ebook img

Statistics of Extremes: Theory and Applications PDF

504 Pages·2004·8.5 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Statistics of Extremes: Theory and Applications

Statistics of Extremes Theory and Applications Jan Beirlant, Yuri Goegebeur, and Jozef Teugels University Center of Statistics, Katholieke Universiteit Leuven, Belgium Johan Segers Department of Econometrics, Tilburg University, The Netherlands with contributions from: Daniel De Waal Department of Mathematical Statistics, University of the Free State, South Africa Chris Ferro Department of Meteorology, The University of Reading, UK Copyright2004 JohnWiley&SonsLtd,TheAtrium,SouthernGate,Chichester, WestSussexPO198SQ,England Telephone(+44)1243779777 Email(forordersandcustomerserviceenquiries):[email protected] VisitourHomePageonwww.wileyeurope.comorwww.wiley.com AllRightsReserved.Nopartofthispublicationmaybereproduced,storedinaretrievalsystemor transmittedinanyformorbyanymeans,electronic,mechanical,photocopying,recording,scanning orotherwise,exceptunderthetermsoftheCopyright,DesignsandPatentsAct1988orunderthe termsofalicenceissuedbytheCopyrightLicensingAgencyLtd,90TottenhamCourtRoad,London W1T4LP,UK,withoutthepermissioninwritingofthePublisher.RequeststothePublishershould beaddressedtothePermissionsDepartment,JohnWiley&SonsLtd,TheAtrium,SouthernGate, Chichester,WestSussexPO198SQ,England,[email protected],orfaxedto(+44) 1243770620. Thispublicationisdesignedtoprovideaccurateandauthoritativeinformationinregardtothesubject mattercovered.ItissoldontheunderstandingthatthePublisherisnotengagedinrendering professionalservices.Ifprofessionaladviceorotherexpertassistanceisrequired,theservicesofa competentprofessionalshouldbesought. OtherWileyEditorialOffices JohnWiley&SonsInc.,111RiverStreet,Hoboken,NJ07030,USA Jossey-Bass,989MarketStreet,SanFrancisco,CA94103-1741,USA Wiley-VCHVerlagGmbH,Boschstr.12,D-69469Weinheim,Germany JohnWiley&SonsAustraliaLtd,33ParkRoad,Milton,Queensland4064,Australia JohnWiley&Sons(Asia)PteLtd,2ClementiLoop#02-01,JinXingDistripark,Singapore129809 JohnWiley&SonsCanadaLtd,22WorcesterRoad,Etobicoke,Ontario,CanadaM9W1L1 Wileyalsopublishesitsbooksinavarietyofelectronicformats.Somecontentthatappears inprintmaynotbeavailableinelectronicbooks. LibraryofCongressCataloging-in-PublicationData Statisticsofextremes:theoryandapplications/JanBeirlant...[etal.],withcontributions fromDanielDeWaal,ChrisFerro. p.cm.—(Wileyseriesinprobabilityandstatistics) Includesbibliographicalreferencesandindex. ISBN0-471-97647-4(acid-freepaper) 1. Mathematical statistics. 2. Maxima and minima. I. Beirlant, Jan. II. Series. QA276.S7834472004 519.5–dc22 2004051046 BritishLibraryCataloguinginPublicationData AcataloguerecordforthisbookisavailablefromtheBritishLibrary ISBN0-471-97647-4 ProducedfromLaTeXfilessuppliedbytheauthorsandprocessedbyLaserwordsPrivateLimited, Chennai,India PrintedandboundinGreatBritainbyAntonyRoweLtd,Chippenham,Wiltshire Thisbookisprintedonacid-freepaperresponsiblymanufacturedfromsustainableforestry inwhichatleasttwotreesareplantedforeachoneusedforpaperproduction. Contents Preface xi 1 WHY EXTREME VALUE THEORY? 1 1.1 A Simple Extreme Value Problem . . . . . . . . . . . . . . . . . . 1 1.2 Graphical Tools for Data Analysis . . . . . . . . . . . . . . . . . . 3 1.2.1 Quantile-quantile plots . . . . . . . . . . . . . . . . . . . . 3 1.2.2 Excess plots . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.3 Domains of Applications . . . . . . . . . . . . . . . . . . . . . . . 19 1.3.1 Hydrology . . . . . . . . . . . . . . . . . . . . . . . . . . 19 1.3.2 Environmental research and meteorology . . . . . . . . . . 21 1.3.3 Insurance applications . . . . . . . . . . . . . . . . . . . . 24 1.3.4 Finance applications . . . . . . . . . . . . . . . . . . . . . 