ebook img

Statistics for Chemical and Process Engineers. A Modern Approach PDF

453 Pages·2022·12.088 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Statistics for Chemical and Process Engineers. A Modern Approach

Yuri A. W. Shardt Statistics for Chemical and Process Engineers A Modern Approach Second Edition Statistics for Chemical and Process Engineers Yuri A. W. Shardt Statistics for Chemical and Process Engineers A Modern Approach Second Edition YuriA.W.Shardt DepartmentofAutomationEngineering TechnicalUniversityofIlmenau Ilmenau,Germany ISBN978-3-030-83189-9 ISBN978-3-030-83190-5 (eBook) https://doi.org/10.1007/978-3-030-83190-5 MicrosoftandExcelaretrademarksoftheMicrosoftgroupofcompanies.andMATLABisaregistered trademarkofTheMathWorks,Inc.Seehttps://www.mathworks.com/trademarksforalistofadditional trademarks 1stedition:©SpringerInternationalPublishingSwitzerland2015 2ndedition:©TheEditor(s)(ifapplicable)andTheAuthor(s),underexclusivelicensetoSpringer NatureSwitzerlandAG2022 Thisworkissubjecttocopyright.AllrightsaresolelyandexclusivelylicensedbythePublisher,whether thewholeorpartofthematerialisconcerned,specificallytherightsofreprinting,reuseofillustrations, recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionor informationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressedorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictional claimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Preface Theneedforthedevelopmentandunderstandingoflarge,complexdatasetsexists inawiderangeofdifferentfields,includingeconomics,chemistry,chemicalengi- neering, and control engineering. In all these fields, the common thread is using thesedatasetsforthedevelopmentofmodelstoforecastorpredictfuturebehaviour. Furthermore, the availability of fast computers has meant that many of the tech- niques can now be used and tested even on one’s own computer. Although there existawealthoftextbooksavailableonstatistics,theyareoftenlackingintwokey respects: application to the chemical and process industry and their emphasis on computationally relevant methods. Many textbooks still contain detailed explana- tionsofhowtomanuallysolveaproblem.Therefore,thegoalofthistextbookisto provide a thorough mathematical and statistical background to regression analysis through the use of examples drawn from the chemical and process industries. The majority of the textbook presents the required information using matrices without linking to any particular software. In fact, the goal here is to allow the reader to implement the methods on any appropriate computational device irrespective of theirspecificavailability.Thus,detailedexamples,thatis,basecases,andsolution stepsareprovided toeasethistask.Nevertheless, thetextbook contains twochap- tersdevotedtousingMATLAB®andExcel®,asthesearethemostcommonlyused toolsbothinacademicsandinindustry.Finally,thetextbookcontainsattheendof eachchapteraseriesofquestionsdividedintothreeparts:conceptualquestionsto testthereader’sunderstandingofthematerial;simpleexerciseproblemsthatcanbe solvedusingpen,paper,andasimple,handheldcalculatortoprovidestraightforward examplestotestthemechanicsandunderstandingofthematerial;andcomputational questions that require modern computational software that challenge and advance thereader’sunderstandingofthematerial. Thistextbookassumesthatthereaderhascompletedabasicfirst-yearuniversity course, including univariate calculus and linear algebra. Multivariate calculus, set theory,andnumericalmethodsareusefulforunderstandingsomeoftheconcepts,but knowledgeisnotrequired.Basicchemicalengineering,includingmassandenergy balances,mayberequiredtosolvesomeoftheexamples. v vi Preface The textbook is written so that the chapters flow from the basic to the most advanced material with minimal assumptions about the background of the reader. Nevertheless, multiple different course can be organised based on the material presented here depending on the time and focus of the course. Assuming a single semestercourseof39h,thefollowingwouldbesomeoptions: (1) Introductory Course to Statistics and Data Analysis: The foundations of statisticsandregressionareintroducedandexamined.Themainfocuswould beonChap.1:IntroductiontoStatisticsandDataVisualisation,Chap.2:Theo- reticalFoundation forStatisticalAnalysis,andpartsofChap. 3:Regression, including all of linear regression. This course would prepare the student to taketheFundamentalsofEngineeringExamintheUnitedStatesofAmerica, aprerequisiteforbecominganengineerthere. (2) DeterministicModellingandDesignofExperiments:In-depthanalysisand interpretation of deterministic models, including design of experiments, is introduced. The main focus would be on Chap. 3: Regression and Chap. 4: DesignofExperiments.PartsofChap.2:TheoreticalFoundationforStatistical Analysismaybeincludedifthereisaneedtorefreshthestudent’sknowledge ofbackgroundinformation. (3) StochasticModellingofDynamicProcesses:In-depthanalysisandinterpre- tation of stochastic models, including both time series and prediction error methods, is examined. The main focus would be on Chap. 5: Modelling Stochastic Processes with Time Series Analysis and Chap. 6: Modelling Dynamic Processes. As necessary, information from Chap. 2: Theoretical Foundation for Statistical Analysis and Chap. 3: Regression