ebook img

STATUS OF THE HETEROZYGOTE FEMALE* BY Alex E. Krill, MD PDF

74 Pages·2005·11.12 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview STATUS OF THE HETEROZYGOTE FEMALE* BY Alex E. Krill, MD

X-CHROMOSOMAL-LINKED DISEASES AFFECTING THE EYE: STATUS OF THE HETEROZYGOTE FEMALE* BYAlex E. Krill, M.D. ACCORDING TO CLASSICAL GENETIC THEORY females carrying a gene for a recessive trait or disease on only one x-chromosome (heterozygote for the gene) should show no manifestations of the defect. The usual explanation is that the defective gene of one x-chromosome is recessive to a normal gene at the same locus on the other x-chromosome (an allele). However, because of several examples of structural and func- tional abnormalities in females supposedly heterozygote for recessive traits, this view has been questioned for several years now. In fact, an entirely new theory to explain x-linked inheritance was even proposed in 1961.1 The purpose of this report is to review proved or suspected x-linked diseases in which the eye is affected; to describe any abnormalities that have been found in heterozygote female carriers; and to sum- marize the various theories that have been proposed to explain the status of the female with particular emphasis on the inactivation hypothesis, the most recent theory. THE SEX CHROMOSOMES Until as recently as 1956 it was believed that the human cell had 48 chromosomes. However, in that year, Tjio and Levan2 found that every human cell has 46 chromosomes with the exception of the sperm and the ova, which have 23 chromosomes. Forty-four of the 46 chro- mosomes are called autosomes and can be grouped into 22 pairs of identical partners. Each pair, though, is different in genetic content *From the Eye Research Laboratories, The University of Chicago, Chicago, Illinois. This study was supported in part by Grants EY-00523, EY-00277, NB-03542, and FR-55fromtheNationalInstitutes ofHealth, PublicHealthService. TR. AM. OPXim. SOC.,vol. 67, 1969 536 Alex E. Krill FIGURE 1 Sex chromosomes of male showing an x-chromosome and a much smaller Y-chromosome. Segment ab of / the x-chromosome carries all of the known x-linked genes. Segments bc on the x- and Y-chromosomes b b are similar in morphological appearance and are said to be homologous but no genes have been traced to I'; this area. On the other hand, segments ab of the x-chromosome and cd of the Y-chromosome are C entirely different in size and morphological appear- _ ance. It is only in segment bc that interchange and _ _d crossing over of genetic material can occur. X Y and frequently in appearance from other pairs. All pairs except one are the same in males and females. The pair of chromosomes that is not identical in the two sexes was named the sex chromosomes by Wilson3 in 1909. This unique pair consists of two similar chromosomes in women called x-chromosomes and two dissimilar chromosomes in males (Figure 1). One male sex chromosome resembles the two fe- male x-chromosomes and is therefore also called an x-chromosome and the second is unique and is called the Y-chromosome. The Y- chromosome is very strongly male-determining since the presence of testis and some secondary sex characteristics are dependent on the presence of this chromosome.4'5 Chromosomes are made up of units called genes which are the basic units of heredity. Genes are too small to be seen by modern means of examination. However, chromosomes