ebook img

Statistics and its Applications: Platinum Jubilee Conference, Kolkata, India, December 2016 PDF

178 Pages·2018·2.868 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Statistics and its Applications: Platinum Jubilee Conference, Kolkata, India, December 2016

Springer Proceedings in Mathematics & Statistics Asis Kumar Chattopadhyay  Editors Gaurangadeb Chattopadhyay    Statistics and its Applications Platinum Jubilee Conference, Kolkata, India, December 2016 Springer Proceedings in Mathematics & Statistics Volume 244 Springer Proceedings in Mathematics & Statistics This book series features volumes composed of selected contributions from workshops and conferences in all areas of current research in mathematics and statistics, including operation research and optimization. In addition to an overall evaluation of the interest, scientific quality, and timeliness of each proposal at the hands of the publisher, individual contributions are all refereed to the high quality standards of leading journals in the field. Thus, this series provides the research community with well-edited, authoritative reports on developments in the most exciting areas of mathematical and statistical research today. More information about this series at http://www.springer.com/series/10533 Asis Kumar Chattopadhyay Gaurangadeb Chattopadhyay Editors Statistics and its Applications Platinum Jubilee Conference, Kolkata, India, December 2016 123 Editors Asis Kumar Chattopadhyay GaurangadebChattopadhyay Department ofStatistics Department ofStatistics University of Calcutta University of Calcutta Kolkata, West Bengal, India Kolkata, West Bengal, India ISSN 2194-1009 ISSN 2194-1017 (electronic) SpringerProceedings in Mathematics& Statistics ISBN978-981-13-1222-9 ISBN978-981-13-1223-6 (eBook) https://doi.org/10.1007/978-981-13-1223-6 LibraryofCongressControlNumber:2018945880 ©SpringerNatureSingaporePteLtd.2018 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinor for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSingaporePteLtd. Theregisteredcompanyaddressis:152BeachRoad,#21-01/04GatewayEast,Singapore189721, Singapore Contents Fragmentation of Young Massive Clusters: A Hybrid Monte Carlo Simulation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Abisa Sinha A Study on DNA Sequence of Rice Using Scoring Matrix Method and ANOVA Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Anamika Dutta and Kishore K. Das Regressions Involving Circular Variables: An Overview . . . . . . . . . . . . 25 Sungsu Kim and Ashis SenGupta On Construction of Prediction Interval for Weibull Distribution. . . . . . 35 Ramesh M. Mirajkar and Bhausaheb G. Kore Combining High-Dimensional Classification and Multiple Hypotheses Testing For the Analysis of Big Data in Genetics. . . . . . . . . . . . . . . . . . 47 Thorsten Dickhaus The Quantile-Based Skew Logistic Distribution with Applications. . . . . 51 Tapan Kumar Chakrabarty and Dreamlee Sharma A Note on Monte-Carlo Jackknife: McJack and Big Data. . . . . . . . . . . 75 Jiming Jiang A Review of Exoplanets Detection Methods . . . . . . . . . . . . . . . . . . . . . . 79 G. Jogesh Babu A Connection Between the Observed Best Prediction and the Fence Model Selection Method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 Thuan Nguyen and Jiming Jiang A New Approximation to the True Randomization-Based Design Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 Siegfried Gabler, Matthias Ganninger and Partha Lahiri v vi Contents Confounded Factorial Design with Partial Balance and Orthogonal Sub-Factorial Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 Madhura Mandal and Premadhis Das Beyond the Bayes Factor, A New Bayesian Paradigm for Handling Hypothesis Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 Christian P. Robert No Calculation When Observation Can Be Made . . . . . . . . . . . . . . . . . 