ebook img

Statistical Thermodynamics for Pure and Applied Sciences: Statistical Thermodynamics PDF

691 Pages·2021·8.877 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Statistical Thermodynamics for Pure and Applied Sciences: Statistical Thermodynamics

Frederick Richard Wayne McCourt Statistical Thermodynamics for Pure and Applied Sciences Statistical Thermodynamics Statistical Thermodynamics for Pure and Applied Sciences Frederick Richard Wayne McCourt Statistical Thermodynamics for Pure and Applied Sciences Statistical Thermodynamics FrederickRichardWayneMcCourt UniversityofWaterloo Waterloo,ON,Canada Thisworkcontainsmediaenhancements,whicharedisplayedwitha“play”icon.Materialintheprint bookcanbeviewedonamobiledevicebydownloadingtheSpringerNature“MoreMedia”appavailable inthemajorappstores.Themediaenhancementsintheonlineversionoftheworkcanbeaccessed directlybyauthorizeduser. Additionalmaterialtothisbookcanbedownloadedfromhttp://extras.springer.com. ISBN978-3-030-52005-2 ISBN978-3-030-52006-9 (eBook) https://doi.org/10.1007/978-3-030-52006-9 ©SpringerNatureSwitzerlandAG2021 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthors,andtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressedorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictional claimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Preface Theconceptsofthermodynamicsandstatisticalmechanicsarefundamentalphysical conceptsthatunderliemuchofchemicalengineering,chemistry,materialsscience, and physics. Thermodynamics treats matter as a continuum and is therefore not concerned with the atomic or molecular nature of its constituents, while statistical mechanics is concerned with the effective ways to deal with very large numbers ofconstituents(atomsormolecules)usingstatisticalconcepts,suchasprobability, averages,andfluctuations,coupledwiththefundamentallawsofphysicsthatgovern individual atoms and molecules and their interactions at the microscopic level. Statistical thermodynamics combines these two subdisciplines of science in order to be able to understand and predict macroscopic properties of specific material systemsintermsoftheattributesoftheirmicroscopicconstituents. While the present book does focus mainly upon the employment of statistical mechanical concepts and methodology to evaluate and interpret thermodynamic properties in terms of atomic and/or molecular attributes of the bulk matter constituents,italsoexaminesanumberofothertopics,suchassymmetryeffectsin molecularspectra(inChap.6),anintroductiontotransportphenomena(inChap.7), paramagnetism, magnetic susceptibilities of lanthanides, and an introduction to ferromagnetism (in Chap. 8), and electrons in metals and semiconductors, and the Bose–Einsteincondensation(inChap.10). Thestructureofthisbookisasfollows: Basic background material, including equations of state for classical and quan- tumidealgasesandconceptsderivedfrommathematicalstatistics,suchasensem- bles, fluctuations, statistical average, variance, and standard deviation, is reviewed inChap.1. Chapter2providesashorttreatmentofmacroscopicthermodynamics.Forthose whohavetakenapreviouscourseonthermodynamics,itmayserveasareminderof thoseaspectsofthermodynamics(includingadiscussionofthermodynamicengine cyclesthatmaybemorerelevantforengineers)thatwillbeneededinlaterchapters. Forthosewhohavenothadpreviousexposuretothermodynamics,itwillserveto introducetherelevantthermodynamicconcepts. v vi Preface Chapter 3 introduces and illustrates the main statistical ensembles that are employed in treating thermodynamic systems, while Chap. 4 makes the relevant general connections between statistical values and a number of thermodynamic functionsandconcepts. Chapter 5 focuses upon atomic systems and examines the contributions to thermodynamic functions and properties associated with the various degrees of freedom possessed by individual atoms. This chapter also considers an ensemble ofsimpleharmonicoscillatorsanditsapplicationtoobtainexpressionsfortheheat capacitiesofcrystallinemonatomicsolids. The focus of Chap. 6 is upon molecular systems, and it examines the con- tributions to thermodynamic functions and properties associated with the various degreesoffreedompossessedbyindividualmolecules.Thischapteralsoincludesa discussionofintensityalternationsinmolecularspectrathatarisebecauseofnuclear interchangesymmetryinhighlysymmetricmolecules. Chapter 7 covers the employment of classical statistical mechanics to extend thethermodynamicsofgaseoussystemsbeyondtheidealgaslimitusingthevirial equationofstateandincludesdiscussionoftheLiouvilleandBoltzmannequations thatprovidealead-intononequilibriumphenomena. Chapter 8 extends thermodynamics to include electric and magnetic effects in polarizable media. Thorough treatments are given of the thermodynamics of spin systems and magnetic susceptibilities of paramagnetic salts. An introduction to ferromagnetismandtheIsingmodelisalsoprovided. Chapter 9 briefly discusses chemical equilibrium and the activated complex modelforchemicalkinetics. Chapter 