A&A538,A142(2012) Astronomy DOI:10.1051/0004-6361/201117299 & (cid:2)c ESO2012 Astrophysics (cid:2),(cid:2)(cid:2),(cid:2)(cid:2)(cid:2) Statistical study of OB stars in NGC 6334 and NGC 6357 D.Russeil1,A.Zavagno1,C.Adami1,L.D.Anderson1,S.Bontemps2,F.Motte3,J.A.Rodon1,N.Schneider3, A.Ilmane4,andK.J.Murphy5 1 Laboratoired’AstrophysiquedeMarseille–UMR6110,CNRS–UniversitédeProvence,13388MarseilleCedex13,France e-mail:[email protected] 2 Laboratoired’AstrophysiquedeBordeaux,OASU–UMR5804,CNRS–UniversitédeBordeaux1,2ruedel’Observatoire, BP89,33270Floirac,France 3 LaboratoireAIM,CEA/DSM–INSU/CNRS–UniversitéParisDiderot,IRFU/Serviced’Astrophysique,CEA-Saclay, 91191Gif-sur-YvetteCedex,France 4 LaboratoiredemathématiqueJeanAlexandreDieudonne,UMR6621CNRSUNSA–UniversitédeNice–SophiaAntipolis, 06108NiceCedex02,France 5 DepartmentofPhysicsandAstronomy,OhioUniversity,251BClippingerLab,Athens,OH45701,USA Received20May2011/Accepted8December2011 ABSTRACT Context.Star-formingcomplexesarelargestructuresexhibitingmassivestar-formationatdifferentstagesofevolution,fromdense corestowell-developedHiiregions.Theyareveryinterestingforthestudyoftheformationandevolutionofstars.NGC6334and NGC6357aretwoactiveandrelativelynearbystar-formingcomplexes.Fromtheextinctionmapandthesub-mmcolddustemission, andbecausetheyhavesimilarvelocities,theseregionsaremostlikelyconnected.However,locatedinthedirectionoftheGalactic centertheirradialvelocityisnotrepresentativeoftheirdistance.AnalternativeisthentodeterminethedistanceofNGC6334and NGC6357fromtheirstellarcontent. Aims.OuraimistoperformacensusofO-B3ionisingstarsinNGC6334andNGC6357,todeterminetheextinctioncoefficient,and thedistanceofbothregions.AcensusofO-B3starsisanessentialbasisforestimatingthestatisticallifetimeoftheearliestmassive star-formingphases. Methods.WeperformedaU,B,V,andRphotometricsurveyofalargeareacoveringNGC6334andNGC6357withtheVIMOS (ESO-VLT)andtheMOSAIC(CTIO)instruments.ThisallowsustohaveacompletecensusofOtoB3starsuptoV =22.6mag.The OBstarsareselectedbasedontheirU−BandB−V colors.Themostrobustextinctioncoefficientisdeterminedfromcolor−color plotsbeforecomputingthedistanceoftheOBstars. Results.WefindahighervaluethantypicalofthediffuseinterstellarmediumforR of3.53±0.08and3.56±0.15forNGC6357and V NGC6334,respectively.AdoptingtheseR values,thedistancesofNGC6357andNGC6334are1.9±0.4kpcand1.7±0.3kpc. V Weconcludethat,withintheerrorbars,bothregionsarethusatthesamedistanceof1.75kpc(weightedmean).Weconfirmthatthe valueofR islinkedtothelargedustgraincontent.Inparticular,wefoundthattherearemoreverysmallgrainsinNGC6357than V inNGC6334, suggesting thatNGC6357 couldbemoreevolvedthanNGC6334. PlacedintheGalacticcontext,theNGC6334- NGC 6357 complex appears tobe locatedat the inner edge of theSagittarius-Carinaarm. Our census of O toB3starsleads toa countof∼230,whichallowsustodeterminethestatisticallifetimeoftheearliestphasesofthemassivestars.Thestarlessandthe protostellarphaseshaveameanstatisticallifetimeof∼1.5×104yrand∼2.2×105yr,respectively. Keywords.Hiiregions–dust,extinction 1. Introduction a75to500μmSPIREandPACSimagingofacompletesample ofmolecularcomplexesmoremassivethanOrionatdistanceof Star-forming complexes are the main building blocks of the lessthan3kpc.Thissamplehasbeenbuiltbasedondustextinc- large-scale structure of galaxies and major sites to study how tionimagesandCO surveysofthe Galacticplaneandincludes massivestarsform.However,in contrastto low-massstars, the NGC6334andNGC6357. formationofhigh-massstarsremainspoorlyunderstood.Inthis InourGalaxy,NGC6334andNGC6357aretwoveryactive framework, the Herschel/HOBYS (PI: F. Motte, A. Zavagno, star-formingcomplexesseenintheopticalastwoextensiveand S. Bontemps) GuaranteedTime Key Programmeis performing intensely star-formingHii regions.The extinctionmap and the morphologyofthe1.2mmcolddustemissionseemtoindicate (cid:2) Based on observations made with the VIMOS instrument at the thatNGC 6334and NGC 6357are connectedby a filamentary VLT-ESO.Basedonvisitingastronomerobservations,atCerroTololo structure, suggesting that both regions belong to a single com- Inter-AmericanObservatory,NationalOpticalAstronomyObservatory, plex(Russeiletal.2010). which is operated by the Association of Universities for Research in The molecular emission associated with NGC 6334 has a Astronomy,undercontractwiththeNationalScienceFoundation. (cid:2)(cid:2) Appendicesareavailableinelectronicformat mean molecular velocity of VLSR = −4 km s−1 (Kraemer & http://www.aanda.org Jackson 1999) similar