are visible in actively dividing cells, particularly during metaphase when they are ready to separate. Colchicine stops mitosis at this stage and is therefore added, after a suitable incubation period, to cellular material obtained usually from either peripheral blood, bone marrow, or skin. These cells are then exposed to a hypotonic solution, which causes them to swell and spread out so that they are more readily analysable; then they are fixed and stained. In general, chromosome pairs are classified according to their length and numbered in order of decreasing size (Figure 2). The longest chromosome is about 7 to 8 ,u in length, and the shortest is about 1.5 ,u. Each chromosome consists of two long thin parallel strands called chromatids, held together at one spot, called the centromere (kineto- chore). In addition to the length of the chromosome, the position of the centromere and sometimes the presence of satellites (small hetero- -+ -w 1 s - s s X-Chromosonwl-LinkedDiseases 537 :-':.;.::.':..-::.::%-.'..X-.'::-X.:-:.:;'.::I:.:2.:::..-.X:...:..:....::.:-....:.:..'::.:.-.::'..:.-::::.:,.:::::.-..:.-::.::...:....%::.:::".::..:'::::...::4:;.:.:'........:::...:.:"..::::..,:.:..:,:.:..,::..%7:..:-......::...::.....-:....,..'.:.:..-.:..:.-.....:7.-::...:...:,.::.:..X..'A.-.::.::::.:.:..::N-:-.:.:.:::.:.:'.:-:.:..;::%:-.:::N1.::-.!:v%.:::;:.:':I.:::-.y..::1:::...::..wi%:.:::.N-.:.:..':..%..i::-.:..::...':':.....'!',.::-H.%.:.-.'..?.:.::.i.i:....::.:.f.:.x:.:.:.I:::f';.'i..:::.:.::::'::......i.:::-N:.%..::....i:.%:.%...%......:::i.:.:%.iN....::.:.-....:-:::...-.-:.":%::.....".:::N.i.:.-:.:..i:!;.'..::....:.:.:::...::...;:::-...!.::.::.::E:...:::.::.'.::.;.::.::-.,.....X.H..::.:.....:::..:;::!...:::.:..:W::,:.:-.::::....:...::.:.:.:.:.::.::9':..--.;:-"%:..:.:N:.:4.-::..::..:,:.:i::.::.i.....::ix::::.:.NN.%":..:.::'%....:.:C.."%.1.:::..:.:..:,:.-::..':i::1.,::.::..:..:..:-..::..:::....:...::-.':...:::::M-.-:%.."%:::'.:..:..l.-:....:N:::..":::....'."::.:::::".N.....:.-:N,i::X.;.:..:...:.:.::X::N!-%:.l-:...:.....::.-:i.::,.=.:..:.i%.:::::.,:;:2':.X..:::::.....:.::.:.:.:.:.::.::..:s::.:.::.E::::.!:.:::::..:::::..:::-.'::i!:.::%::4:.::.::.4.:.."-N.%::'...:..:::..-..::'.:.-::":..:....%::;.:.:,":...:N:::::'.::":i::.;".fX..::.:.::":.:::N..:..:..::..::M'.:::::N;:'.'::.::.:.5M.:::iX..i-N-:::.:%::.:..:..:II:...:::::N:.'.:-:...4.':..:-...A-::':::::-..:;1:::..N:'..!.:"%-':-.:::.:-..:.:..X:M::...,.%..z::'..4X:.I:..:..::::..:..'::N:::.X!..::.....:-:':.,:....:;..M.::!I:.::.:'-:':::.:1.:M:.:.1'::1..::".:.:::.,X:.::......:.iN..::i::'...::.N..,:.:.:.'.::1..3...!:..::::...:..-:::...!.4,:X::.-.:...:N.:.::.:::.::N..'.:..:-::,...:1.::.:..A:;!..:..CI':"::::-:..::...:.%'..:'..::.:.-...1..N:::....%:;.-.:.:..::.:NX:..:.::.:.,:...::X:':...:.::...XI%....::N:-.4X%X:.N::.N::.NN.::..::1.:-.:'-.f..:4..:::s.....::..%-::-1...:1.e-N:.-::';:.....:-::-:l.-.:..N:x...1.--..:::'..:..:::_N'.-:!-:.:..-..:::::.:'.:-:::.::::.'..iX.%.:i.:.:-:::...,.:%:::::..-:::..::!::::.-.:.:::.::iN.:-:.4..:':I!:...'..::.-:.::,..:..2..:4;.'W:::.i.:v.-...:...::.:%..:.::.:.:..:..-..:::-.:.:...X%...:N:.:::.N::::.-.:%..-....:::.!..'.!.::::-:,:..;.-..,.,..-:O4.-.:7':.I..:::.%:-:::..i.:i.-:..:.:.:.:.":4::.:9..:."..:..-:::...-.:..--..:?:..::..:.;:::....::i.:.:.'..!:'.%..-:.:..::.X::.X...%.::.f-..:.4...::-.4:..:N%-:......:.:..':::N..N......I..:%."4.:..2:,::.V?...:.:.%:...:.::X'::X":%:....-:....7:...%:.:.:-::.,..:...::::.:':.:,:'.:::,..:....:::.:X..::"..::.:.:-.X:::-::::...:.