10 deals with the quantum statistics associated with the behaviours of systemsoffermions(withhalf-odd-integerspins)andbosons(withzeroandinteger spins). Specifically, quantum statistics is applied to fermion systems, such as the 3Heisotopeandelectronsinmetalsorsemiconductors,andtobosonsystems,such asthe4Heisotopeandphotons.Thechapterconcludeswithabriefintroductionto thedensitymatrix. Seven appendices covering the aspects of combinatorial analysis, multivariate calculusandinfiniteseries,theStirlingapproximation,atomicandmolecularterm symbols,sphericalandsymmetrictopmolecules,andreviewsofrelevantsolidstate andHamiltonianmechanicsthatmayproveusefultoreadershavebeendeveloped forcompleteness. Although this book deals only with a small fraction of equilibrium statistical mechanics, its aim has been to provide a preparation that will suffice for further adventures into this exciting realm of science. The material covered here is fairly traditional, and bits of it can be found in many texts written around the subject.Twoaspectsofthesubjectmattercoveredinthisintroductiontostatistical thermodynamics are (1) to provide ‘derivations’ of the laws of thermodynamics and(2)toprovideanintroductiontotheimportantareasofFermi–DiracandBose– Einsteinstatisticsthatnecessarilyplayrolesatthelevelofnanoscalesystems,where quantummechanicsreigns. Preface vii IamgratefultoDr.KevinBishopforcarryingoutatmyrequestthecalculations for and preparations of Figs. 1.4, 1.5, and 7.2 for Lennard–Jones argon and to Dr. Lee Huntington for preparing Figs. 10.2 and 10.11. I am also grateful to my colleague,ProfessorPierre-NicholasRoy,forhishelpandencouragement,aswell as his testing of previous versions of this book in his statistical thermodynamics coursefornanotechnologyengineeringstudents.Finally,Iammostgratefultomy wife,JanetL.McCourt,forhersteadfastencouragementandsupportthroughoutthe yearsduringwhichthisbookwasdeveloped. Waterloo,ON,Canada FrederickR.W.McCourt Contents 1 BasicBackgroundMaterial ............................................... 1 1.1 Introduction........................................................... 1 1.2 TheIdealGas......................................................... 3 1.2.1 ClassicalIdealGasEquationofState:Microscopic Derivation................................................... 4 1.2.2 QuantumIdealGasEquationofState ..................... 9 1.3 Fluctuations........................................................... 11 1.4 StatisticalEnsembles................................................. 15 1.4.1 EnsembleAverages......................................... 18 1.4.2 VarianceandStandardDeviation .......................... 23 1.5 ProblemsforThisChapter........................................... 25 References.................................................................... 26 2 MacroscopicThermodynamics ........................................... 27 2.1 BasicThermodynamicDefinitions .................................. 28 2.2 AnIntroductiontoThermodynamics................................ 30 2.2.1 InternalEnergy,Entropy:TheFirstTwoLaws............ 33 2.3 NewThermodynamicStateFunctions .............................. 40 2.4 ExpressionforHeatCapacityDifference ........................... 48 2.5 ThermodynamicEngines ............................................ 52 2.5.1 TheCarnotEngineandEngineCycle ..................... 54 2.5.2 ReverseCarnotEngine(RefrigerationCycle)............. 64 2.5.3 Curzon–AhlbornEndoreversibleEngineCycle........... 66 2.5.4 TheOttoandDieselEngineCycles........................ 70 2.5.5 CounterclockwiseOttoCycles............................. 78 2.6 TheSecondLawandStability....................................... 82 2.7 ExtensiontoMulticomponentSystems ............................. 88 2.8 ThermodynamicsofRealGases..................................... 96 2.8.1 TheVanderWaalsModel.................................. 98 2.8.2 TheVirialEquationofState ............................... 101 2.8.3 Fugacity..................................................... 103 ix x Contents 2.8.4 TheLawofCorrespondingStates ......................... 107 2.8.5 Joule–ThomsonInversion.................................. 114 2.9 ProblemsforThisChapter........................................... 121 References.................................................................... 128 3 Ensembles:SystemsofParticles .......................................... 129 3.1 MicroscopicConfigurations ......................................... 129 3.1.1 IllustrationoftheRoleoftheBasicPostulate............. 131 3.2 TheCanonicalEnsemble:ClosedSystems ......................... 139 3.2.1 TranslationalStates:ContinuumApproximation ......... 146 3.2.2 SummaryofFormsfortheCanonicalPartition Function..................................................... 151 3.2.3 ExtensiontoN-ParticleSystems........................... 152 3.3 TheGrandEnsemble:OpenSystems ............................... 155 3.4 TheIsothermal-IsobaricEnsemble.................................. 160 3.5 ProblemsforThisChapter........................................... 