ebook img

Statistics for Environmental Engineers PDF

464 Pages·2002·7.547 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Statistics for Environmental Engineers

Statistics for Environmental Engineers Second Edition Paul Mac Berthouex Linfield C. Brown LEWIS PUBLISHERS A CRC Press Company Boca Raton London New York Washington, D.C. © 2002 By CRC Press LLC Library of Congress Cataloging-in-Publication Data Catalog record is available from the Library of Congress This book contains information obtained from authentic and highly regarded sources. Reprinted material is quoted with permission, and sources are indicated. A wide variety of references are listed. Reasonable efforts have been made to publish reliable data and information, but the author and the publisher cannot assume responsibility for the validity of all materials or for the consequences of their use. Neither this book nor any part may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, microfilming, and recording, or by any information storage or retrieval system, without prior permission in writing from the publisher. The consent of CRC Press LLC does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific permission must be obtained in writing from CRC Press LLC for such copying. Direct all inquiries to CRC Press LLC, 2000 N.W. Corporate Blvd., Boca Raton, Florida 33431. Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation, without intent to infringe. Visit the CRC Press Web site at www.crcpress.com © 2002 by CRC Press LLC Lewis Publishers is an imprint of CRC Press LLC No claim to original U.S. Government works International Standard Book Number 1-56670-592-4 Printed in the United States of America 1 2 3 4 5 6 7 8 9 0 Printed on acid-free paper © 2002 By CRC Press LLC Preface to 1st Edition When one is confronted with a new problem that involves the collection and analysis of data, two crucial questions are: How will using statistics help solve this problem? And, Which techniques should be used? This book is intended to help environmental engineers answer these questions in order to better under- stand and design systems for environmental protection. The book is not about the environmental systems, except incidentally. It is about how to extract information from data and how informative data are generated in the first place. A selection of practical statistical methods is applied to the kinds of problems that we encountered in our work. We have not tried to discuss every statistical method that is useful for studying environmental data. To do so would mean including virtually all statistical methods, an obvious impossibility. Likewise, it is impossible to mention every environmental problem that can or should be investigated by statistical methods. Each reader, therefore, will find gaps in our coverage; when this happens, we hope that other authors have filled the gap. Indeed, some topics have been omitted precisely because we know they are discussed in other well-known books. It is important to encourage engineers to see statistics as a professional tool used in familiar examples that are similar to those faced in one’s own work. For most of the examples in this book, the environmental engineer will have a good idea how the test specimens were collected and how the measurements were made. The data thus have a special relevance and reality that should make it easier to understand special features of the data and the potential problems associated with the data analysis. The book is organized into short chapters. The goal was for each chapter to stand alone so one need not study the book from front to back, or in any other particular order. Total independence of one chapter from another is not always possible, but the reader is encouraged to “dip in” where the subject of the case study or the statistical method stimulates interest. For example, an engineer whose current interest is fitting a kinetic model to some data can get some useful ideas from Chapter 25 without first reading the preceding 24 chapters. To most readers, Chapter 25 is not conceptually more difficult than Chapter 12. Chapter 40 can be understood without knowing anything about t-tests, confidence intervals, regression, or analysis of variance. There are so many excellent books on statistics that one reasonably might ask, Why write another book that targets environmental engineers? A statistician may look at this book and correctly say, “Nothing new here.” We have seen book reviews that were highly critical because “this book is much like book X with the examples changed from biology to chemistry.” Does “changing the examples” have some benefit? We feel it does (although we hope the book does something more than just change the examples). A number of people helped with this book. Our good friend, the late William G. Hunter, suggested the format for the book. He and George Box were our teachers and the book reflects their influence on our approach to engineering and statistics. Lars Pallesen, engineer and statistician, worked on an early version of the book and is in spirit a co-author. A. (Sam) James provided early encouragement and advice during some delightful and productive weeks in northern England. J. Stuart Hunter reviewed the manuscript at an early stage and helped to “clear up some muddy waters.” We thank them all. P. Mac Berthouex Madison, Wisconsin Linfield C. Brown Medford, Massachusetts © 2002 By CRC Press LLC Preface to 2nd Edition This second edition, like the first, is about how to generate informative data and how