technique from the 1775.10 ± 1.60 ± 1.00 Belle 2007 pseudo-massdistributioninτ− →π−π−π+ντ de- 1776.61 ± 0.13 ± 0.35 cays,aswellasbytheKEDRexperiment[4]from BaBar 2009 astudyoftheτ+τ− cross-sectionaroundthepro- 1776.68 ± 0.12 ± 0.41 KEDR 2009 duction threshold. In Figure 1, we present the 1776.69 +0.17 ± 0.15 -0.19 measurements and average values of m . PDG’10 Average τ 1776.82 ± 0.16 HFAG Average 1776.77 ± 0.15 (CL = 57.0%) 2. τ Branching Fractions: HFAG-Tau Average values of the τ branching fractions 1 Summer 2010 are obtained from a global unitarity constrained 1770 1775 1780 fit. We account for correlations due to common m [MeV/c2] τ dependenceofnormalizationontheτ−paircross- section [5] and assumed branching fractions for thebackgroundmodes. Thedetector-specificsys- tematics uncertainties are considered to be fully correlatedbetweenmeasurementsofthesameex- Figure1. Measurementsandaveragevalueofm . τ 1chargeconjugateτ decays areimpliedthroughout 1 2 periment. Allofthese153measurementsareexpressedas We use 131 measurements from non-B-factory a linear function of the form ( iαiPi) of “base” experiments, which includes the set used in the (PjβjPj) global fit performed by the PDG [6]. The mea- branching fractions (Pi), which are chosen such P surements from non-B-factories include 37 mea- that they sum up to unity. The results of the surements from ALEPH, 2 measurements from fit are shown in Table 1, which has χ2/ndof = ARGUS, 1 measurement from CELLO, 36 mea- 143.4/117(CL = 4.9%). surements from CLEO, 6 measurements from CLEO3,14measurementsfromDELPHI,2 mea- surements from HRS, 11 measurements from L3, 5 19 measurements from OPAL, and 3 measure- ments from TPC. Finally, we include the follow- BaBar ing measurements from the B-factories (BaBar 4 Belle and Belle): • 12 measurements from BaBar: 5 0. 3 r B(τ− →µ−ν¯µντ)/B(τ− →e−ν¯eντ) [7], r pe B(τ− →π−ντ)/B(τ− →e−ν¯eντ) [7], be m B(τ− →K−ντ)/B(τ− →e−ν¯eντ) [7], Nu 2 B(τ− →K−π0ν ) [8] τ B(τ− →K¯0π−ν ) [9] τ 1 B(τ− →K¯0π−π0ν ) [10] τ B(τ− →π−π−π+ν (ex. K0)) [11] τ B(τ− →K−π−π+ντ (ex. K0)) [11] 0-3 -2 -1 0 1 2 3 B(τ− →K−π−K+ντ) [11] Sigma Difference B(τ− →K−K−K+ν ) [11] τ B(τ− →3h−2h+ν (ex. K0)) [12] τ B(τ− →2π−π+ην (ex. K0)) [13] τ Figure2. NormalizeddifferenceofB-factorymea- surements w.r.t average of non-B-factory mea- • and 10 measurements from Belle: surements. B(τ− →h−π0ν ) [14] τ B(τ− →K¯0π−ν ) [15] The differences between the global fit per- τ formed by PDG and us are: B(τ− →π−π−π+ν (ex. K0)) [16] τ B(τ− →K−π−π+ν (ex. K0)) [16] • We expand the list of base modes from 31 τ to37toaccountforrecentmeasurementsby B(τ− →K−π−K+ν ) [16] τ the B-factories with significant precision. B(τ− →K−K−K+ν ) [16] τ • We use the originalcorrelationmatrixpub- B(τ− →π−π0ην ) [17] τ lished by ALEPH [18] between hadronic B(τ− →K−ηντ) [17] modes instead of between pionic modes. B(τ− →K−π0ην ) [17] τ • We use updated background estimates to B(τ− →K¯0π−ηντ) [17] adjust the B-factory measurements. 