ebook img

Status of the Nuclear-Induced Conductivity Experiment (NICE) Project PDF

4 Pages·2001·0.22 MB·English
by  BittekerLeo
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Status of the Nuclear-Induced Conductivity Experiment (NICE) Project

StatusoftheNuclear-InducedConductivityExperiment(NICE)Project LeoBitteker,ShannonM. Bragg-Sitton,RonJ.Litchford NASA MarshallSpaceFlightCenter Huntsville,AL Nuclear-basedmagnetohydrodynam(icMHD)energyconversionhasbeenpursuedin variousformssincethe1950's.Themajorityofthisworkwasmotivatedbythe compatibilityofMHD generatorswiththehightemperatureachievablewith anuclear reactorandtheassociatedpotentialforveryhighcycleefficiency. Asaresultofthis perspectivem, ethodsforenhancingtheelectricalconductivityoftheMHD flow have primarilyfocussedontraditionalthermalionizationprocessese,speciallythoseutilizing alkalimetalseeds.However,electricalconductivityenhancemenvtiathermal interactionsimposessignificantlimitationsontheflowexpansionthroughthegenerator, andhenceontheultimatepowerdensity.Furthermoret,heintroductionofanalkalimetal seedintotheflow significantlycomplicatestheengineeringdesignandincreasesthe potentialforsystemfailuresduetoplatingoftheevaporatedmetaloncoldsurfaces. Inordertoavoidtheselimitationsanddifficultiesinherenttomostpracticalthermal ionizationtechniquesv,ariousnon-thermaln, on-equilibriumionizationprocessehsave beenconsideredoverthepast50years.Theabilitytoachievesufficientelectrical conductivity,typicallygreaterthani rnho/m,independenotfflow bulktemperatureand theassociatedimplicationstorenhancedflowexpansionthroughthegeneratorhas motivatednumerousinvestigations.Conceptsfornon-thermailonizationsourceshave includedchargedparticlebeamsl,asers,rf energy,andelectricalarcs,amongothers.The effectivenessoftheseconceptshasbeenlimitedinlargepartbythenecessitytoutilize somefractionofthegeneratoroutputpowertodrivetheionizationsource.Difficulties associatedwithintroducingtheionizingenergytotheflow havealsolimitedthesuccess andinterestin thesealternativestothermalionization. Oneconceptthathasshowngreatpromiseinrecentyearsistheutilizationofenergy releasedinnuclearinteractionstoenhanceconductivity.Specifically,thekineticenergy liberatedininteractionsbetweenreactorneutronsandisotopeswith alargeneutron absorptioncross-sectionisusedtoionizethesurroundinggasviacollisions.Some examplesofpromisinginteractionsandtheassociatedkineticenergyliberatedper interactioninclude3He(n,p)3H(760keV),I°B(n,_)VLi(2.3MeV),6Li(n,003He(4.78 MeV),andthefissioningofheavyelementssuchasuranium(-200 MeV). Conceptually, eitherthereactorcoolantgasoraparallelworkingfluidflowingthroughtheregionof highneutronflux isthermodynamicallydriventhroughaMHD generator.Theneutron interactionenergycanbeintroducedtothefloweitherbyutilizingaflow composedof theinteractingisotope(3He, 235UF6), seeding a bulk flow with the isotope (10% 3He + 90% 4He), or lining the flow channels with a solid form of the isotope (_°B, 235U). By utilizing the reactor neutrons to enhance the electrical conductivity, none of the generated power is needed to drive the ionization source, resulting in higher overall cycle efficiency. Furthermore, the nuclear-induced ionization is volumetric in nature resulting inamoreuniformionizationthanispossiblewith variousbeamorsurfaceionization processes. By eliminatingthedependencoeftheelectricalconductivityongastemperaturet,he rangeof applicationfornuclear-baseMdHD cyclesisdramaticallyincreased.Duetothe temperatureindependenntatureofthenuclear-inducedelectricalconductivity,theflow canbeexpandedtolowertemperatureandhighervelocitythroughthegeneratorresulting inhigherpowerdensityandhence,amorecompactgeneratorforagivenpoweroutput. Also,cyclesoperatingatlowerultimatetemperaturebecomefeasible,makinglow power MHD cyclesmorepractical.Withthesametechnology,veryhightemperatureh,ighly efficientcyclesarealsopossibleforlarge-scalepowerproduction.Theexpandedrange ofoperationofMHD cyclesutilizingnuclear-enhanceedlectricalconductivitymayhave applicationinhigh-capacitycommercialpowerproduction,compactpowerforremote locations,space-basepdowerandpropulsion,andnavalpower.InanearlierreportI, the potentialbenefitandrequirementsforapplicationtospacepowerandpropulsionwas considered.Inparticular,thisreportshowedthatnuclear-MHDenergyconversionisa feasibleoptionforachievingasystemmasstopowerratioontheorderof 