31 1.3.5 Geology and seismic analysis . . . . . . . . . . . . . . . . 32 1.3.6 Metallurgy . . . . . . . . . . . . . . . . . . . . . . . . . . 40 1.3.7 Miscellaneous applications . . . . . . . . . . . . . . . . . . 42 1.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 2 THE PROBABILISTIC SIDE OF EXTREME VALUE THEORY 45 2.1 The Possible Limits. . . . . . . . . . . . . . . . . . . . . . . . . . 46 2.2 An Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 2.3 The Fre´chet-Pareto Case: γ >0 . . . . . . . . . . . . . . . . . . . 56 2.3.1 The domain of attraction condition . . . . . . . . . . . . . 56 2.3.2 Condition on the underlying distribution . . . . . . . . . . 57 2.3.3 The historical approach . . . . . . . . . . . . . . . . . . . 58 2.3.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 2.3.5 Fitting data from a Pareto-type distribution . . . . . . . . . 61 2.4 The (Extremal) Weibull Case: γ <0 . . . . . . . . . . . . . . . . 65 2.4.1 The domain of attraction condition . . . . . . . . . . . . . 65 2.4.2 Condition on the underlying distribution . . . . . . . . . . 67 2.4.3 The historical approach . . . . . . . . . . . . . . . . . . . 67 2.4.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 v vi CONTENTS 2.5 The Gumbel Case: γ =0 . . . . . . . . . . . . . . . . . . . . . . 69 2.5.1 The domain of attraction condition . . . . . . . . . . . . . 69 2.5.2 Condition on the underlying distribution . . . . . . . . . . 72 2.5.3 The historical approach and examples. . . . . . . . . . . . 72 2.6 Alternative Conditions for (C ) . . . . . . . . . . . . . . . . . . . 73 γ 2.7 Further on the Historical Approach . . . . . . . . . . . . . . . . . 75 2.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 2.9 Background Information . . . . . . . . . . . . . . . . . . . . . . . 76 2.9.1 Inverse of a distribution . . . . . . . . . . . . . . . . . . . 77 2.9.2 Functions of regular variation . . . . . . . . . . . . . . . . 77 2.9.3 Relation between F and U . . . . . . . . . . . . . . . . . 79 2.9.4 Proofs for section 2.6 . . . . . . . . . . . . . . . . . . . . 80 3 AWAY FROM THE MAXIMUM 83 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 3.2 Order Statistics Close to the Maximum . . . . . . . . . . . . . . . 84 3.3 Second-order Theory . . . . . . . . . . . . . . . . . . . . . . . . . 90 3.3.1 Remainder in terms of U . . . . . . . . . . . . . . . . . . 90 3.3.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 3.3.3 Remainder in terms of F . . . . . . . . . . . . . . . . . . 93 3.4 Mathematical Derivations . . . . . . . . . . . . . . . . . . . . . . 94 3.4.1 Proof of (3.6) . . . . . . . . . . . . . . . . . . . . . . . . . 95 3.4.2 Proof of (3.8) . . . . . . . . . . . . . . . . . . . . . . . . . 96 3.4.3 Solution of (3.15) . . . . . . . . . . . . . . . . . . . . . . 97 3.4.4 Solution of (3.18) . . . . . . . . . . . . . . . . . . . . . . 98 4 TAIL ESTIMATION UNDER PARETO-TYPE MODELS 99 4.1 A Naive Approach . . . . . . . . . . . . . . . . . . . . . . . . . . 100 4.2 The Hill Estimator . . . . . . . . . . . . . . . . . . . . . . . . . . 101 4.2.1 Construction . . . . . . . . . . . . . . . . . . . . . . . . . 101 4.2.2 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 4.3 Other Regression Estimators . . . . . . . . . . . . . . . . . . . . . 107 4.4 A Representation for Log-spacings and Asymptotic Results . . . . 109 4.5 Reducing the Bias . . . . . . . . . . . . . . . . . . . . . . . . . . 113 4.5.1 The quantile view . . . . . . . . . . . . . . . . . . . . . . 113 4.5.2 The probability view . . . . . . . . . . . . . . . . . . . . . 117 4.6 Extreme Quantiles and Small Exceedance Probabilities . . . . . . 119 4.6.1 First-order estimation of quantiles and return periods . . . 119 4.6.2 Second-order refinements . . . . . . . . . . . . . . . . . . 