3 • We avoid applying the PDG-style scale Base modes Branching fractions factors to all our measurements. How- (from τ− decay) (in %) ever, the BaBar and Belle measurements leptonic modes of B(τ− →K−K+K−ν ) are 5.4 σ apart. τ e−ν¯ ν 17.833 ± 0.040 We scale the errors on these 2 measure- e τ µ−ν¯ ν 17.408 ± 0.038 ments only, following the PDG procedure µ τ non-strange modes for single-quantity averaging. π−ν 10.831 ± 0.051 τ The three-kaon decays had not been ob- π−π0ν 25.531 ± 0.090 τ served before the B-factory era. For the re- π−2π0ν (ex. K0) 9.278 ± 0.097 τ maining 20 B-factory measurements, Figure 2 π−3π0ν (ex. K0) 1.046 ± 0.074 τ shows a histogram of the normalized difference h−4π0ν (ex. K0,η) 0.107 ± 0.039 τ ((B-factory value minus averaged non-B-factory K−K0ν 0.160 ± 0.016 τ value)/estimated uncertainty in the difference). K−π0K0ν 0.162 ± 0.019 τ The average difference between the two sets of π−K0K0ν 0.024 ± 0.005 S S τ measurements is -0.98 σ (-1.26 σ for the 9 Belle π−K0K0ν 0.119 ± 0.024 S L τ measurementsand-0.75σ forthe 11BaBarmea- π−π−π+ν (ex. K0,ω) 8.983 ± 0.050 τ surements). Althoughthissystematictrendisyet π−π−π+π0ν (ex. K0,ω) 2.751 ± 0.069 τ to be understood, the magnitude of discrepancy h−h−h+2π0ν (ex. K0,ω,η) 0.097 ± 0.036 τ isless thanthe value ofreportedbythe PDG[6]. h−h−h+3π0ν 0.032 ± 0.003 τ π−K−K+ν 0.144 ± 0.003 τ 3. Tests of Lepton Universality π−K−K+π0ν 0.006 ± 0.002 τ 3h−2h+ν (ex. K0) 0.082 ± 0.003 τ From the unitarity constrained fit, we obtain 3h−2h+π0ν (ex. K0) 0.020 ± 0.002 B(τ− →µ−ν ν )/B(τ− →e−ν ν ) = 0.9762 ± τ µ τ e τ π−π0ην 0.139 ± 0.007 τ 0.0028,whichincludesacorrelationof18.33%be- π−ων 1.959 ± 0.064 τ tweenthebranchingfractions. Thisyieldsavalue h−π0ων 0.409 ± 0.042 of ggµe = 1.0019 ± 0.0014, which is consistent τ strange modes wit(cid:16)h th(cid:17)e Standard Model (SM) value. K−ντ 0.697 ± 0.010 Using the world averaged mass, lifetime and K−π0ν 0.431 ± 0.015 τ meson decay rates [6], we determine gτ = K−2π0ντ (ex. K0) 0.060 ± 0.022 gµ K−3π0ν (ex. K0,η) 0.039 ± 0.022 0.9966 ± 0.0030 (0.9860 ± 0.0073) from(cid:16)the(cid:17)pi- τ K¯0π−ν 0.831 ± 0.018 onic and kaonic branching fractions, with a cor- τ K¯0π−π0ν 0.350 ± 0.015 relation of 13.10%. Combining these results, we τ K¯0π−2π0ν 0.035 ± 0.023 obtain ggµτ = 0.9954 ± 0.0029,which is consis- K¯0h−h−h+τντ 0.028 ± 0.020 tent wit(cid:16)h (1(cid:17).6 σ below) the SM expectation. K−π−π+ν (ex. K0,ω) 0.293 ± 0.007 τ We also test lepton universality between τ K−π−π+π0ν (ex. K0,ω,η) 0.041 ± 0.014 τ and µ (e), by comparing the averaged electronic K−φν (φ→KK) 0.004 ± 0.001 τ (muonic)branchingfractionsoftheτ leptonwith