1kg/kW. A mass-to-powerratioequaltoorlessthan1kg/kWisessentiaflorfulfilling manyofthe envisionedNASA missionstotheouterSolarSystemaswell asmannedexplorationof theplanets. Inordertoevaluatetheconceptofnuclear-inducedconductivityenhancementt,he fundamentapl hysicsoftheweaklyionizedgasmustbeunderstood.Computational studiesofnuclear-induced3Heplasmaindicatethatusefullevelsofconductivity enhancemenmt aybeattainableindependenotftemperature.Thecomputationaml odel, CSOLVE,andpredictedresultsforastaticgashavebeendescribedindetailinpast publications2.Inbrief,CSOLVEusesatwo-temperaturekineticmodelof3HerHe mixturesin aneutronfieldtocalculateelectricalconductivity.Themodelcalculatesthe numberdensityofatomicandmolecularheliumions,atomicandmolecularmetastable heliumneutrals,andfreeelectronsaswell aselectrontemperaturefromasetofkinetic rateequationsthatincludes22differentinteractions.Theconductivitymodelusesa standardseriesresistancemodelthatcombinestheeffectsofelectron-neutrale,lectron- ion,andelectron-electroncollisionsallowingreasonableapplicationoverawiderangeof chargeandneutraldensities. TheresultsofthesecomputationsaresummarizedinFigure1forthesteady-statecaseof pureSHeoverarangeoftemperatured,ensityandneutronflux inaninfinitevolume. Thisdataindicatesthatatthermalneutronfluxesgreaterthan-10Iz/cm2sanddensityless thanstandarddensity,conductivitygreaterthan1mho/misachievable.Thisdataalso showsthatthebulktemperaturehasasecondaryeffectonconductivitywhilethedensity isofprimaryinfluence.Inthispaper,thepredictedbehaviorof3Heplasmawill be furtherdiscussed.Thisdiscussionwill includebriefdescriptionsofthebehaviorofthe plasmaspeciest,ransitionfromelectron-neutratloelectron-chargecollisiondominance, anddecayoftheconductivityinabsenceofthesource. Inordertoconfirmthesecomputationarlesults,NASAMarshallSpaceFlightCenter's Nuclear-InducedConductivityExperiment(NICE)projectisperformingaseriesof experimentstomeasuretheelectricalconductivityandrelatedplasmaparametersinpure heliuminbothstaticandMHDflow conditions. Therearethreephasesofexperiments invariousstatesof progress.Inthefirstphase,thediagnostictoolsneededtoaccurately characterizethenuclear-inducedplasmaarebeingdevelopedandtested.Forthese experimentsa, non-equilibriumheliumplasmaiscreatedby meansofafloodofenergetic electrons.Upto 1mAofelectronsspreadovera10cmdiameterwindowareintroduced intotheheliumgasatanominalenergyof50keV. Collisionsbetweenelectronsand heliumatomsproducesanapproximatelyvolumetricionizationverysimilartothat causedbyneutroninteraction.Forcomparisont,heenergydepositedin thegasby the electronsisequivalenttothepredictedeffectofathermalneutronflux oforder1012 /cm2s. The second phase of these experiments uses the same diagnostic tools to fully characterize the nuclear-induced helium plasma for comparison to the computational results. These nuclear experiments are designed to cover the full range of density and neutron flux included in Figure 1. Finally, in the third phase of experiments, a sub-scale MHD flow utilizing non-thermal ionization is characterized to examine the effect of flow, magnetic field, and related parameters on the plasma kinetics. The MHD flow will make use of a 3 Tesla split coil superconducting magnet currently being fabricated. This paper primarily describes the objectives, design, and current results of these experiments. Conductivity v. Relative Density iI '"_-"kl"-'1100^^1lt0 1.E+03 '--ii-"10^12 --,p.,-_0^t3 ,-.N,--10^14 ,i1-,-10^15 1,E+02 : + 10^10, 500K-250 ! i :. = c=:zl_ 10^11, 500K-250 J & 10^12, 500K-250 o 10^13, 500K-250 1.E.02 1.E-03 - 1.E-04 1.E-04 1.E-03 I.E-02 1.E-01 1.E+00 1.E+01 Relative Density Figure 1: Electrical conductivity versus relative density in pure 3He as a function of neutron flux (/cm2s) and bulk temperature (K) as calculated by the CSOLVE computational model. Continuous line corresponds to 300 K, symbols plotted at each decade cover the range from 500 K to 2500 K. References 1- R. J. Litchford, L. Bitteker, J. Jones, "Prospects for Nuclear Electric Propulsion using Closed-Cycle Magnetohydrodynamic Energy Conversion," AIAA Paper No. 2001-0961, 39'hAIAA Aerospace Sciences Meeting and Exhibit, Reno, Jan. 2001. 2 - L. Bitteker, "Nuclear induced electrical conductivity in 3.H..e.., J. App. Phys., Vol. 83, No. 8, 1998, pp. 4018-4023.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.