-%::'-.:::-h:::.-:..":..::::...-1.:,:i...:.:,:-N:.X:::::..::.-.,.:.-.::.::.::::.:%::.:7:::,..::-.::,..Z..::.:::'::...-:::.:i::.'-.::.:'!.:::.::.:.N:X:::MIX4:-,,;::....:.:."..:!..:.4::..-:i.3::m.:::,:i%-:N.::.N:.:4::-.x..::.::NN:%:::::......N:..--:N::L:!:..:::....:...1-::-:`...:.xN...-:.:..:..:.1:-:.:.;::..::'...-.4:.:.:-.'.....V.iX:::..X.--:::::.:..:::N:N:4...:-:..%::':::::,.:...:.:::!:.-N:::..::::':.:..:.:...:-.::.:.:.-.:.:.:..:.:..:!W:....:::.:..-.:.:..2...%::..1::'-4-:::IN::::'.-..:4...::::;'.:...l:,.:%--.:ii:.:...:.::::-:-.%..:".XN..:.::::,-:.."-:.::.!'"..:z.%..."4..:.::::-.-.:...-..::.:..''....::..:4:.-::":..X.,.:X...:....::-:...:.:.:::4...:::..i::.X:::.::::..:..%':...::...N::.%.::!N..:X.'..:.':-%:".::..:'M'-..''::.::%N'..,.::.::-.!.-X.:.::'-1.'.:N.:.':i.-;.4..".::4:.:.:.':y..:.':4,:::.-.':N:::.:.:...:.:......s::.:::.1.:..:.,::.".':!C..-:.:.:.::':.::1.:'::X:R::X.:..::N'..!.::.:....::..4:R.:%.:.:M..:.4....::.-::.:..:.s..:X'.::.::.:::N...:.::.-:-....:.::..]....:.:-::%,.-4::g1:::..:.';:..-.:::M....::-..:::::':..:":.--...:.:::.:N-::.",A5.::..:..::..:'.:.::::...":::..::..::,..:..::......:..::.'.:.:.:.:.:..::".::::I..:1..:":V.:::"..:...:.:....:..1,:%:::...:.,.N:i4:.:....:1.....:z..:.::::N%:..:::-:::::::....:.:6:.1.:.:::.'i..:-.:.;.N:..:.-::;-.X..:....N."..:.::.:X-:%."%:.:.:.:::.:::.........-.:.::"..:....:I:.'::.-....:::X.:-.:.=--::N,:::.:,':::.:::-"X:4.:-..:.:.:l.%'.'::.:...:.:5..::.::.z:.:'.X.::::...:;-'..::'....:.::..::::4%i.:a':...:4..........::4::-..."::.!..:.:-:.:.:.-:i...:..:..........XX-..:'%:.:..:::..-..:-::.:.-X4::.:.:::.:..:-::.:!::.::.::.-::::_:.:.'::.:I...:N......:':C:.,:%.:...:.:X::!:':1:.:.N:4:::.-.:.:'-:.:..".L-::-":.M::..'..:..:::':.:'-X..:.:m:'".:.:.:".:.:::.....:9.,.':.:.:..%-:.--.:..-.::-2.-::i...-1.:.'.:-'-"::.:.-:..:.t'4..,.--.7:.':.-X%::::....:'..::4:::.:N%.:-N!X.:..%:.::::.:.:::-::.-::::..::%::::.X!::.%:_..:.::.::..-..':.''.:4:.::::::-N..:..N.%:::X..::4X!:!:::.-.:.:.:;....:.:.:'.:-:.:.:X..:t:-::.-.:-::::::..::..'::.:::.....;.:;.M.:.%N:.:..1-Z..::!.:':.!:-.z%%::.::.::-::::-..X..::.:..-:X::".;:.;.-.N::::.M..:::::.,Q..::.:.:.1'::..::.::.-:::!;::":N:::..NIN.:_y..:.:...:':..:.N.::'.::N..:.:...::-::%.::Y::X::..::.::4::::;:.I:::4.:..!-:.:..::--.::N%:..:1:.:.:.:,.:..N::::::.-.::.zM:.:::':;.::-::.......:..::-:.:!..::::-2::..::.!..:.;N.14.--::..:.:.:...:*::::::.:::.:.-:...:y.i:X:::::.-.:.1"::-::N;::::::::.-:.I:,..:r.X......:.::...:;:%...%::-.:::.::.-.:'..::.'.:-":-...::.:.:.1:.x::::.:%....:%::...:,:.%.:N-X.:X,.::....:h..:::...::.:.%:.:.%:::%.::.'-:..:;':.:....N.:..!...:.:::N:.:..::X'-..:.:..:::.:..:-::..:..%.":.:::-.::'...-.::..;:.:.::::..::...:::.-".;-.:..::'::X.::::N.:..:%X:-..--X%?:".-.:-:-:4::.:....-..::.N!.':..M.::.::-::.X:.:-:i.:,....::::...!:::....::,.....%-::.-:I-;:x.:-..N'N:z.:.j1..:.:..-.:.X::.!:::..N.:.:-.N::.:...:j.;.-..::::...;:-...,.--....:.-:.:.-..:."X.:...:%::-.:..,::::N::4.:!.'.;:..::.:......%-I..:::N..'.'.i-::'.-.:.;.:...:..:.:-.:..!.!:.X',::.-..:;,-%..-.:.,..:".:Nt.::.-.;:.:.:1:%::..:..N,:.:-:................1.:...:!.,::::-..-:::.:-:.:.:.i:i:..i.'..:-'::...:::s';:..-.-."..::.:.:::.::.-::.:':-::-.::....:....::iNx%:1...!.::::::.L:'....l...:::.:.:.::':...-:-.::%,:.:.:.;'::::4:X::.::::...X......i.:.:..-.::.:..'.".N.%:.:::::.,.-:..:.:::..'N::-::.i.!....:::.:::..::::%..;:N.:..:':.,h...'..:.:..:.-'.m..::.m:.-::::'N:::.':..X..-...:-.-..'..%::.::--:.-.".:..!..::.::;:C!:.N-....:.:...:..:.-...--:i.':..::-.::::.:!:.::.:..