to the value from radio recombination (cid:2)(cid:2)(cid:2) FullTablesA.1andA.2areonlyavailableattheCDSviaanony- lines, VLSR = −3.6 km s−1, of NGC 6357 (Caswell & Haynes mousftptocdsarc.u-strasbg.fr (130.79.128.5)orvia 1987).Thesesimilarvelocitiesforregionslocatedspatiallyclose http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/538/A142 to each other indicate that they are both at a similar distance. ArticlepublishedbyEDPSciences A142,page1of21 A&A538,A142(2012) Zone 2 Zone 1 354.000 G353.2+0.9 2.000 NGC6357 353.000 1.000 Zone 7 Zone 4 GUM 63 Zone 3 352.000 GUM 64b GUM 62 -1.000 G351.2+0.5 GUM 61 NGC6334 Zone 5 351.000 GM24 Zone 6 Zone 8 Fig.1.a)Hαimage(UKSTHαsurvey,Parkeretal.2005)oftheHiiregionsNGC6334andNGC6357(Galacticcoordinates).b)Hαimagewith overplottedthecoverageoftheVIMOSobservations(green)andCTIOobservations(red),aswellasthezones1to8(white)discussedinthetext. Zones2,6,and8correspondrespectivelytoNGC6357,NGC6334,andGM24. Independantdistance determinationsof each regionare notyet 2. Observationsanddataextraction well-established. Owing to their Galactic coordinates close to theGalacticcenterdirection,l, b = 351.16◦,+0.69◦ andl, b = 2.1.U,B,andVVIMOSdata 353.01◦,+0.89◦,respectively,forNGC6334andNGC6357,the We observed NGC 6334, NGC 6357, and GM 24 (GM 1-24, kinematicdistanceisunreliable.Thebestwaytoderivetheirdis- Gyulbudaghian et al. 1977) in U, B, and V bands with the tancesisfromthedeterminationofthedistancetotheirexciting VIMOS camera (ESO-VLT). VIMOS is a visible (360 to stars. 1000 nm) wide field imager and multi-object spectrograph mounted at the Nasmyth focus B of UT3 Melipal. We use As reviewed by Persi & Tapia (2008), NGC 6334 VIMOS in its imaging mode. This led to the observation of (=Sharpless 8 = RCW 127) contains the Hii regions (Fig. 1) 67 fields, each composed of 4 quadrants of 7(cid:5) × 8(cid:5) separated GUM 61, GUM 62, GUM 63, and GUM 64 (Gum 1955) and by2(cid:5) gaps.ThecoverageispresentedinFig.1.Thetypicalob- G351.2+0.5. Roslund (1966), Neckel (1978), Walborn (1982), servingmethodwasthreeexposuresof3sinB,sevenexposures and Persi & Tapia (2008) computedthe distance to NGC 6334 of 4 s in U, and four exposures of 3 s in V. The observa- fromthedistancestothevisibleearly-typestarsintheseHiire- tionsweretakeninservicemodeanddeliveredflatfielded,bias- gions and obtained d = 1.45 kpc, 1.74 kpc, 2.30 kpc and correctedandwith calculatedastrometricandphotometricdata 1.61kpc,respectively.Persi&Tapia(2008)underlinedthatthe (zeropoint,extinctioncoefficient). discrepancies are due to the different adopted M calibrations V We extracted stellar positions and magnitudes using andtheadoptedextinctionlaw(R value). V SExtractor (Bertin & Arnouts 1996). We kept objects a with SExtractorflag≤3(suchaconditionensuresagoodphotometry Intheoptical,NGC6357exhibitsseveralbubblesandshell- like regions. The brightest Hii region (G353.2+0.9) shows a andexcludessaturatedobjects).Inaddition,weexcludeddataat thebordersoftheCCDandindeadcolumns.Allobjectsbrighter sharpboundaryfacingthemassiveopenclusterPismis24.The than V = 10 mag were typically saturated. As we treated the distance of NGC 6357 is usually established from the distance imageindependently,weperformedacross-correlationbetween of Pismis 24 (the exciting cluster of NGC 6357); its most re- theextractedU, B,andV datainordertoestablishacatalogue cent determination was that of Massey et al. (2001), who give a value of 2.5 kpc. This distance differs from the 1.7 kpc ofstarswithU,B,andV magnitudes. We measured the completeness as in Adami et al. (2006) suggested by Neckel (1978) and Lortet et al. (1984) and the 1.1 kpc and 1.74 kpc derived by Conti & Vacca (1990) and andDurretetal.(2010).Thismethodaddsartificialstarsofdif- ferent magnitudesand at different locations to the original im- Van der Hucht (2001), respectively, for the Wolf-Rayet star ages and then attempts to recover them by running SExtractor HD157504(WR93). again with the same parameters used for object detection and ThedistanceofNGC6334andNGC6357hasthereforenot classification on the originalimages. We investigatedthe com- yetbeenwell-established.However,sincethedistanceisanes- pletenessfromthreetypicalimageslocatedatdifferentpartsof sential parameter for the determination of the mass, size, and thesurveyedareawithvaryinglevelsofbackgroundandsource luminosity of the associated young objects (e.g. Russeil et al. crowding.The90%meancompletenesslevel(Fig.2)isrespec- 2011), it is essential to evaluate