121 4.7 Adaptive Selection of the Tail Sample Fraction . . . . . . . . . . . 123 5 TAIL ESTIMATION FOR ALL DOMAINS OF ATTRACTION 131 5.1 The Method of Block Maxima . . . . . . . . . . . . . . . . . . . . 132 5.1.1 The basic model . . . . . . . . . . . . . . . . . . . . . . . 132 5.1.2 Parameter estimation . . . . . . . . . . . . . . . . . . . . . 132 CONTENTS vii 5.1.3 Estimation of extreme quantiles . . . . . . . . . . . . . . . 135 5.1.4 Inference: confidence intervals. . . . . . . . . . . . . . . . 137 5.2 Quantile View—Methods Based on (C ) . . . . . . . . . . . . . . 140 γ 5.2.1 Pickands estimator . . . . . . . . . . . . . . . . . . . . . . 140 5.2.2 The moment estimator . . . . . . . . . . . . . . . . . . . . 142 5.2.3 Estimators based on the generalized quantile plot . . . . . 143 5.3 Tail Probability View—Peaks-Over-Threshold Method . . . . . . . 147 5.3.1 The basic model . . . . . . . . . . . . . . . . . . . . . . . 147 5.3.2 Parameter estimation . . . . . . . . . . . . . . . . . . . . . 149 5.4 Estimators Based on an Exponential Regression Model . . . . . . 155 5.5 Extreme Tail Probability, Large Quantile and Endpoint Estimation Using Threshold Methods . . . . . . . . . . . . . . . . . . . . . . 156 5.5.1 The quantile view . . . . . . . . . . . . . . . . . . . . . . 156 5.5.2 The probability view . . . . . . . . . . . . . . . . . . . . . 158 5.5.3 Inference: confidence intervals. . . . . . . . . . . . . . . . 159 5.6 Asymptotic Results Under (C )-(C∗) . . . . . . . . . . . . . . . . 160 γ γ 5.7 Reducing the Bias . . . . . . . . . . . . . . . . . . . . . . . . . . 165 5.7.1 The quantile view . . . . . . . . . . . . . . . . . . . . . . 165 5.7.2 Extreme quantiles and small exceedance probabilities . . . . . . . . . . . . . . . . . . . . . . . . . 167 5.8 Adaptive Selection of the Tail Sample Fraction . . . . . . . . . . . 167 5.9 Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 5.9.1 Information matrix for the GEV . . . . . . . . . . . . . . . 169 5.9.2 Point processes . . . . . . . . . . . . . . . . . . . . . . . . 169 5.9.3 GRV functions with ρ <0 . . . . . . . . . . . . . . . . . 171 2 5.9.4 Asymptotic mean squared errors . . . . . . . . . . . . . . 172 5.9.5 AMSE optimal k-values . . . . . . . . . . . . . . . . . . . 173 6 CASE STUDIES 177 6.1 The Condroz Data . . . . . . . . . . . . . . . . . . . . . . . . . . 177 6.2 The Secura Belgian Re Data . . . . . . . . . . . . . . . . . . . . . 188 6.2.1 The non-parametric approach . . . . . . . . . . . . . . . . 189 6.2.2 Pareto-type modelling . . . . . . . . . . . . . . . . . . . . 191 6.2.3 Alternative extreme value methods . . . . . . . . . . . . . 195 6.2.4 Mixture modelling of claim sizes . . . . . . . . . . . . . . 198 6.3 Earthquake Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 200 7 REGRESSION ANALYSIS 209 7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210 7.2 The Method of Block Maxima . . . . . . . . . . . . . . . . . . . . 211 7.2.1 Model description . . . . . . . . . . . . . . . . . . . . . . 211 7.2.2 Maximum likelihood estimation . . . . . . . . . . . . . . . 212 7.2.3 Goodness-of-fit . . . . . . . . . . . . . . . . . . . . . . . . 213 7.2.4 Estimation of extreme conditional quantiles . . . . . . . . 216 viii CONTENTS 7.3 The Quantile View—Methods Based on Exponential Regression Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218 7.3.1 Model description . . . . . . . . . . . . . . . . . . . . . . 218 7.3.2 Maximum likelihood estimation . . . . . . . . . . . . . . . 219 7.3.3 Goodness-of-fit . . . . . . . . . . . . . . . . . . . . . . . . 222 7.3.4 Estimation of extreme conditional quantiles . . . . . . . . 223 7.4 The Tail Probability View—Peaks Over Threshold (POT) Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225 7.4.1 Model description . . . . . . . . . . . . . . . . . . . . . . 