-:.,:.:::.:sI.:..'4..:....::.:::...:i::..::::%::.::..:..:.:.-.:.:..:-"-....:...Z.N.....',.--'.."...:.:,:::.;-:1:N..::.::-..h::.,::..:.:,.:......4.:.:"-N..N.-.X-:-:x-"..";:.-.::N::::..:-:.:.....:..:.l.:1.::.:.:::.:':::I.:.:..::-:X...::::.s.%:-;.N.:...::.:.:::.:::::..-::':1.::.::."::..'::...4:%:,.:..-::.x.:..'..%.".:N.-::,'::.%::-.:..:'::::-..:...:.::...:,.:.:-:...:.:...:.:..:..:-:::."z'::.:.::.::'.:.%:::.':::.::..::'.:::..::Q..:...-:"..',:.:N.:..'..:..:..:%':::..::.:.:.::.::"-.-:-:X.-...4::...:..::..N::.-:.--:-:.M%:.:XX.....:::..:V:.-`.%..:...:..-::'.:::X:::!.:.-::.-.:.:::.::...:.:.%...:.:.:.::.:.:..!:.:'N-..X-.::i..:.:.-:.,:.:..:::..::::::.X:D.N%::..::!:%:.::-.:.:::..:NXN%..i:.':':.,:..::.N.':-:::....-.::.::::.:::1..-.::-:.-::..:.-i:-O.X."-I:-.-.:1...::X::'::IN.:.'..:...::::::....:.:i.x::..:.%:...::X.:N.:.X."::::X::.:.::.-..:.::..:.:i.::.1.!.:....:::::.-N::.M.::..N.:I:-:.-.:..:.:..:M-:':%.:::..:.:.:.:...:::::!.:..:'..:::-.:...::.'-..WN::::..;x.:.:..:::.::N.:.:.::':.:...-'::"::.1:::X:..-.:%::-....::.'........-.'::...:::,:-:..":.:.....":,.::::..Q:4.:::.:w!.-:.::.N::N:::.I":-.l-:-:.....:...'%.:.:..:%::..........X.:.::::.-i:-...-!::-::,:.-:..::-..:-::......:..:::.!-!:N:.-...iN...::..Nk.......:::::%..%.-..-"::M%.-.-.-....:.%X.,.:-.7.:....:.:::::.Q-....:%:.:....:.:.:X:..N::.:...:.:.::::.:X.:!:.::...;--.::.-.::i.-..:N.:.:::::.:..':x..":..:...--:.-.'.:i:.I.:%::::.-.:..:.::.:..':V'..:-::-.:....:..:...::.:i........,::......::::...:-...!....:i:."t..-...4N:."...-..'.:.:...i.:...O..:.-.:...:..::"-.......:::.....:::::':.-.:.:''.:::.:...:.:..--';'%:::.:%:i.N::...:::a.:..:"...:..-.:.::..i::.::..--:'":::......-:.::-...:-..:-......:"......:.:...-,:..:.:..:-f...-:i.:::.......:::-A.X-.:..i-%I:`;.-.:.:...:..:N::.:-i:!,%:.....:.-....::::-.::...::...:.::.:...7...:..-..:1:..':..:,.-.....::Wl::.%-.,.1:.:'..:::.:,...::".:X.......!.':'..:.:...:.:.."i:.,...-...:::.:.:..-.'......:....1::.-...:-..`::.:::...:..i:N..::.--.'...:..:..-1:.:%:-'::.":--:...:1......m:'''....''-:::..:w.:---'::1:,:?::..%::::..::i:..:--.-,N::..:.:::...::...:.-.:::::.":.:::4-.-:.,:...:%:::':.:."::.....i:.:.:.:.:.:-:.::".::14::.:...:;:::.:::.`:.:.s.:.:::::.::-....!:..:%-:..:N.-'.:.:-:."...:!:::'-:::':.:.::.N."..:N..:.:%::..:%::.:N.:;..:-:.:-..-::::::..::.:i..:::..:.:-.4.::-.::.:..:X:::.:.:...:..I.::.:-:-.::1..:.':.-::.:N.7..''.::::.:"..4:::.::.!._..-'::::.:.:-..:.:::-:::..:..:...-.::.::..-::.:-:::.-O-.:::::,:X.:"i::.:..::..::N::.:..:.:...-::.:N:::.:::%.::..:.::I:'II.::.::!.ZN..::::.::2:.:::...:.:.%:.:.::-.::::.::::.:-:.'.'..:,.:.:..%.:...:N.:::.N-::::,.:%...:::.".::.:....f::.X4..::...:..:.:..':....:...::::.::..::.:.."..:...-..:.":...N...:..:,.%::.-:::.-..N.::-....:..:.:.....:'.:::!...::::.:.:i.,..:.:.::..::-.....:::-N.:..%..:.:4.:.::...:::%.%::.:.%:.::::':::..:-..N:,.::!.:....:%.:.:.:i:.:.:..-.-:.:.'.:...::-:.:..:.::.:..'...::i:::::.:..'-.:'...%..-::::..::.N%f.4!...::4..-.N:--.:..:::...::.:I..:.:::.:.:%'-.:'::.:'.::::N:-...1::.::";.%..::iIk'..--.:::.....N:':.::.'.::.,::...N%::..:.-:.:.:::...:-.'::-:.:..,:::.::::'-.-::.:.:.-.:.,..:.:.":..::...:.::.:.:-:::.::4.......NV-::':-".:..:f::......:.Xn..'.-.:.%-.::...':NN.:.::.:-.i."..:...-.X:.:.":-..:.A.-...:::...:..:.:...:::::-.-::.":.:.::'..:.X.:X-..-:.'-:1:':i.:..:.:-:4:.'.:-:::...::-:::..'.'::::...::::::.:%:...:...----:%:.:'...N:::::::.:6:..X:8.:.::-"..::.:N.-::..N:.:B:-::-::::.:.....::.-::..:.'::::.-:.:.-%.....::-..:...::.'::::::.-..:.::.!I.-:'-::.:.::..:-:..:I.X:::N.;..::'.::-:M:.:N'N...:...:.:.:.--%..:'N.::.::::.::M'.:......:..:::::.'