K−ην 0.016 ± 0.001 τ the predicted branching fractions from measure- K−π0ην 0.005 ± 0.001 τ mentsoftheτ andµlifetimesandtheirrespective K¯0π−ην 0.009 ± 0.001 τ masses [6]. This gives ggµτ = 1.0011 ± 0.0021 K−ωντ 0.041 ± 0.009 Sum of strange modes 2.8796 ± 0.0501 and gτ = 1.0030 ±(cid:16)0.00(cid:17)21. The correlation ge Sum of all modes 100.00 co-effi(cid:16)cien(cid:17)t between the determination of gτ gµ Table 1 from electronic branching fraction with the(cid:16)one(cid:17)s Results of unitarity constrained fit. obtained from pionic and kaonic branching frac- 4 tions are 48.16% and 21.82%, respectively. Av- eraging the three values, we obtain gτ = LEP EW WG (W → µ νµ)/(W → e νe) gµ 0.9970 ± 0.0100 1.0001± 0.0020,whichisconsistentwith(cid:16)the(cid:17)SM FlaviaNet (K → π µ νµ)/(K → π e νe) value. In Figure 3, we compare these determi- 1.0010 ± 0.0025 nations with the values obtained from pion [19], NA62, KLOE (K → µ νµ)/(K → e νe) kaon [20] and W decays [21]. 0.9980 ± 0.0025 TRIUMF, PSI (π → µ νµ)/(π → e νe) 4. Measurement of |V | 1.0017 ± 0.0015 us HFAG Fit (τ → µ νµ ντ)/(τ → e νe ντ) Using the unitarity constraint on the 1.0019 ± 0.0014 first row of the CKM matrix and |V | = ud 0.97425 ± 0.00022 [24], one gets |V | = HFAG-Tau us Summer 2010 0.2255 ± 0.0010. Here we present 3 ex- 0.9 0.95 1 tractions for |Vus| using B(τ− →K−ντ), |g /g| B(τ− →K−ν )/B(τ− →π−ν ), and inclu- µ e τ τ sive sum of τ branching fractions having net LEP EW WG (W → τ ντ)/(W → µ νµ) strangeness of unity in the final state. 1.0390 ± 0.0130 We use the value of kaon decay constant HFAG Fit (τ → e νe ντ) × τµ/ττ 1.0011 ± 0.0021 f = 157 ± 2MeV obtained from Lattice calcu- laKtions [22], and our value of B(τ− →K−ντ) = H0.F9A96G6 F±i t0 (.τ0 →03 0π ντ)/(π → µ νµ) G2FfK2|1V6uπsh¯|2m3τττ 1− mm2K2 2SEW, where SEW = H0.F9A86G0 F±i t0 (.τ0 →07 3K ντ)/(K → µ νµ) 1.0201 ± 0.000(cid:16)3 [23],τ (cid:17)to determine |Vus| = H0.F9A95G4 A±v 0e.r0a0g2e9 (τ → π ντ, K ντ) 0.2204 ± 0.0032, which is consistent with (1.5 σ HFAG Average (τ → e νe ντ, π ντ, K ντ) below) the value from CKM unitarity. 1.0001 ± 0.0020 Weextract|V |using|V |,Latticecalculation us ud of the ratio of decay constants f /f = 1.189 ± HFAG-Tau K π Summer 2010 0.007[22]andthelong-distancecorrectionδ = LD 0.9 0.95 1 (0.03 ± 0.44)%, estimated using corrections to |g/g | τ µ τ →hν and h→µν [25], for the ratio τ µ m2 2 B(τ− →K−ντ) = fK2|Vus|2 1− mK2τ (1+δ ), LEP EW WG (W → τ ντ)/(W → e νe) B(τ− →π−ντ) fπ2|Vud|2 (cid:16)1− m2π(cid:17)2 LD 1.0360 ± 0.0140 m2 τ where short-distance ele(cid:16)ctro-wea(cid:17)k correc- HFAG Fit (τ → µ νµ ντ) × τµ/ττ tions cancel in this ratio measured to be 1.0030 ± 0.0021 B(τ− →K−ν )/B(τ− →π−ν ) = 0.0644 ± τ τ 0.0009. This includes a correlation of −0.49% between the branching fractions, and yields |V |=0.2238 ± 0.0022, which is also consistent us HFAG-Tau with (0.7 σ below) |V | from CKM unitarity. us Summer 2010 The total hadronic width of the τ normal- 0.9 0.95 1 ized to the electronic branching fraction, R = |g/g| had τ e B /B ,canbewrittenasR =R + had e had non−strange R . We can then measure strange R |V |= R / non−strange −δR . Figure 3. Measurements of lepton universality us s strange (cid:20) |Vud|2 theory(cid:21) from W, kaon, pion and tau decays. 5 Here, we use |V | = 0.97425 ± 0.00022 [24], ud and δR = 0.240 ± 0.032 [26] which con- theory FlaviaNet K decays l3 tributes to an error of 0.0010 on |Vus|. We note 0.2254 ± 0.0013 that this error is equivalent to half the differ- FlaviaNet K decays l2 ence between calculations of |V | obtained using 0.2252 ± 0.0013 us Hyperon decays fixedorderperturbationtheory(FOPT)andcon- 0.2260 ± 0.0050 tourimprovedperturbationtheory(CIPT)calcu- HFAG Fit (τ → K ντ) lations of δRtheory [27], and twice as large as the 0.2204 ± 0.0032 theoretical error proposed in Ref. [28]. HFAG Fit (τ → K ντ)/(τ → π ντ) AsinRef.[29],weimproveupontheestimateof 0.2238 ± 0.0022 electronic branching fraction by averaging its di- HFAG Fit (τ → s inclusive) 0.2174 ± 0.0022 rectmeasurementwithits estimatesof(17.899± CKM Unitarity 0.040)% and (17.794 ± 0.062)% obtained from 0.2255 ± 0.0010 the averaged values of muonic branching frac- tions and the averaged value of the lifetime of HFAG-Tau theτ lepton=(290.6±1.0)×10−15 s[6],assum- Summer 2010 ing lepton universality and taking into account 0.2 0.21 0.22 0.23 the correlation between the leptonic branching |V | us fractions. This gives a more precise estimate for the electronic branching fraction: Buni = e (17.852 ± 0.027)%. Assuming lepton universality, the total Figure 4. Measurements of |V | from kaon, hy- hadronic branching fraction can be written us as: B = 1 − 1.972558 Buni, which gives peron and tau decays. had e a value for the total τ hadronic width nor- malized to the electronic branching fraction as R =3.6291 ± 0.0086. had REFERENCES Non-strange width is R = R − non−strange had Rstrange, where the value for the strange width 1. The Heavy Flavor Averaging Group, Rstrange = 0.1613 ± 0.0028 is obtained from the arXiv:1010.1589[hep-ex]. sum of the strange branching fractions with the 2. B. Aubert et al. [BABAR Collaboration], unitarityconstrainedfitaslistedinTable1. This Phys. Rev. D 80, 092005(2009). givesavalue of|Vus| =0.2174± 0.0022,whichis 3. K.Abeetal.[BelleCollaboration],Phys.Rev. 3.3 σ lower than the CKM unitarity prediction. Lett. 99, 011801 (2007). Summary of these |Vus| values are plotted in 4. A.G.Shamovetal.,Nucl.Phys.Proc.Suppl. Figure 4, where we also include values from hy- 189, 21 (2009). peron and kaon decays [20]. 5. S. Banerjee, B. Pietrzyk, J. M. Roney and Z. Was, Phys. Rev. D 77, 054012 (2008). 