225 7.4.2 Maximum likelihood estimation . . . . . . . . . . . . . . . 226 7.4.3 Goodness-of-fit . . . . . . . . . . . . . . . . . . . . . . . . 229 7.4.4 Estimation of extreme conditional quantiles . . . . . . . . 231 7.5 Non-parametric Estimation . . . . . . . . . . . . . . . . . . . . . . 233 7.5.1 Maximum penalized likelihood estimation . . . . . . . . . 234 7.5.2 Local polynomial maximum likelihood estimation . . . . . 238 7.6 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241 8 MULTIVARIATE EXTREME VALUE THEORY 251 8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251 8.2 Multivariate Extreme Value Distributions . . . . . . . . . . . . . . 254 8.2.1 Max-stability and max-infinite divisibility . . . . . . . . . 254 8.2.2 Exponent measure . . . . . . . . . . . . . . . . . . . . . . 255 8.2.3 Spectral measure . . . . . . . . . . . . . . . . . . . . . . . 258 8.2.4 Properties of max-stable distributions . . . . . . . . . . . . 265 8.2.5 Bivariate case. . . . . . . . . . . . . . . . . . . . . . . . . 267 8.2.6 Other choices for the margins . . . . . . . . . . . . . . . . 271 8.2.7 Summary measures for extremal dependence . . . . . . . . 273 8.3 The Domain of Attraction . . . . . . . . . . . . . . . . . . . . . . 275 8.3.1 General conditions . . . . . . . . . . . . . . . . . . . . . . 276 8.3.2 Convergence of the dependence structure . . . . . . . . . . 281 8.4 Additional Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . 287 8.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290 8.6 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292 8.6.1 Computing spectral densities . . . . . . . . . . . . . . . . 292 8.6.2 Representations of extreme value distributions . . . . . . . 293 9 STATISTICS OF MULTIVARIATE EXTREMES 297 9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297 9.2 Parametric Models . . . . . . . . . . . . . . . . . . . . . . . . . . 300 9.2.1 Model construction methods . . . . . . . . . . . . . . . . . 300 9.2.2 Some parametric models . . . . . . . . . . . . . . . . . . . 304 9.3 Component-wise Maxima . . . . . . . . . . . . . . . . . . . . . . 313 9.3.1 Non-parametric estimation . . . . . . . . . . . . . . . . . . 314 9.3.2 Parametric estimation . . . . . . . . . . . . . . . . . . . . 318 9.3.3 Data example . . . . . . . . . . . . . . . . . . . . . . . . . 321 CONTENTS ix 9.4 Excesses over a Threshold . . . . . . . . . . . . . . . . . . . . . . 325 9.4.1 Non-parametric estimation . . . . . . . . . . . . . . . . . . 326 9.4.2 Parametric estimation . . . . . . . . . . . . . . . . . . . . 333 9.4.3 Data example . . . . . . . . . . . . . . . . . . . . . . . . . 338 9.5 Asymptotic Independence . . . . . . . . . . . . . . . . . . . . . . 342 9.5.1 Coefficients of extremal dependence . . . . . . . . . . . . 343 9.5.2 Estimating the coefficient of tail dependence . . . . . . . . 350 9.5.3 Joint tail modelling . . . . . . . . . . . . . . . . . . . . . . 354 9.6 Additional Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . 365 9.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366 10 EXTREMES OF STATIONARY TIME SERIES 369 10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369 10.2 The Sample Maximum . . . . . . . . . . . . . . . . . . . . . . . . 371 10.2.1 The extremal limit theorem . . . . . . . . . . . . . . . . . 371 10.2.2 Data example . . . . . . . . . . . . . . . . . . . . . . . . . 375 10.2.3 The extremal index . . . . . . . . . . . . . . . . . . . . . . 376 10.3 Point-Process Models . . . . . . . . . . . . . . . . . . . . . . . . . 382 10.3.1 Clusters of extreme values . . . . . . . . . . . . . . . . . . 382 10.3.2 Cluster statistics . . . . . . . . . . . . . . . . . . . . . . . 386 10.3.3 Excesses over threshold . . . . . . . . . . . . . . . . . . . 