.:-%..:.:':.-I..-::':-..::.:.:::--:..::::::-.:.:..,':.;:::..:::N:.-.:::.:.-F:42N.-..::'.:.:N.'4N'...::'.::.:::.%.-.::.:-.:.::i.:...:::%.:.::.,.:...-:..::..,.:.::..::..:::::.:.!.-.:-..N:..-f..'.:::::x.:.:.:..i:::!.::N:N:.:.:.:.:i:%.:.:.:.2.:..Y::.i.:..:N.:::..::.:i!..--."".:::!".:.-.:'.':...,,'...:i..:..iN:..:.::...:::.%::i:.`.:%.:%..:.:..'.%...:.:::.:..:'::.:%...:.::'::..:...':-..Ni..W:-N.-..:.::'I:--..j-:..::':.:.:%-'.::N.:...:.-.::.::.:...:.....::--:....::::.-...:.::X:.1-%:.:::,-::.:..-':--.'.:..:...:P::.::N:.'.-:::::..::.:...-.:::.:.:.:::.::-.:N:..,.,.::..:.......::%..%...N..:%.-N.:'NN;:....::...::....::......:.:.-...I.......N.......:...:%:..:...:..%.%:.....:...:.:..:....:....:.:...............N.:.::.N.:...-.... 538 Alex E. Krilt categorized into seven groups identified by the letters A through C in order of decreasing length and position of chromatid (see caption to Figure 2). Audioradiographic characteristics after labeling with H3-thymidine may be utilized in the future as an aid in identifying certain chromosomes.6 The two x-chromosomes of a female, although similar in length and position of ceiitromere, show a number of differences. During the prophase of cellular division, one of the two x-chromosomes is more heavily condensed, takes a darker stain and is said to be hetero- chromatic.7'8 This heterochromatic chromosome has a laterDNAreplica- tion pattern.9 It is frequently seen in the resting phase (interphase) of somatic cells as a small, very intensely staining body most com- monly situated at the periphery of the nucleus, just inside the nuclear membrane and called the "Barr sex-chromatin body" or the "Barr body." This peculiar staining body, first identified by Barr and Bertram'0 in cat nerve cells, has been identified in most mammalian somatic cells. In humans it is usually searched for in buccal mucosa smears and normally is seen in close to 40 per cent of such cells from a female. The appearance is similar in most cells except in polymor- phonuclear leukocytes where it appears as a darkly staining lobule attached to the nucleus by a stalk and is called a drum stick.1' The distinctive morphology of the Barr body in these cells is a reflection of the peculiar shape of the nuclei of the polymorphonuclear leukocytes. The two male sex chromosomes differ considerably in length, the Y-chromosome being much shorter than the x-chromosome (Figure 1). These chromosomes have homologous segments, which are similar in morphological appearance on x- and Y-, and non-homologous seg- ments, which are dissimilar on x- and Y-chromosomes. Obviously the non-homologous segment of the x-chromosome is considerably larger. It is only in the homologous sections of the x- and Y-chromosomes that interchange and crossing over of genetic material can occur. A trait determined by genes carried on any of the sex chromosomes is called sex-linked. Traits determined by genes carried on the homo- logous segment of the male x-chromosome are called partially sex- linked. However, no trait or disease has been as yet traced to a gene supposedly present on this portion of the x-chromosome. Traits deter- mined by genes carried on the Y-chromosome are called holandric, but only one trait, hairy ears, is thought to reflect a gene carried on the Y-chromosome at the present time.'2 All other sex-linked traits or diseases are thought to be due to genes on the non-homologous segment ofthe