6. K. Nakamura et al. [Particle Data Group], J. Phys. G 37, 075021(2010). 7. B. Aubert et al. [BABAR Collaboration], Phys. Rev. Lett. 105, 051602 (2010). 5. Search for lepton flavor violation in τ 8. B. Aubert et al. [BABAR Collaboration], decays Phys. Rev. D 76, 051104(2007). The status of searches for lepton flavor viola- 9. B. Aubert et al. [BABAR Collaboration], tion in τ decays is summarized in Figure 5. A Nucl. Phys. Proc. Suppl. 189, 193 (2009). table of these results and the corresponding ref- 10. S. Paramesvaran [BaBar Collaboration], erences are provided on the HFAG-Tau web site. arXiv:0910.2884[hep-ex]. 6 ys lγ lP0 lS0 lV0 lll lhh Λh a ec 10-5 d τ HFAG-Tau V F L 10-6 Summer 2010 r o f s t i m 10-7 CLEO i l r BaBar e p p Belle U 10-8 . L . C 90% -γ eγµ- 0π- e0πµ- -η eηµ- η-’ eηµ-’ 0- KeS0µ- KS- fe0µ- f0ρ- e0ρµ- 0- K*eµ- K*-K* eµ- K*φ- eφµ- ω- eωµ- --+ e eeµ-+- e eµµ-+- eµµµ+-- --µ+ e eµµ+-- eππ+-- eππµ+-- -π-+ K e-πµ+- K π+-- Ke+πµ-- K-+- K Ke-+µ- K K00- K KeSS00µ- K KSSππ+-- eπµπ+-- -π+- K e-µπ+- K --+ K eK--µ+ K KΛπ- Λπ- -Λ K-Λ K Figure 5. Status of searches for lepton flavor violation in τ decays. 11. B. Aubert et al. [BABAR Collaboration], arXiv:hep-ex/0612034. Phys. Rev. Lett. 100, 011801 (2008). 22. E.Follana,C.T.H.Davies,G.P.Lepageand 12. B.Aubertetal.[theBABARCollaborations], J. Shigemitsu Phys. Rev. Lett. 100, 062002 Phys. Rev. D 72, 072001(2005). (2008). 13. B.Aubertet al.[BaBarCollaboration],Phys. 23. J. Erler, Rev. Mex. Fis. 50, 200 (2004). Rev. D 77, 112002 (2008). 24. J. C. Hardy and I. S. Towner, Phys. Rev. C 14. M.Fujikawaetal.[BelleCollaboration],Phys. 79, 055502 (2009). Rev. D 78, 072006 (2008). 25. W. J. Marciano and A. Sirlin, Phys. Rev. 15. D.Epifanovetal.[BelleCollaboration],Phys. Lett. 71, 3629 (1993); R. Decker and Lett. B 654, 65 (2007). M.Finkemeier,Nucl.Phys.B438,17(1995); 16. M. J. Lee et al. [Belle Collaboration], Phys. R. Decker and M. Finkemeier, Phys. Lett. B Rev. D 81, 113007 (2010). 334 (1994) 199; W. J. Marciano, Phys. Rev. 17. K. Inami et al. [Belle Collaboration], Phys. Lett. 93, 231803 (2004). S. Banerjee [BaBar Lett. B 672, 209 (2009). Collaboration], arXiv:0811.1429[hep-ex]. 18. S.Schaeletal.[ALEPHCollaboration],Phys. 26. E. Gamiz, M. Jamin, A. Pich, J. Prades and Rept. 421, 191 (2005). F. Schwab, Nucl. Phys. Proc. Suppl. 169, 85 19. D.I.Brittonet al., Phys.Rev.Lett. 68,3000 (2007). (1992),G.Czapeketal.,Phys.Rev.Lett.70, 27. K. Maltman, arXiv:1011.6391[hep-ph]. 17 (1993). 28. E. Gamiz, M. Jamin, A. Pich, J. Prades and 20. M. Antonelli et al., Eur. Phys. J. C 69, 399 F. Schwab, PoS KAON, 008 (2008). (2010). 29. M. Davier, A. Hocker and Z. Zhang, Rev. 21. J. Alcaraz et al. [LEP Collaborations], Mod. Phys. 78, 1043 (2006).

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.