387 10.3.4 Statistical applications . . . . . . . . . . . . . . . . . . . . 389 10.3.5 Data example . . . . . . . . . . . . . . . . . . . . . . . . . 395 10.3.6 Additional topics . . . . . . . . . . . . . . . . . . . . . . . 399 10.4 Markov-Chain Models . . . . . . . . . . . . . . . . . . . . . . . . 401 10.4.1 The tail chain . . . . . . . . . . . . . . . . . . . . . . . . . 401 10.4.2 Extremal index . . . . . . . . . . . . . . . . . . . . . . . . 405 10.4.3 Cluster statistics . . . . . . . . . . . . . . . . . . . . . . . 406 10.4.4 Statistical applications . . . . . . . . . . . . . . . . . . . . 407 10.4.5 Fitting the Markov chain. . . . . . . . . . . . . . . . . . . 408 10.4.6 Additional topics . . . . . . . . . . . . . . . . . . . . . . . 411 10.4.7 Data example . . . . . . . . . . . . . . . . . . . . . . . . . 413 10.5 Multivariate Stationary Processes . . . . . . . . . . . . . . . . . . 419 10.5.1 The extremal limit theorem . . . . . . . . . . . . . . . . . 419 10.5.2 The multivariate extremal index . . . . . . . . . . . . . . . 421 10.5.3 Further reading . . . . . . . . . . . . . . . . . . . . . . . . 424 10.6 Additional Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . 425 11 BAYESIAN METHODOLOGY IN EXTREME VALUE STATISTICS 429 11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 429 11.2 The Bayes Approach . . . . . . . . . . . . . . . . . . . . . . . . . 430 11.3 Prior Elicitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 431 11.4 Bayesian Computation . . . . . . . . . . . . . . . . . . . . . . . . 433 11.5 Univariate Inference . . . . . . . . . . . . . . . . . . . . . . . . . 434 x CONTENTS 11.5.1 Inference based on block maxima . . . . . . . . . . . . . . 434 11.5.2 Inference for Fre´chet-Pareto-type models . . . . . . . . . . 435 11.5.3 Inference for all domains of attractions . . . . . . . . . . . 445 11.6 An Environmental Application . . . . . . . . . . . . . . . . . . . . 452 Bibliography 461 Author Index 479 Subject Index 485 Preface The key result obtained by Fisher and Tippett in 1928 on the possible limit laws of the sample maximum has seemingly created the idea that extreme value theory was something rather special, very different from classical central limit theory. In fact, the number of publications dealing with statistical aspects of extremes dated before1970isatmostadozen.ThebookbyE. J. Gumbel,publishedbyColumbia UniversityPressin1958,hasforalongtimebeenconsideredasthemainreferential workforapplicationsofextremevaluetheoryinengineeringsubjects.Acloselook at this seminal publication shows that in the early stages one tried to approach extreme value theory via central limit machinery. During the decade following its appearance, no change occurred in the lack of interest among probabilists and statisticians who contributed only a very limited number of relevant papers. From the theoretical point of view, the 1970 doctoral dissertation by L. de HaanOnRegularVariationanditsApplicationstotheWeakConvergenceofSample Extremes seems to be the starting point for theoretical developments in extreme valuetheory.Forthefirsttime,theprobabilisticandstochasticpropertiesofsample extremes were developed into a coherent and attractive theory, comparable to the theoryofsumsofrandomvariables.Thestatisticalaspectshadtowaitevenlonger before they received the necessary attention. In Chapter 1, we illustrate why and how one should look at extreme values in a data set. Many of these examples will reappear as illustrations and even as case studiesinthe sequel.The nextfive chaptersdealwiththeunivariate theoryfor the caseofindependentandidenticallydistributedrandomvariables.Chapter 2covers the probabilistic limiting problem for determining the possible limits of sample extremes together with the connected domain of attraction problem. The extremal