x-chromosome. X-Chromosomal-LinkedDiseases 539 A male with a defective gene on the x-chromosome is said to be hemizygous for the gene. Since there is no normal gene to oppose the defective gene, its resulting trait or disease, whether dominant or recessive, will always be manifest. On the other hand, a female may be heterozygous for a gene (present on one of the two x-chromo- somes) or homozygous (the gene is present on both x-chromosomes). Since most sex-linked traits or diseases are said to be recessive, two defective genes are usually necessary in the female before the typical condition is manifest. If only one defective gene is necessary, then the condition is dominant. Obviously the terms dominant and recessive aremeaningless in the male. The distinctive feature of x-linked inheritance, both dominant and recessive, is the absence of father to son transmission, since the male x-chromosome passes only to daughters. All daughters of an affected male will inherit the defective gene. One half of the sons of females carrying the defective gene and one-fourth of the sons of all daughters of carrier females will be affected. If the trait is recessive no daughters of affected males should be affected although all will be carriers. If the trait is dominant, all daughters of affected males will be affected and 50 per cent of the daughters of an affected female willbe affected. The proportion of affected sons of carriers and of carriers' daughters will be the same as with an x-linked recessive condition. Occasionally an x-linked dominanttrait is lethalinthe male so that the affected trait is seen only in females. An excess of affected females in a pedigree should suggest the possibility of x-linked dominant inheritance. In summary, then, an x-linked trait or disease is manifest in the female when: (1) the condition is dominant, or (2) the condition is recessive but the female is carrying two defective genes, or (3) the condition is recessive and she is carrying only one defective gene but she has, similar to the male, only one x-chromosome (Turner's syn- drome). As mentioned, though, there are many examples of females with two x-chromosomes who are carrying only one defective gene for a "recessive" condition but nevertheless show either partial mani- festation or, very rarely, full manifestation of the condition. It is here that our classical notions of "recessive" and "dominant" have required modification. MATERIALS In some of the conditions to be described, x-linked inheritance has not been conclusively proved by the absence of male to male transmission but is based Qn faQtors such as the high frequency of the disease in 54( Alex E. Krilt males, the minimal or absent findings in females, and the "oblique" pattern of inheritance (unaffected females to affected males). As previously indicated, x-linked dominant inheritance is suspected with an excess of affected females or with only affected females. Some conditions may not be unique and evidence is presented for this con- clusion. A few conditions to be discussed do not have x-linked in- heritance but are considered because this mode of inheritance was ascribed in the past or is still ascribed in some sources at the present time. The abnormalities described in females in the various conditions are derived from reports in the literature or from our own experience. Some of the original abnormalities noted in our laboratory were demonstrated by means