to extract information from data. The short-chapter format of the first edition has been retained. The goal is for the reader to be able to “dip in” where the case study or the statistical method stimulates interest without having to study the book from front to back, or in any particular order. Thirteen new chapters deal with experimental design, selecting the sample size for an experiment, time series modeling and forecasting, transfer function models, weighted least squares, laboratory quality assurance, standard and specialty control charts, and tolerance and prediction intervals. The chapters on regression, parameter estimation, and model building have been revised. The chapters on transformations, simulation, and error propagation have been expanded. It is important to encourage engineers to see statistics as a professional tool. One way to do this is to show them examples similar to those faced in one’s own work. For most of the examples in this book, the environmental engineer will have a good idea how the test specimens were collected and how the measurements were made. This creates a relevance and reality that makes it easier to understand special features of the data and the potential problems associated with the data analysis. Exercises for self-study and classroom use have been added to all chapters. A solutions manual is available to course instructors. It will not be possible to cover all 54 chapters in a one-semester course, but the instructor can select chapters that match the knowledge level and interest of a particular class. Statistics and environmental engineering share the burden of having a special vocabulary, and students have some early frustration in both subjects until they become familiar with the special language. Learning both languages at the same time is perhaps expecting too much. Readers who have prerequisite knowledge of both environmental engineering and statistics will find the book easily understandable. Those who have had an introductory environmental engineering course but who are new to statistics, or vice versa, can use the book effectively if they are patient about vocabulary. We have not tried to discuss every statistical method that is used to interpret environmental data. To do so would be impossible. Likewise, we cannot mention every environmental problem that involves statistics. The statistical methods selected for discussion are those that have been useful in our work, which is environmental engineering in the areas of water and wastewater treatment, industrial pollution control, and environmental modeling. If your special interest is air pollution control, hydrology, or geosta- tistics, your work may require statistical methods that we have not discussed. Some topics have been omitted precisely because you can find an excellent discussion in other books. We hope that whatever kind of environmental engineering work you do, this book will provide clear and useful guidance on data collection and analysis. P. Mac Berthouex Madison, Wisconsin Linfield C. Brown Medford, Massachusetts © 2002 By CRC Press LLC The Authors Paul Mac Berthouex is Emeritus Professor of civil and environmental engineering at the University of Wisconsin-Madison, where he has been on the faculty since 1971. He received his M.S. in sanitary engineering from the University of Iowa in 1964 and his Ph.D. in civil engineering from the University of Wisconsin-Madison in 1970. Professor Berthouex has taught a wide range of environmental engi- neering courses, and in 1975 and 1992 was the recipient of the Rudolph Hering Medal, American Society of Civil Engineers, for most valuable contribution to the environmental branch of the engineering profession. Most recently, he served on the Government of India’s Central Pollution Control Board. In addition to Statistics for Environmental Engineers, 1st Edition (1994, Lewis Publishers), Professor Berthouex has written books on air pollution and pollution control. He has been the author or co-author of approximately 85 articles in refereed journals. Linfield C. Brown is Professor of civil and environmental engineering at Tufts University, where he has been on the faculty since 1970. He received his M.S. in environmental health engineering from Tufts University in 1966 and his Ph.D. in sanitary engineering from the University of Wisconsin-Madison in 1970. Professor Brown teaches courses on water quality monitoring, water and wastewater chemistry, industrial waste treatment, and pollution prevention, and serves on the U.S. Environmental Protection Agency’s Environmental Models Subcommittee of the Science Advisory Board. He is a Task Group Member of the American Society of Civil Engineers’ National Subcommittee on Oxygen Transfer Standards, and has served on the Editorial Board of the Journal of Hazardous Wastes and Hazardous Materials. In addition to Statistics for Environmental Engineers, 1st Edition (1994, Lewis Publishers), Professor Brown has been the author or co-author of numerous publications on environmental engineering, water quality monitoring, and hazardous materials. © 2002 By CRC Press LLC Table of Contents 1 Environmental Problems and Statistics 2 A Brief Review of Statistics 3 Plotting Data 4 Smoothing Data 5 Seeing the Shape of a Distribution 6 External Reference Distributions 7 Using Transformations 8 Estimating Percentiles 9 Accuracy, Bias, and Precision of Measurements 10 Precision of Calculated Values 11 Laboratory Quality Assurance 12 Fundamentals of Process Control Charts 13 Specialized Control Charts 