in an homogenous way the tively21.8,22.4,and22.6magforU,B,andV filters.Figure2, distance of the early-type stars in the direction of NGC 6334 shows how the completeness levels vary from CCD to CCD and NGC 6357. In this paper, we focus on the content of because of the quantum efficiency variations between individ- ionizingOBstarsofthestar-formingcomplexesNGC6334and ualCCDsandbecauseoffluctuationsinthediffusebackground NGC 6357 to more tightly constrain their distances, to place light. them in the Galactic context, and to perform a census of their Fromastatisticalstudyofthezero-point,weestimateddis- OBstars. persionsof0.09magforU,0.04magforB,and0.03magforV. A142,page2of21 D.Russeiletal.:StatisticalstudyofOBstarsinNGC6334andNGC6357 center.ForthepurposeoflocatingOandBstars,wekeptstars with magnitude values in the three (U, B, and V) bands. This providedasampleof30388stars(U, B,andV magnitudesare presentedinAppendix,TableA.1). 2.2.RbandCTIOimages We obtained R images of NGC 6334, NGC 6357, GM 24, and the more diffuse area between NGC 6334 and NGC 6357 withtheMOSAICcamera(Blanco-CTIO).Thisinstrumentisan eightCCD mosaic imagerwith a pixelscale of0.27(cid:5)(cid:5) mounted at the prime focus of the 4-m Blanco telescope at the Cerro TololoInter-AmericanObservatory(CTIO).Theseobservations (a) consist of six fields composedof three exposuresof 10 s each. The global coverage is presented Fig. 1. Each field consists of eightquadrants(separatedby gapsof ∼13(cid:5)(cid:5) in rows and ∼9.5(cid:5)(cid:5) incolumns)coveringa36(cid:5)×36(cid:5)fieldofview.Thebiasandthe flat-fieldcorrectionswereappliedtoeachoftheeightCCDim- ages independently, while the combination of the different ex- posures, the astrometry, the reconstruction of the final image and the construction of the weight images were done with the modules MissFITS, SCAMP, and SWarp of TERAPIX (Bertin et al. 2002). The photometric calibration was performed using the observation of the Landolt calibration stars S107a, S107b, S104, and S98 (Landolt2009), giving an extinction coefficient of0.095±0.043magandazeropointof25.57±0.02mag.The extractionofthestellarpositionsandmagnitudeswasdoneusing SExtractorwiththeweightimagesproducedbytheSWarpmod- (b) ule. We kept only objects with a SExtractor flag below 3, and excludedstarsin thebordersoftheCCD andin deadcolumns. This provided a sample of 53420 stars (the R magnitudes of whicharepresentedinAppendix,TableA.2).Theestimatedsat- uration limit is 11 mag and the typical magnitude uncertainty (quadraticsumofthemagnitudeerrorsgivenbySExtractor,the zero-pointuncertainty,andtheextinctioncoefficientuncertainty) is0.05mag. 3. Otheravailabledatasets 3.1.Near-Infrareddatafrom2MASS To complement our optical data, we used data from the Two MicronAllSkySurvey(2MASS)pointsourcecatalog(Skrutsie et al. 2006). The 2MASS survey scanned the entire sky uni- (c) formly in three near-IR bands: J (1.25 μm), H (1.65 μm), and K (2.17 μm). The 2MASS point source catalog1 (Skrutsie S Fig.2. U a), B b), and V c) completeness level in individual CCDs et al. 2006) consists of accurate positions (astrometric accu- (eachdottedcurvecorrespondstoaCCDquadrant,andtheblackcurve racy rms better than 200 mas) and brightness information for is the average of these dotted curves) for the fields centered respec- over400millionpointsources.Thepointsourcecatalogismore tively at 17h20m10s.0; −35◦57(cid:5)18(cid:5).(cid:5)0 (NGC 6334, blue), 17h22m09s.0; than99%completeformagnitudesof J < 15.8,H < 15.1,and −35◦03(cid:5)06(cid:5).(cid:5)0(green),and17h25m37s.0;−34◦13(cid:5)27(cid:5).(cid:5)3(NGC6357,red). K < 14.3 mag. The photometric signal-to-noise ratio is >10 S (i.e.σJ,H,Ks ≤ 0.1mag)forsourcesbrighterthanthecomplete- nesslimits.Thetypicalmagnitudeerroris0.05mag,0.06mag, The delivered photometric calibration neglects the color term. and0.05mag,respectivelyinJ,H,andK . S Thus we estimated the typical error caused by this assumption about the mean color coefficient estimated for the VIMOS in- strumentandthemeancolorofOBstars.Thisleadstoatypical 3.2.DENISdata error of 0.017 mag in U and B and 0.006 mag in V. We then The DENIS2 imaging survey (Epchtein et al. 1997) gives a estimatedtheerrorinthemagnitudeofastartobethequadratic nearly complete overview of the southern sky in three NIR sumofthemagnitudeerrorsgivenbySExtractor,thezero-point bands: Gunn-I (0.85 μm), J (1.25 μm), and K (2.15 μm). The uncertainty, and the color term uncertainty. This led to typical S imageshavebeentakensimultaneouslyinallthreebands,which errorsof0.04mag,0.09mag,and0.23mag,respectively,inV, B,andU. 1 http://irsa.ipac.caltech.edu/ Finally, as some fields overlap, we identified the objects 2 Pointsourcecatalogavailablefromhttp://irsa.ipac.caltech. counted twice and retained those located closer to the field edu/ A142,page3of21 A&A538,A142(2012) in the DENIS, 2MASS, and USNO catalogues using a 5(cid:5)(cid:5) cir- cular cone search radius. We identified 2148 OB stars with a 2MASScounterpart. From the O-B3 star sample we discuss, in the nextsection, the extinction law (Sects. 