of retinal functional testing. Our techniques for color-vision testing, dark-adaptation evaluation, electroretinog- raphy, and electro-oculography have been previously described.13-'8 X-LINKED DISEASES INCOMPLETE TOTAL COLOR BLINDNESS (MONOCHROMATISM) Blackwell and Blackwell'9'`0 described a form of incomplete total color blindness which they called "blue mono-cone monochromatism" because blue cones appeared to be only minimally involved. In con- trast to typical total color blindness with autosomal recessive inheri- tance, this condition has x-linked recessive inheritance.2' Visual acuity is reduced as in typical monochromatism but to a lesser degree. These patients have a mixed luminosity curve at high photopic intensities and a scotopic type at low photopic intensities. They demonstrate evidence of blue-cone function on certain psychophysical tests.20'22'23 Myopia is commonin affectedmales. Female carriers with manifestations have been noted. In one family,24 carriers showed delayed dark adaptation and a subnormal a wave of the ERG. In another family,25a one female was a deuter- anope and another, who was too young to completely evaluate, had both photophobia and nystagmus. In a family we studied (Figure 3), the mother of three affected sons had a slow rod-cone break time of 20 minutes on dark adaptation (normally this does not take longer than 12 minutes17) and a low flicker fusion frequency on the ERG (Figure 4) of 35 cycles per second (compared to a normal average of 70). This frequency, though, was much higher than that obtained from two tested sons who both had fusion frequenie5 of 4 cycles per sownd, In addition there were '2~~~~~~~~~~~~~~~~~~~~~~~~' ~~~~~~~~~~ N J0 F4~~~~~~~~~~~~~~~~~~~~~4 0 Cd N cm~~~~~~~~~~~~~~~~~~~~~4 _ 4) 0~~~ o~~~~~~~~~~~~~~~~~o o0~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~r~ - ~~~~~~~~~r wCkC.)U>, - U)~~~~~~~~~~~.U o ~ ~~~~~ ~~~~~~~~~~~~~~~~~~ * ow e0 0~~~~~~~~~2~~~~~~~~~~~~IL~~L~~z~~~w~a~~~~~~~~~~~~~~40 z 0 z z _ e >m _ 4bts C) 4) 0 -CI~~~~~~~~~~~~~~~~~~~~~C LO~~~~~~~~~~~~~~~~~~~~~~~4 N~~~~ %44 ~~~~~~~~~~~~~~~~~~~~~~~~~~44 cg 0 5.942 Alex E. Krill TOTAL CONGENITAL COLORBLINDNESS (SEX-LI NKED) en 250- I- x Female Carrier J 0 A Involved Mole ° 200- i Normal Mean ± 2 S.D. -, 0 w 150- - a- 100- 4 w < 50 A 0D A x 0 i 2 3 4 5 7.510 I 203o04o5s o 0 FREQUENCY (CYCLES/SECOND) FIGURE 4 B-wave amplitudes at each frequency from male iv, 7 and carrier female ii, 14 are plotted with normal data. Flicker fusion frequencies of four cycles per second were found in the involved male (and his brother iv, 6 as well) and about 35 cycles per second in the female carrier. color-vision abnormalities on the Farnsworth-Munsell 100-Hue Test (a greater than normal number of errors and a deuteranomalous axis) and on the Nagel anomaloscope (a wider than normal Rayleigh equa- tion with displacement toward the green end of the instrument). All other visual functions were normal. PARTIAL COLOR BLINDNESS (DEUTAN AND PROTAN DEFECTS) The characteristics of partial red and green color-vision defects (pro- tanopia, protanomaly, deuteranopia, deuteranomaly) are well known. The two most frequently reported abnormalities in female carriers are abnormal performance on the anomaloscope and decrease in sensitivity to red light. The two abnormalities emphasized on the anomaloscope X-Chromosomal-LinkedDiseases t-1543 in both green (deutan) and red (protan) defect carriers are an