could be used. The depth in which these concepts would be considered would depend on the orientation of the course: either a theoretical emphasis can be made, by focusingonthetheoryandproofs,oranapplicationemphasiscanbemade,by focusingonthepracticaluseofthedifferentresults. Asappropriate,materialfromChap.7:UsingMATLAB®forStatisticalAnalysis and Chap. 8: Using Excel® to do Statistical Analysis could be introduced to show and explain how the students can implement the proposed methods. It should be emphasisedthatthismaterialshouldnotoverwhelmthestudentsnorshoulditbecome themainemphasisandhenceavoidthoughtfulandinsightfulanalysisoftheresulting data. The author would liketo thank all those who read and commented on previous versions of this textbook, especially the members of the process control group at theUniversityofAlberta,thestudentswhoattendedtheauthor’scourseonprocess dataanalysisintheSpring/Summer2012semester,themembersoftheInstituteof ControlEngineeringandComplexSystems(InstitutefürAutomatisierungstechnik und komplexe Systeme) at the University of Duisburg-Essen, the members of the DepartmentofAutomationEngineering(FachgebietAutomatisierungstechnik)atthe TechnicalUniversityofIlmenau(TechnischeUniversita¨tIlmenau),andthestudents who attended the course “System Identification” at the Technical University of Ilmenau. The author would specifically wish to thank Profs. Steven X. Ding and Preface vii Biao Huang for their support, Oliver Jackson from Springer for his assistance and support,andtheAlexandervonHumboldtFoundationformonetarysupport.Aswell, theauthorwouldliketothankYingDeng,MikeEichhorn,BenediktOppeneiger,and M.P.fortheirhelpinimprovingtheEnglishversion. Downloadingthedata:Thedatasets,MATLAB®files,andExcel®templatescan bedownloadedfromhttps://link.springer.com/book/9783030831899. Ilmenau,Germany YuriA.W.Shardt Symbols and Abbreviations Thissectionsummarisesthekeysymbolsandabbreviationsfoundinthebook.Please notethatdespiteattemptstolimitsymbolstosinglemeaninganduse,itisoccasionally necessary to have multiple meanings assigned to a given symbol. This cases are clarifiedbypointingoutwhichmeaningisusedinwhichchapter.Symbolsarealways writteninitalicsorusingspecialfonts,whileabbreviationsarewritteninuppercase, notinitalics,andusingnormalLatinletters.Symbolsandabbreviationsareinnormal alphabeticalorder. Symbols (cid:2)·(cid:3) Round-downfunction A A-polynomial A Regressionmatrix(Chaps.3,4);statematrix(Chap.5) B B-polynomial B Inputmatrix B(1,q) Bernoullidistribution B(n,q) Binomialdistribution C C-polynomial C Complexnumbers C Outputmatrix D D-polynomial;seasonaldifferencingorder(bothChap.5) d Differencingorder D Throughputmatrix D Cook’sDistance i E Expectationoperator e (White,Gaussian)noise e Disturbancesignal t F F-polynomial f Frequency ix x SymbolsandAbbreviations F Fisherinformationmatrix F Spaceofallpossibleevents f(x) Probabilitydensityfunction;probabilitymassfunction f Marginalprobabilitydensityfunction X1 f Conditionalprobabilitydensityfunction Y|x F Fouriertransform F(ν1,ν2),Fν1,ν2 F-distribution f(ω) Powerspectrum;spectraldensity G Generaltransferfunction G Actuatormodel a G Controllermodel c G Disturbancemodel l G Processmodel p G Sensormodel s gθˆ Efficiency h Impulseresponsecoefficients H Nullhypothesis 0 H Alternativehypothesis 1 I Identitymatrix J Jacobianmatrix J(cid:4) GrandJacobianmatrix J Kalmansmoothergain t k Factor(Chap.4);discretetime(cid:4) N(Chaps.5,6) l Level L(θ|x) Likelihoodfunction (cid:5)(θ|x) Log-likelihoodfunction m Numberofdatapointsforregression,inatimeseries m Uncentredmoment i m¯ Centredmoment i n Numberofsamples,parameters N Setofnaturalnumbers N(μ,σ ) Gaussian(normal)distribution 2 n Numberofcentrepointreplicates C n Numberofreplicates R P Probabilitymeasurefunction;orderoftheseasonalautoregres- sivepolynomial(Chap.5) p Orderoftheautoregressivepolynomial(Chap.5) p(λ) Poissondistribution P(Y|X) Conditionalprobability p Leftprobability l p Rightprobability r q Orderofthemoving-averagepolynomial Q Orderoftheseasonalmoving-averagepolynomial r Residual R Setofrealnumbers SymbolsandAbbreviations xi R2 Pearson’scoefficientofregression r Criticalvalue critical r Referencesignal t S Sensitivity s Seasonalorder S Samplespace SSE Sumofsquaresduetotheerror SSR Sumofsquaresduetoregression SSR Sumofsquaresduetoregressionfortheithparameter i t(ν),tν Student’st-distribution TSS Totalsumofsquares u Input u Inputsignal t w Weight X Datapoint;randomvariable x Regressor;state(Chaps.5,6) y Observation yˆ∞ Infinite-horizonpredictor/infinite-step-aheadpredictor y Outputsignal t yˆt+τ|t τ-step-aheadpredictor z Forwardshiftoperator/z-operator Z Standardnormaldistribution;Z-score Z Setofintegers z−1 Backwardshiftoperator/z−1-operator α Falsepositiverate;confidencelevel β Falsenegativerate(Chap.2);parameter(Chaps.3,4) β Meanresponse 0 γ Autocorrelation;skew(Chap.2) (cid:12) Autocovariancematrix γ Experimentalcoefficients(Chap.4) ij γ (τ) Cross-covariance XY δ Bias (cid:14) Difference ε Error εt+τ|t Predictionerror θ Regressivecoefficients;timedelay(Chap.6) κ Basisfunction μ Mean ν Degreesoffreedom ρ Autocovariance ρ (τ) Partialautocorrelation X|Z ρ Correlation X1,X2 ρ Partialcorrelation XY|Z (cid:18) Covariancematrix σ Standarddeviation

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.