5.1 and 5.2) in connection with the dustproperties(Sect.5.3),theGalacticstructure(Sect.5.4)and theOBstarscensus(Sect.5.5). 5. Discussion 5.1.Extinctionlaw The radiation from massive OB stars can modify the interstel- Fig.3.Color−colordiagramforstarswithU,B,andVmagnitudes.The lar grains present in their immediate vicinity, hence affect the redcurve isthetheoretical unreddened main-sequence andthelineis global interstellar extinction law (e.g. Chini & Wargau 1990; thestandardreddeningvector,uptoA =5mag,foraB3Vstar(from Pandeyet al. 2000). Any changein the interstellar law will af- V Schimdt-Kaler1983). fect the local extinction and thus the photometric distance de- termination.Manyinvestigations(e.g.Wegner1994;Whittet& leads to a veryhigh accuracy in the colorsof the objects inde- vanBreda 1980; Rieke & Lebofsky 1985) have shown that the pendentofphotometricerrors.TheDENISdatahaveapositional normalextinctionlaw(R = 3.1)isvalidnearlyeverywherein accuracybetterthan2(cid:5)(cid:5) andthemagnitudelimitsare18.5mag, ourGalaxy,althoughsomVeexceptionsarenotedespeciallyinthe 16.5 mag, and 14 mag in I, J, and KS, respectively. The typi- directionofstar-formingregionsandopenclusters,wheretheRV calmagnitudeuncertaintyis0.15mag,0.11magand0.10mag value is higher (e.g. O’Dell & Wen 1992). Different R values V inJ,KS,andI,respectively. relate to different environmental conditions and thus different grain-size distributions and compositions, since the extinction 3.3.USNO-B1.0data dependsontheopticalpropertiesofthedustgrains(e.g.Whittet USNO-B is an all-sky survey obtained from scans of 7435 2003;Mazzei&Barbaro2011).Inparticularlow-RV valuesare Schmidt plates taken for the various optical sky surveys dur- expectedarisealongthelinesofsighttosmallergrains. ing the past 50 years. The USNO-B1.0 is complete down to Therearefourmainmethodsfordeterminingtheextinction V = 21mag,hasanastrometricaccuracyof0.2(cid:5)(cid:5),andaphoto- andtheextinctionlawinagivendirection: metricaccuracyof0.3mag(Monetetal.2003).Fromthepoint 1. Thespectro-photometricmethod,whichisbasedonthecom- sourcecatalog3weextractedRandImagnitudes. parisonoftheobservedenergydistributionofastarofknown spectraltypewithitsnon-reddeneddistribution(e.g.Cardelli 4. TheO-B3starsample 1989). We selected the youngand massive stars (O to B3 stars) based 2. ThePaschen-Balmerlinesratiomethod,whichusesthecom- ontheirU −Band B−V colors.Theinterstellarreddeningaf- parisonbetweenthepredictedandobservedPaschen-Balmer fectstheintrinsicU−BandB−Vcolorsfollowingthereddening linepairratioemittedbytheHiiregions(e.g.Greve2010). line thathas the form: EU−B/EB−V = X +YEB−V. In this equa- 3. The color excess method, which uses two color-excess di- tion,EU−B andEB−V arethecolorexcesses,Xistheslopeofthe agrams of the form E(λ−V) versus E(B−V) (where λ is reddeningline,andY isthecurvatureterm.Weusedtheredden- oneofthewavelengthsofabroadbandfilter)ofagroupof ingpath EU−B/EB−V = 0.72+0.05EB−V (Schmidt-Kaler1983). starsandrequiresthespectraltype,hencetheintrinsiccolor, ToselectOtoB3starsfromtheU −B/B−V color−colordia- ofobservedstarstobeknown(“methodA”ofPandeyetal. gram, we selected stars above the reddening path of a B3 star 2003). (Fig. 3). Following Turner (1996), this corresponds to a nor- 4. The photometric method, which uses two color diagrams mal extinction law (R = 3.1), while larger R (as expected (TCDs)oftheform(λ−V)versus(B−V)(whereλisone V V forstar-formingregions)seemtoinduceashallowerslope.This ofthewavelengthsofabroad-bandfilter)ofagroupofstars does not impact our selection process as stars following a red- andassumesthattheobservedstarsaremainsequencestars dening law with a shallower slope will be above the adopted (“methodB”ofPandeyetal.2003).Intheseplots,thered- reddeningpath.Inadditionthereddeningpathdoesnotdepend dening path coincides with the unreddened main sequence strongly on the adopted intrinsic colors. To test this aspect we causing the stars of different spectral types and extinctions plotEU−BversusEB−Vforstarswithknownspectra(Table2)and to form a linear relation parallel to the reddeningline. The fittedtheEU−B/EB−V = X+YEB−V relationshipfortheSchmidt- slope of this distribution, relative to the expected slope for Kaler(1983)andforthemostrecentMartinsetal.