ab- normally wide equation (pathological scatter) and an equation dis- placed slightly toward red in protan carriers and toward green in deutan carriers.26-31 The other most frequent abnormality is noted in protan carriers and is called Schmidt's sign after its discoverer.2 This defect consists of a darkening of the red end of the spectrum and is demonstrated by a shift of the photopic spectral luminosity curve toward the violet end of the spectrum. The maximum sensitivity is displaced about half-way between the normal position and the position typical for protan males. This sign is not correlated with other findings and in fact may occur with completely normal color performance on all other tests. Other abnormalities reported in a few carriers include:26'27'28 (1) errors on the pseudoisochromatic plates; (2) decreased differential saturation thresholds, particularly for red in protan carriers and for green in deutan carriers; (3) exaggerated contrast on the anomalo- scope in three carriers of protanopia; (4) elevated hue differential thresholds, mainly in blue and blue-green spectral areas in a carrier of protanopia and in one of deuteranomaly; and (5) deviation of the luminosity quotient (ratio of luminosity of green and red in the equal- energy spectrum) in both deutan and protan carriers.3>33 Occasionally the color-vision abnormality is as severe as in affected males. Examples of abnormalities on the Nagel anomaloscope in carriers of protan defects from five families we studied (Figure 5) are shown in Table 1. The abnormalities include a slight, but definitely abnormal, matching equation in four of nine carriers, an abnormally wide match range in three carriers, and an abnormal minimal brightness point in two carriers. We have also detected brightness abnormalities in protan carriers by using red-light thresholds. We found a significant elevation of the absolute red-light threshold at five degrees retinal eccentricity in seven of eight protan carriers studied.13 The elevations were of the same order in protanopes, protanomals, and their female relatives. In another study, the fovea and four peripheral retinal areas were tested with a red light before the occurrence of the rod-cone break.34 Six female carriers of protanopia were tested and elevated thresholds were found at the fovea in all carriers, and in some peripheral retinal areas in two carriers (Figures 6, 7, and 8). However, the thresholds for carriers were far below those obtained from six protanopic males. In neither of the above two studies was the degree of threshold elevation related to the performance of carriers on other color-vision tests. In another study we used the Farnsworth-Munsell 100-Hue test for 544 Alex E. Krill PROTANOPIA I IL b a. b. C. d. e. f. 9. a. b. c. d. e. t. 9. h i. j. FAMILY I I ( * I([ a b. a. b. a. b. c. d. a. b. c. e. a. b. a. FAMILY 2 FAMILY 3 PROTANOM-ALY I~~ ~ ~ a b c. d o. b. o. h c d- e. f. o. b. c. d. = A m O0 a'. b- a. b. c. FAMILY 4 FAMILY 5 LEGEND 1,=MALES OR FEMALES G-EXAMINED NORMAL O NO INFORMATION *EAFFECTED REPORTED NORMAL V/z EXAMINED INDIVIDUAL 1 REPORTED AFFECTED W STATUS UNCERTAIN )-zCARRIERS FIGURE 5 Pedigrees of 3 families with protanopia and 2 with protanomaly.

Description:
Cibis47 differentiated congenital vascular veils of the vitreous from congenital .. microphthalmia is the cause of the cataract or whether some other.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.