14 Limit of Detection 15 Analyzing Censored Data 16 Comparing a Mean with a Standard 17 Paired t-Test for Assessing the Average of Differences 18 Independent t-Test for Assessing the Difference of Two Averages 19 Assessing the Difference of Proportions 20 Multiple Paired Comparisons of k Averages © 2002 By CRC Press LLC 21 Tolerance Intervals and Prediction Intervals 22 Experimental Design 23 Sizing the Experiment 24 Analysis of Variance to Compare k Averages 25 Components of Variance 26 Multiple Factor Analysis of Variance 27 Factorial Experimental Designs 28 Fractional Factorial Experimental Designs 29 Screening of Important Variables 30 Analyzing Factorial Experiments by Regression 31 Correlation 32 Serial Correlation 33 The Method of Least Squares 34 Precision of Parameter Estimates in Linear Models 35 Precision of Parameter Estimates in Nonlinear Models 36 Calibration 37 Weighted Least Squares 38 Empirical Model Building by Linear Regression 39 The Coefficient of Determination, R2 40 Regression Analysis with Categorical Variables 41 The Effect of Autocorrelation on Regression 42 The Iterative Approach to Experimentation 43 Seeking Optimum Conditions by Response Surface Methodology © 2002 By CRC Press LLC 44 Designing Experiments for Nonlinear Parameter Estimation 45 Why Linearization Can Bias Parameter Estimates 46 Fitting Models to Multiresponse Data 47 A Problem in Model Discrimination 48 Data Adjustment for Process Rationalization 49 How Measurement Errors Are Transmitted into Calculated Values 50 Using Simulation to Study Statistical Problems 51 Introduction to Time Series Modeling 52 Transfer Function Models 53 Forecasting Time Series 54 Intervention Analysis Appendix — Statistical Tables © 2002 By CRC Press LLC L1592_frame_CH-01 Page 1 Tuesday, December 18, 2001 1:39 PM 1 Environmental Problems and Statistics There are many aspects of environmental problems: economic, political, psychological, medical, scientific, and technological. Understanding and solving such problems often involves certain quantitative aspects, in particular the acquisition and analysis of data. Treating these quantitative problems effectively involves the use of statistics. Statistics can be viewed as the prescription for making the quantitative learning process effective. When one is confronted with a new problem, a two-part question of crucial importance is, “How will using statistics help solve this problem and which techniques should be used?” Many different substantive problems arise and many different statistical techniques exist, ranging from making simple plots of data to iterative model building and parameter estimation. Some problems can be solved by subjecting the available data to a particular analytical method. More often the analysis must be stepwise. As Sir Ronald Fisher said, “…a statistician ought to strive above all to acquire versatility and resourcefulness, based on a repertoire of tried procedures, always aware that the next case he wants to deal with may not fit any particular recipe.” Doing statistics on environmental problems can be like coaxing a stubborn animal. Sometimes small steps, often separated by intervals of frustration, are the only way to progress at all. Even when the data contains bountiful information, it may be discovered in bits and at intervals. The goal of statistics is to make that discovery process efficient. Analyzing data is part science, part craft, and part art. Skills and talent help, experience counts, and tools are necessary. This book illustrates some of the statistical tools that we have found useful; they will vary from problem to problem. We hope this book provides some useful tools and encourages environmental engineers to develop the necessary craft and art. Statistics and Environmental Law Environmental laws and regulations are about toxic chemicals, water quality criteria, air quality criteria, and so on, but they are also about statistics because they are laced with statistical terminology and concepts. For example, the limit of detection is a statistical concept used by chemists. In environmental biology, acute and chronic toxicity criteria are developed from complex data collection and statistical estimation procedures, safe and adverse conditions are differentiated through statistical comparison of control and exposed populations, and cancer potency factors are estimated by extrapolating models that have been fitted to dose-response data. As an example, the Wisconsin laws on toxic chemicals in the aquatic environment specifically mention the following statistical terms: geometric mean, ranks, cumulative probability, sums of squares, least squares regression, data transformations, normalization of geometric means, coefficient of determination, standard F-test at a 0.05 level, representative background concentration, representative data, arithmetic average, upper 99th percentile, probability distribution, log-normal distribution, serial correlation, mean, variance, standard deviation, standard normal distribution, and Z value. The U.S. EPA guidance doc- uments on statistical analysis of bioassay test data mentions arc-sine transformation, probit analysis, non-normal distribution, Shapiro-Wilks test, Bartlett’s test, homogeneous variance, heterogeneous vari- ance, replicates, t-test with Bonferroni adjustment, Dunnett’s test, Steel’s rank test, and Wilcoxon rank sum test. Terms mentioned in EPA guidance documents on groundwater monitoring at RCRA sites © 2002 By CRC Press LLC

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.