(2006)color the normal reddening path, allows one to derive the value calibrationsofOstars.Ifoursmallsampledoesnotallowusto ofR . V constrain reliably X and Y, the fit results are similar for both calibrations (with a smaller than 1% difference in X and Y). AsweareperformingastatisticalstudyofOBstarsinthedirec- tionofNGC6334-NGC6357andhavenospectralinformation However,Turner(1989)showedthattheslopeoftheUBVred- aboutthestars,thelastmethodisthemostappropriate.Toinves- deninglinevariesfromoneregionoftheMilky-Waytoanother overarangeofatleast X = 0.62to0.80.Iftheslopeissteeper tigatethevalueofRV inthedirectionofNGC6334–NGC6357, we used TCDs with λ as one of the wavelengths of the broad than0.72,thiscancauseustomisssomeB3stars. band filters (R, I, J, H, K). These TCDs provide an effective Thisprovidedasampleof2394candidateOBstars.Wethen methodforseparatingtheinfluenceofthenormalextinctionpro- searchedforobjectsassociatedwiththe2394candidateOBstars ducedbythediffuseinterstellarmediumfromthatoftheabnor- 3 Availablefromhttp://irsa.ipac.caltech.edu/ malextinction.In these diagrams,the slope of the distribution, A142,page4of21 D.Russeiletal.:StatisticalstudyofOBstarsinNGC6334andNGC6357 Table1.R results. V Zone: 1 2 3 4 5 6 7 8 NGC63357 NGC6334 GM24 R : 3.32±0.12 3.53±0.08 3.44±0.07 3.37±0.03 3.46±0.06 3.56±0.15 3.16±0.08 3.89±0.09 V Table2.StellardataavailableinliteratureforNGC6357(Pismis24)andNGC6334. Name Equatorialcoordinates V B−V U−B Spectraltype V−K J−H H−K R d A S V V J2000(hms◦(cid:5)(cid:5)(cid:5)) mag mag mag mag mag mag kpc mag NGC6357 HDE319718=Pis24-1 172443.41−341156.5 10.43 1.45 0.40 O3If* 4.538 0.551 0.283 3.37* 1.65 5.75 HD157504=WR93 172508.79−341112.1 11.46 1.15 WC7(+abs?) 5.595 0.503 0.668 − − − Pis24-17 172444.70−341202 11.84 1.49 0.28 O3III(f*) 4.865 0.535 0.306 3.52* 2.03 6.39 Pis24-2 172443.20−341243.5 11.95 1.41 0.32 O5.5V((f)) 4.260 0.475 0.307 3.27 1.90 5.99 Pis24-15* 172428.86−341450.3 12.44 1.18 0.26 O8V 3.974 0.450 0.235 3.38 2.71 5.01 Pis24-13* 172445.68−340939.2 12.32 1.33 0.22 O6.5V((f)) 4.784 0.574 0.289 3.47 2.08 5.74 Pis24-3* 172442.21−341321.0 12.77 1.44 0.35 O8V 4.279 0.524 0.298 3.30 1.92 6.09 Pis24-8* 172438.81−341458.2 12.95 1.55 0.42 4.460 − 0.208 − − − Pis24-10 172435.94−341359.9 12.96 1.50 0.38 O9V 4.272 0.487 0.276 3.31 1.66 6.33 Pis24-16 172444.30−341200 13.02 1.60 O7.5V 5.649 0.592 0.490 3.76 − − Pis24-7 172447.81−341516.5 13.46 1.68 0.58 5.036 0.608 0.327 − − − Pis24-12 172442.22−341141.1 13.88 1.47 0.38 B1V 4.097 0.508 0.208 3.07 1.51 6.19 Pis24-4 172440.39−341205.9 13.93 1.43 0.53 4.792 0.595 0.315 − − − Pis24-18 172443.20−341142 13.97 1.48 B0.5V: 4.998 0.683 0.341 3.61 − − Pis24-9 172439.29−341526.4 14.26 1.40 0.40 4.258 0.490 0.288 − − − Pis24-11 172434.68−341317.1 14.53 1.57 0.30 4.741 0.660 0.296 − − − Pis24-19 172443.50−341141 14.43 1.39 B1V 4.818 0.592 0.467 3.71 − − NGC6334 CD-3511146 171907.5−353746 11.44 0.76 −0.04 B2IV 2.05 0.24 0.09 2.98 1.59 3.48 HD319701 171916.0−355408 10.10 1.08 0.04 B1Ib 3.14 0.37 0.21 3.19 1.73 4.65 HD39699 171930.4−354236 9.63 0.77 −0.24 O5V((f)) 2.29 0.22 0.15 3.37 1.75 3.78 CD-3511477 172005.0−355638 11.11 0.90 −0.03 B0.5V 2.46 0.27 0.09 3.05 1.4 4.12 HD319697 172024.8−354232 10.33 0.66 −0.24 B1V 1.62 0.18 0.04 2.84 1.10 3.28 CD-3511482 172026.5−354407 10.70 0.73 −0.25 B0.5Ve 3.42 0.38 0.43 4.58 1.41 3.61 CD-3511483 172033.6−360626 11.65 1.03 −0.10 B1e 2.53 0.30 0.19 2.80 − − HD319703B 171945.0−360547 11.20 1.25 0.04 O6.5V((f)) 3.61 0.28 0.28 − 1.26 5.64 HD319703A 171946.2−360552 10.71 1.14 0.04 O7III 3.66 0.38 0.27 3.58 1.78 5.12 CD-3511484 172049.8−355221 11.33 0.95 0.04 B1V 2.73 0.27 0.18 3.17 1.10 4.27 HD319702 172050.6−355146 10.13 0.90 0.04 O8III((f)) 2.71 0.31 0.17 3.43 2.11 4.03 HD156738 172052.7−360421 9.37 0.86 −0.14 O6.5III((f)) 2.58 0.26 0.16 3.55 1.58 4.05 Notes. Spectral types are from Massey et al. (2001) for NGC 6357 and fromPersi & Tapia (2008) and Pinheiro et al. (2010) for NGC 6334. AsteriskfollowingthenameinCol.1meansthatU,BandV dataarefromthispaper.AsteriskfollowingvalueintheR columnmeansthedata V arefromBohigasetal.