163 References.................................................................... 167 4 MeanValuesandThermodynamics...................................... 169 4.1 CanonicalEnsemble:ClosedSystems .............................. 169 4.1.1 ThermodynamicsfromtheCanonicalEnsemble.......... 173 4.1.2 CanonicalPartitionFunctionforaMixture ............... 180 4.1.3 MicrocanonicalEnsemble:IsolatedSystem............... 182 4.2 GrandEnsemble:OpenSystems .................................... 184 4.2.1 ThermodynamicsfromtheGrandEnsemble.............. 186 4.2.2 FluctuationsintheNumberofParticles................... 194 4.3 TheIsothermal–IsobaricEnsemble.................................. 199 4.4 InterconnectionsBetweenEnsembles............................... 203 4.5 ProblemsforthisChapter............................................ 204 References.................................................................... 211 5 AtomicSystems............................................................. 213 5.1 GroundElectronicTermAtoms ..................................... 213 5.1.1 TheCanonicalPartitionFunction.......................... 214 5.1.2 TheIsothermal–IsobaricPartitionFunction............... 218 5.1.3 TranslationalVersusInternalStateContributions......... 219 5.2 WhyIstheChemicalPotentialNegative?........................... 221 5.3 ElectronicandNuclearSpinStates.................................. 224 5.3.1 SettingtheStage:ExcitedElectronicStates............... 224 5.3.2 ExcitedElectronicStateContributions.................... 228 5.3.3 Nuclear Spin Contributions to the Canonical PartitionFunction........................................... 230 5.3.4 TheFullCanonicalAtomicPartitionFunction............ 231 5.4 AtomicGasThermodynamicFunctions ............................ 231 5.4.1 AtomsHavingNoThermallyAccessibleExcited ElectronicStates............................................ 231 5.4.2 InfluenceofExcitedElectronicStates..................... 233 Contents xi 5.5 SimpleHarmonicOscillatorEnsembles ............................ 235 5.5.1 TheSimpleHarmonicOscillator .......................... 235 5.5.2 Interlude:DegreesofFreedom............................. 240 5.6 MonatomicSolids.................................................... 242 5.7 ProblemsforThisChapter........................................... 251 References.................................................................... 256 6 MolecularSystems.......................................................... 257 6.1 Introduction........................................................... 257 6.2 DiatomicMolecules.................................................. 260 6.2.1 SettingtheStage............................................ 260 6.2.2 TheDiatomicVibrationalPartitionFunction ............. 264 6.2.3 TheDiatomicRotationalPartitionFunction .............. 271 6.2.4 ElectronicDegreeofFreedom............................. 303 6.2.5 OverallSummaryforDiatomicMolecules................ 306 6.2.6 DirectEvaluationofInternalStateContributions......... 307 6.3 ExtensiontotheIdealPolyatomicGas.............................. 310 6.3.1 The Rigid-Rotor Simple Harmonic Oscillator Approximation.............................................. 311 6.3.2 Summary of the RR-SHO Approximation for PolyatomicMolecules...................................... 312 6.3.3 BeyondtheRR-SHOApproximation...................... 315 6.4 MolecularSpectra:NuclearSpinEffects............................ 321 6.4.1 DiatomicRotationalSpectra............................... 321 6.4.2 PolyatomicMolecularSpectra............................. 330 6.5 Third-LawEntropyandResidualEntropy.......................... 336 6.6 EffectofHinderedRotationalMotions ............................. 341 6.6.1 SettingtheStage............................................ 342 6.6.2 InternalRotationinEthane................................. 343 6.7 ProblemsforThisChapter........................................... 347 References.................................................................... 355 7 ClassicalStatisticalMechanics............................................ 357 7.1 Introduction........................................................... 357 7.1.1 EnergyEquipartitioninClassicalMechanics............. 360 7.1.2 DealingwithIntermolecularInteractions.................. 367 7.2 TheVirialEquationofState......................................... 368 7.2.1 SecondVirialCoefficientforMonatomicGases.......... 372 7.3 BeyondtheIdealGas ................................................ 376 7.4 AnApproximateDescriptionforDenseFluids..................... 379 7.5 TheLiouvilleandBoltzmannEquations............................ 382 7.5.1 TheLiouvilleEquation..................................... 382 7.5.2 InterludeonBinaryCollisionKinematics................. 390 7.5.3 ScatteringCrossSectionConcept.......................... 398 7.5.4 TheBinaryCollisionTermandtheBoltzmann Equation..................................................... 400

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.