domainofattractionconditionis,however,tooweaktousetofullydevelopuseful statistical theories of estimation, construction of confidence intervals, bias reduc- tion, and so on. The need for second order information is illustrated in Chapter 3. Armed with this information, we attack the tail estimation problem for the Pareto caseinChapter 4andforthegeneralcaseinChapter 5.Allthemethodsdeveloped so far are then illustrated by a number of case studies in Chapter 6. The last five chapters deal with topics that are still in full and vigorous devel- opment.Wecanonlytrytogiveapicturethatisascompleteaspossibleatthetime of writing. To broaden the statistical machinery in the univariate case, Chapter 7 treatsavarietyofalternativemethodsunderacommonumbrellaofregression-type xi xii PREFACE methods.Chapters 8and9dealwithmultivariate extremesandrepeatsomeofthe methodology of previous chapters, in more than one dimension. In the first of these two chapters, we deal with the probabilistic aspects of multivariate extreme value theory by including the possible limits and their domains of attraction; the next chapter is then devoted to the statistical features of this important subject. Chapter 9givesanalmostself-containedsurveyofextremevaluemethods intime series analysis, an area where the importance of extremes has already long been recognized. We finish with a separate and tentative chapter on Bayesian methods, a topic in need of further and deep study. We are aware that it is a daring act to write a book with the title Statistics of Extremes, the same as that of the first main treatise on extremes. What is even more daring is our attempt to cope with the incredible speed at which statistical extreme value theory has been exploding. More than half of the references in this book appeared over the last ten years. However, it is our sincere conviction that over the last two decades extreme value theory has matured and that it should become part of any in-depth education in statistics or its applications. We hope that this slight attempt of ours gets extreme value theory duly recognized. Here are some of the main features of the book. 1. The probabilistic aspects in the first few chapters are streamlined to quickly arrive at the key conditions needed to understand the behaviour of sample extremes.Itwouldhavebeenpossibletowriteamorecompleteandrigorous text that would automatically be much more mathematical. We felt that, for practical purposes, we could safely restrict ourselves to the case where the underlyingrandomvariablesaresufficientlycontinuous.Whilemoregeneral conditions would be possible, there is little to gain with a more formal approach. 2. Under this extra condition, the mathematical intricacies of the subject are usually quite tractable. Wherever possible, we provide insight into why and how the mathematical operations lead to otherwise peculiar conditions. To keepasmoothflowinthedevelopment,technicaldetailswithinachapterare deferredtothelastsectionofthatchapter.However,statementsoftheorems are always given in their fullest generality. 3. Becauseofthelivelyspeedatwhichextremevaluetheoryhasbeendevelop- ing, thoroughly different approaches are possible when solving a statistical problem. To avoid single-handedness,we therefore included alternative pro- cedures that boast sufficient theoretical and practical underpinning. 4. Beingstrongbelieversingraphicalprocedures,weillustrateconcepts,deriva- tions and results by graphical tools. It is hard to overestimate the role of the latter in getting a quick but reliable impression of the kind and quality of data. 5. Examples and case studies are amply scattered over the manuscript, some of them reappearing to illustrate how a more advanced technique results

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.