(2004).JHK dataarefrom2MASS.DistanceandA werecalculatedfromtheR of3.56and3.53forstarsinNGC6334 S V V andNGC6357,respectively. m ,iscomparedtothetheoreticalslope,m (Pandeyetal. 2. WekeptonlystarswithV <21mag(toensurecompletness) obs normal 2003).ToderivethevalueofR ,weusedtherelation(seeSamal andwithB−V uncertainties<0.15mag. V etal.2007;Pandeyetal.2000) 3. For CTIO data we retained stars with V − R uncertainties ≤0.15mag. R =(m /m )×R , (1) 4. Forthe2MASSandDENISdata,wekeptstarswithmagni- V obs normal normal tude uncertainties≤0.15mag and magnitudesbrighterthan whereR =3.1. themagnitudelimits(seeSects.3.1and3.2). normal ToinvestigatetheR valueinNGC6334-NGC6357,wedi- V vided the area into eight zones based on the individual region These criteria helpedto minimizethe incompletenessproblem. (see Fig. 1) and plotted the TCDs for each zone. Zones 2, 6, For USNO data, we adopted an uncertainty of 0.3 mag for R and 8 encompass NGC 6357, NGC 6334, and GM24 respec- andI. tively. Zone 3 is the area between NGC 6357 and NGC 6334. IntheTCDs,thedatawerefitusinga1σ-clippinglinearre- Zones4and1andzones5and7areontheeasternandwestern gression(seeinAppendixB,Figs.B.1toB.8),andtheresultsare bordersofNGC6357andNGC6334,respectively. giveninTable1(thedetailsofthelinearregressionsandtheR V BeforeplottingtheTCDs, weadoptthefollowingselection determinationaregiveninAppendixB).Toillustrateourresults, criteriaforoursample: we present in Fig. 4 some representativecolor−colordiagrams (alltheplotsarepresentedinAppendix).Intheseplots,thema- 1. WeremovedIR-excessobjectsbasedontheir2MASSJ−H jority of the stars follow a linear distribution.Few stars are lo- and H −K colors.FollowingHansonetal.(1997),wekept catedabovethegeneraltrend.Metallicityoragevariationscan- starswith(J−H)−(1.83×(H−K)+0.15)≥0. notexplainthisresult,becauseametallicityeffectcorrespondsto A142,page5of21 A&A538,A142(2012) mostlikelyexplanationisthemis-associationwithnear-infrared data. As expected, this effect is more importantin crowded ar- eas such as zone 4, which is the closest to the Galactic plane. In the distribution of the stars, we can delineate overdensities (whichareclearlyillustratedinFig.4a).Theseprovideinforma- tionaboutthenumberoftheextinctionlayerspresentalongthe lineofsight.IntheTCDofzone4,thelowestGalacticlatitude zone, we can distinguish up to four extinction layers centered on (B − V) ∼ 0.7, 1, 1.3, and 1.75. Stars are mainly located around(B−V) = 1.5and(B−V) = 1,respectively,inzones2 (NGC6357)and6(NGC6334),underliningthesmallextinction differencebetweenbothregions.Finally,inzones2,6,and7we notethesmallnumberofstarsaroundandbelow(B−V) = 0.5 thatdepartfromthegeneraltrend.Thesestarsareprobablyvery nearbyforegroundstars. WenotethatR variesfromzonetozone.Fromourdatawe, V (a) confirmahighervalueofR inNGC6357andNGC6334than V normalextinction.ThevalueofR isrespectively3.53±0.08and V 3.56±0.15forNGC6357andNGC6334,whichisverysimilar for both regions. Neckel & Chini (1981) found a mean value ofR of3.8forNGC6357-NGC6334usingasimilarmethod. V Thisvaluecomesfrom(R−V)versus(vs.)(B−V)and(I−V) vs.(B−V)plots(givingR = 4.08and3.64,respectively)only V andusingstarsinbothNGC6357andNGC6334.Considering thesameplots,theNeckel&Chini(1981)resultsareconsistent with ours (see Table B.3). Bohigas et al. (2004) found that for Pismis 24 (NGC 6357) R = 3.51, and Pinheiro et al. (2010) V foundthat(cid:8)R (cid:9)=3.5forstarsinNGC6334. V The largest value, R = 3.89 ± 0.09, is found for zone 8 V correspondingtoGM24.ThezonesoutsidestheHiiregionsbut closertotheGalacticplane(zones3,4,and5)exhibitasimilar R ,around3.43,whichis,despitethemorediffuseaspectofthe V interstellarmediumexpectedinthese zones,andis higherthan thenormalvalue.ThezonesathigherGalacticlatitude(zones1 (b) and7)exhibitacloser-to-normalR withameanvalueof3.25. V 5.2.Starswithknownspectra TheextinctionparametersR andA canalsobedeterminedfor V V starsofknownspectraltype.Thiscanthenbecomparedwithour purephotometricapproach.WecompiledinTable2fromthelit- eraturealltheOandBstarsinNGC6334andNGC6357with a knownspectraltype.Inthistable,Cols. 1to3 and7givethe name, the coordinates, and the spectral type of the stars, while Cols.4to6and8to10givetheUBVJHKphotometricinforma- tion. Column 11 gives the R value deduced from Eq. (2) (see V below),whilethelasttwocolumnsgivethedistanceandtheex- tinction for each star calculated with the photometricR value V determinedintheprevioussection. Moffat & Vogt (1973) obtained photometry of 15 stars in Pismis24,forwhich12aremembers.Masseyetal.