139 Tommy Wright Design Weighted Quadratic Inference Function Estimators of Superpopulation Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 Sumanta Adhya, Debanjan Bhattacharjee and Tathagata Banerjee Detecting a Fake Coin of a Known Type . . . . . . . . . . . . . . . . . . . . . . . . 163 Jyotirmoy Sarkar and Bikas K. Sinha Fragmentation of Young Massive Clusters: A Hybrid Monte Carlo Simulation Study AbisaSinha Abstract TostudythehierarchicalfragmentationprocedureinYoungMassiveClus- ters,astochasticmodelhasbeendeveloped.Binaryfragmentsalongwithindividual starsareprimarilystudiedinthiswork.Stellarmassesforindividualstarshavebeen generatedfromtheunivariatetruncatedParetodistributionandthestellarmassesfor binarystarshavebeengeneratedfromthetruncatedbi-variateSkewNormalDistri- butionusingtheHamiltonianMonteCarlomethod.Theabovedistributionisused by observing the fitted bi-variate distribution of masses of all type of binary stars viz.visualbinaries,spectroscopicbinariesandeclipsingbinaries.Theresultingmass spectrumcomputedatdifferentprojecteddistancesareobservedunderopacitylim- itedfragmentationprocedureandtheydisplaysignatureofmasssegregationalong thecoretoradius,whereasdegreeofsegregationbecomesreducedduetoinclusion ofalltypeofbinaryfragmentsincomparisontoinclusionofeclipsingbinariesonly. · · Keywords Initialmassfunction Binarystars Bivariateskewnormal HybridMonteCarlo 1 Introduction TheInitialMassFunction(IMF)offragmentedmassesofmolecularcloudsunder- goinggravitationalcollapseisoffundamentalinterestinmanyfieldsofastronomy and astrophysics. First observed by Salpeter (1955), the IMF is a power-law of the form ξ = dN ∝m(cid:3), where m is the mass of a star and N is the number of dlogm starsinthemassrangelogm and(logm+dlogm).Hisworkfavoredanexponent of(cid:3) ∼−1.35for0.4M(cid:4) ≤m ≤10M(cid:4).Kroupaetal.(1993)found(cid:3) ∼−1.3(i.e. α ∼2.3)abovehalfasolarmass,butintroducedα ∼1.3between0.08M(cid:4)−0.5M(cid:4) and α ∼0.3 below 0.08M(cid:4) by proposing the IMF to be of segmented power-law form,whereα =1−(cid:3) inlinearmassunitsoftheform dN ∝m−α.Moremodern dm B A.Sinha( ) DepartmentofStatistics,BethuneCollege,Kolkata,India e-mail:[email protected] ©SpringerNatureSingaporePteLtd.2018 1 A.K.ChattopadhyayandG.Chattopadhyay(eds.),StatisticsanditsApplications, SpringerProceedingsinMathematics&Statistics244, https://doi.org/10.1007/978-981-13-1223-6_1 2 A.Sinha IMFs(segmentedpower-laws)appearedintheliteratureinrecentyears(e.g.Chabrier (2003)),buthereourmainintentionwastofindhowtheobservedmassdistribution depends on the slope of the fundamental IMF. Also, we have studied the effect of masssegregationinYoungMassiveClusters(YMC)asaresultofinclusionofbinary fragments.Miloneetal.(2012)haveinvestigatedthebehaviorofbinaryfractionfor theGlobularClusters(GC)ofMilkyWayandhavefoundthatmasssegregationis smallerthanthefieldbinaries.Wehavemodeledtherandomfragmentationscenario togetherwithlineofsighteffectasproposedbyChattopadhyayetal.(2011, 2016). Starsaregenerallybornasbinaryormultiplesystemsandtheirbinarynatureisvisi- bleonlyforasmallpercentage.Chattopadhyayetal.(2016)havestudiedthebinary fragmentsforeclipsingbinarystarsonly.Here,wehavetriedtoincludealltypesof binarystarsviz.visualbinaries(consistsoftwostars,usuallyofdifferentbrightness and observed visually), spectroscopic binaries (consisting of a pair of stars where thespectrallinesinthelightemittedfromeachstarshiftsfirsttowardstheblue,then towards thered,aseach moves firsttowards theobserver, andthenaway fromthe observer,duringitsmotionabouttheircommoncenterofmass,withtheperiodof theircommonorbitandobservedbyperiodicchangesinspectrallines)andeclipsing binaries(consistingofstarsinwhichtheorbitplaneofthetwostarsliessonearly in the line of sight of the observer that the components undergo mutual eclipses andobservedonlybystudyingtheirrespectiveLightCurvesandVelocityCurves). Severalauthorshavestudiedthemasses,massratiosofthesebinarystars(Tokovinin 2014;Kouwenhovenetal.2007). Thepercentageofbinarycontributiontothefinalformoffragmentsisofconsid- erable debate. Over the past few years, several authors have considered the binary fragmentsinacoventionalway(Abt1983forBstars;DuquennoyandMayor(1991) for G dwarfs; Fischer and Marcy (1992) for M dwarfs; Kouwenhoven et al. 2007 forAandBstars;Goodwinetal.