(2001)ob- tainedspectroscopyof11stars,fourofwhichwerenotinthelist (c) ofMoffat&Vogt(1973).Theyfoundthattwooftheclusterstars Fig.4. V − K versus B−V for zone 4 a), zone 2 = NGC 6357 b), are of type O3, one of which is a supergiant (HDE 319718 = andzone6=NGC6334c).Thestarsidentifiedspectroscopically(see Pis 24-1) and the other appears to be a giant (Pis 24-17). On Sect.5.2)arealsooverplotted(filledtriangles).Thesmallthicksegment the basis of the 10 stars with reliably determined luminosity onthebottomleftoftheplotsisthelocusoftheunreddenedO-B3stars classes, Massey et al. (2001) inferred a distance modulus of (fromMartinsetal.2006;Koornneefetal.1983;andWegner1994). 12.03±0.14mag.WhentheyusedonlythesixOdwarfstode- rivethedistance,theycomputed11.99±0.05mag.Theyadopted a distance modulusof12.0magcorrespondingto a distanceof acolorvariationsmallerthan0.1mag(DeGrijsetal.2001)and 2.5 kpc, which is larger than the 1.7 kpc suggested by Neckel anagevariationcanberepresentedasisochronesparalleltothe (1978) and Lortet et al. (1984). The cluster also contains the reddeningvectorincolor−colordiagrams(Leitherer1999).The Wolf-Rayet star HD 157504 (WR 93), which is of type WC7. A142,page6of21 D.Russeiletal.:StatisticalstudyofOBstarsinNGC6334andNGC6357 Conti&Vacca(1990)describedthisstarasa“WCE+abs”and sizedistribution.Seab&Shull(1983)foundsignificantgrainde- derivedadistanceof1.1kpc. structiononlyforshockvelocitiesabove∼40kms−1.Theypre- In contrast to NGC 6357, NGC 6334 is ionized by a dictedthatlargegrains,withsizeslargerthan500Å(thegrains small number of lightly reddened OB stars (Table 2) that are that produce most of the 100 μm radiation), are preferentially spread about the whole nebula. Persi & Tapia (2008) sum- affected. marized the available stellar data for early-type stars in the To investigate this finding in terms of the value of R , we V region. NGC 6334 is a grouping of the well-known HII re- evaluated the average infrared (12, 25, 60, and 100 μm) fluxes gions GUM 61, GUM 62, GUM 63, and GUM 64. The ex- (backgroundsubtracted)fromIRIS4 inthe differentzones.The citing stars of GUM 61 (HD319703A and HD319703B) and MIPSGAL24and70μm images(Careyetal.2009)cannotbe GUM 62 (HD156538) can be clearly distinguished, while the used because most of the HII regions are saturated. However, stars HD319702and CD-35 11484 appear as possible exciting IRAS data facilitates the comparison with dust models similar starsofGUM64. tothoseofDésertetal.(1990).TheIRASmeanfluxesandtheir In GM24, no optical exciting star has been identified. uncertaintyaremeasuredfromthecalibratedimageswithineach However, a small cluster dominated by a few young massive areausingtheds9-“Funtools”tool.Thefluxesarecorrectedfrom starsliesatitscore(Tapiaetal.1991).Onthenear-infraredpho- abackgroundvaluetakenatthesamelocation,onthenorth-west tometryoftheclusterstarsandextinctionconsiderations,Tapia border (to minimize the contribution of the Galactic plane), in etal.(1991)deducedadistanceof2kpc. every12to100μmimage. FollowingSamaletal.(2007),onewaytoestimatethevalue As expected from Hα emission and OB star content, and of RV is to use stars of known spectral type (Table 2). The RV based on a large I(60)/I(100) and low I(12)/I(25) ratio corre- value toward a star can be evaluated using the empirical rela- sponding to an increase in the intensity of the radiation field tionshipestablishedbyWhittetetal.(1976) (Boulanger 1988), zones 2, 6, and 8 (corresponding, respec- R (cid:10)1.1E(V−K)/E(B−V). (2) tively, to the HII regions NGC 6357, NGC 6334, and GM24) V clearlyexhibitastrongerradiationfieldthanotherzones(Fig.5). Equation(2)isbasedonthefindingthattheratioAV/E(V−K)(cid:10) However, NGC 6334 appears to have a higher radiation field 1.1doesnotchangeappreciablywiththeRV valueandacrossthe than NGC 6357, while NGC 6357 contains more O-type stars Galaxy(Whittet&vanBreda1978,1980).ToapplyEq.(2),we (Table 2) and has a higher radio flux than NGC 6334 (see transformedtheJHKSmagnitudesofthestarsfromthe2MASS Sect.4.6). systemtotheKoornneefsystem(Koornneef1983)usingthere- To characterise the dust properties, we determined the ra- lationgivenbyCarpenter(2001).Intrinsic(V−K)0colorswere tios of mid-infrared to far-infrared emission (defined as X1 = takenfromKoornneef(1983)andintrinsic(B−V)0colorsfrom νI(12 μm) / [νI(60 μm) + νI(100 μm)] and X2 = νI(25 μm) / Schmidt-Kaler (1983). The results are listed in Table 2. From [νI(60μm)+νI(100μm)]).Theseratiosaretoolsforprobingthe these results, we note that RV varies from place to place on a contentof small grains such as PAHs (polycyclicaromatic hy- typical spatial scale that is smaller than our zone size. In this drocarbons)andVSGs(verysmallgrains)relativetobiggrains way,Pismis 24 (NGC6357)exhibitsa meanRV = 3.43,while (Désertet al. 1990).In particular,X1 dependsprimarilyonthe RV =3.42forstarsassociatedwithNGC6334.Theseresultsare abundanceofsmallparticlessuchasthePAHs.Figure5presents slightlysmallerthan,butinagreementwith,thoseobtainedfrom thevariationinX1andX2withR .BothX1andX2havevalues V thephotometricapproach(RV = 3.53±0.08and3.56±0.15in similartothoseinDésertetal.