(2007)andreferencestherein).Similarobserva- tionswerenotedfornearbyandassociatedclusters(Duchéne1999;Duchéneetal. 2007).Binaryfractionsofdistantclusterswerenotobservedpreviouslybecauseof observationallimitationsofmeasuringdevices.Fortunately,bysomealternativetech- nique,someauthorshavebecomeabletocalculatethebinaryfraction.Forexample, by studying the morphology of colour-magnitude diagram, Romani and Weinberg (1991)determinedtheobservedbinaryfractionsin M92and M30at≤9%and4% respectively. Rubenstein and Bailyn (1997) investigated binary fraction of stars in therange15.8mag<V<28.4magin13.5GyroldGalacticGC,NGC6752as15– 38%insidetheinnercore,fallingto16%atlargerradiiwithapower-lawmassratio distribution.Ballazzinetal.(2002)estimatedthebinaryfractioninNGC288forstars 20mag<V<23mag(∼0.54–0.77 M(cid:4))as8–38%insideclusterhalfmassradius. ZahoandBailyn(2005)found6–22%ofmainsequencebinariesforM3withincore radiuswhereasCoolandBolten(2002)derivedabinaryfractionof3%forGalactic GC,NGC6397.RomaniandWeinberg(1991)andHurleyetal.(2007)estimateda binaryfraction5.1±1.0%withintheinnerregionofNGC6397.Alltheclustersare dynamicallyevolvedsystemsandareexpectedtosignificantlyaltertheinitialbinary population.Huetal.(2010)havestudiedtheyoungstarclusterNGC1818inLMC (age∼15–25Myr)andderivedabinaryfractionashighas55%.Chattopadhyayetal. FragmentationofYoungMassiveClusters:AHybridMonteCarloSimulationStudy 3 (2016)hasconsideredthecontributionofbinaryfragmentsascloseas50%,while consideringtherestassinglestars.MalkovandZinnecker(2001)haveevenclaimed thatthecontributionofbinaryfragmentsisascloseto100%. In the present work, we have considered random fragmentation of YMCs and havetakenthebinarycontributiontobeof80%ofthetotalfragmentswhereas20% constitutessinglestars.Wehavesimulated80%ofbinarystarsfromthetruncated Bi-variate Skew Normal Distribution by Hybrid Monte Carlo method and the rest 20% of single stars from truncated Pareto distribution, truncated at minimum and maximummasses.Thepatternofthebi-variatedistributionisinvestigatedandfitted to an appropriate form. In Sect.2 we have discussed the data set, Sect.3 gives the form of bivariate distribution, Sect.4 gives the simulation procedures and Sect.5 givestheresultsanddiscussions. 2 DataSetofBinaryStars Wehaveusedadata-setof2096binarystarscomprisingofvisualbinaries,spectro- scopicbinariesandeclipsingbinaries,amongwhich1875setsofmassesaretaken fromTokovinin(2014)constitutingonlythosebinarystarswhichmaybeobserved through telescope (viz. visual binaries, spectroscopic binaries), 78 sets of masses takenfromKouwenhovenetal.(2007)(alsoconstitutingvisuallyobservablestars) and the rest 143 sets of masses of eclipsing binaries (observed from their light- curvesandvelocity-curves)fromChattopadhyayetal.(2016).Themethodusedto calculatebinarymassesfromtheirobservedmass-ratiosasinTokovinin(2014)and Kouwenhovenetal.(2007)hasbeenfoundcompatibleforuse(Fig.3). 3 Bi-variateDistribution 3.1 Distribution Fit Initially,wedisplayedthedataofbinarymasses,inabi-variateplot(Bivariatehis- togram(Fig.1))whichdisplaysapositiveskewedpattern.Theabovedatasetisthen fittedtobi-variateskewnormaldistributionoftheform: fZ1,Z2(z1,z2)=2φ2(z−ξ;(cid:6))(cid:7)(α(cid:6)ω−1(z−ξ)) (1) wherez ,z aretherandomvariablesrepresentingthemassesofbinarystarsm ,m 1 2 1 2 rveaslpueecstoivfeZly,,fZZ1,Zr2e(szp1e,czt2iv)eislyt.hHeeprreobξab=ili(cid:2)tξydξen(cid:3)s(cid:6)iitsytfhuencloticoantiaonndpza1r,azm2aerteerp,a(cid:6)rtiicsutlhaer 1 2 1 2 (cid:2) (cid:3) correlation matrix (technically known as scale parameter) and α = α α (cid:6) is the 1 2 shapeparameterwhichneedstobeestimated.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.