(1990)forHIIregions. thedirectionofNGC6357andNGC6334respectively). Globally,X1showsnotrendrelativetoR ,whichisconsis- V From our photometric determination of RV, we found for tentwith RV dependingonbig grains,butalso onthe radiation NGC6357andNGC6334ameandistanceof1.93±0.36kpcand field. When we assumed that zone 3 is the most representative 1.72±0.26kpc,respectively,andameanAV of5.93±0.49mag of the typical dust properties, as it is the least affected by HII (Bohigas et al. 2004, give for Pismis 24 AV = 6.37 mag) and regionsandstarformation,wefoundthatthezones1,4,6,and8 4.52±0.68mag,respectively.Fangetal.(2011),fromisochrone are deficient in small particles (PAH and VSG) while zones 7 fittingofOstarsinPismis24,foundadistanceof1.7±0.2kpc and2areoverabundant.NGC6357(zone2)appearstohavethe andamedianextinctionof5.3mag.We canthenconcludethat highest X1 value suggesting that shocks can act in addition to NGC6334andNGC6357areatanaveragedistanceof1.75kpc thephotonfluxwithinNGC6357.Thisisconsistentwith mor- (weightedmean). phology(filamentarystructures)ofNGC6357asseeninHα. In the X2 versus R plot, a clear split is observed between V HIIregions(zones2,6,and8)andotherregions.TheseHIIre- 5.3.Generaldustproperties gionsexhibitahigherX2,whilezones1,3,4,5,and7havesimi- Small values of RV are generally assumed to relate to a preva- larX2valuesofaround0.10±0.02.Thisrelativeexcessemission lenceofsmalldustgrains,whichaffectstheextinctioncurveat at25μmcouldmeanthatthereisanexcessofVSGs,thatthebig ultravioletto opticalwavelengths(Fitzpatrick 2004). A change grain emissivity has been modified (Désert et al. 1990), and/or in the size distributionnaturallyexplainsthe variationof RV in thatthebiggrainemissioncontributessignificantlytothe25μm differentinterstellarmedia.Inparticular,anychangeinthedis- bandflux. tributionofbiggrains,withasizeofbetween15nmand100nm, is expected to be directly related to a change in R . The size 4 IRIS(ImprovedReprocessingoftheIRASSurvey)dataaretheim- V proved version of thelatest IRASimages, followong the second gen- distributionof biggrainscanbe alteredbyshockwaves(Jones etal.2005).High-velocityshocksaffectgrainsthroughsputter- eration processing (or IRAS Sky Survey Atlas, ISSA). These maps havebeenreprocessedtoimprovesensitivityandabsolutecalibration. ing,whichreducesthenumberofsmallparticles,whileinshocks ComparedtothelatestversionoftheIRASdata,thesenewimageshave withlowervelocities,grain-graincollisionsalterthesizedistri- higherqualityzodiacallightsubtraction,calibration,andzerolevelad- butionbyincreasingthe small-to-largegrainsize ratio(Mazzei justmentstomatchtheDIRBEdataonlargeangular scales.TheIRIS & Barbaro 2008). Heiles et al. (1988) proposed that shock ve- data have a resolution near 4(cid:5) in the four wavelengths (12, 25, 60, locitiesofat least ∼30km s−1 are requiredto modifythe grain and100μm). A142,page7of21 A&A538,A142(2012) 5.4.Galacticstructure The relatively large number of OB stars (Table 3) in our sam- pleallowedustoperformastatisticalapproachtomeasuringthe stellar distance. The zones exhibit similar star-number surface densities, excepts for zone 4, which has a larger value. This is naturallyexplainedbyitslocationpointingtowardstheGalactic plane,whichnaturallyprobesdenserstellarregions.Sincefrom photometricdataonlyitisimpossibletodeterminetheluminos- ity class, when determining the distance we assumed that the starsaremain-sequencestarsandifthisisnotthecasethisleads ustounderestimatethedistancebyuptoafactorof0.6respec- tively to class III stars. Taking as a starting point the observed colorsU−BandB−V,theintrinsiccolors(U−B) and(B−V) 0 0 andtheextinctionAV =RV×EB−V aredeterminedfollowingthe (a) reddeninglaw and the unreddenedmain sequence of Schmidt- Kaler(1983).Theintrinsiccolorsareusedtodeterminethespec- traltypeusingthemain-sequencecalibrationtable ofSchmidt- Kaler (1983). The distance is then calculated by adopting the M -spectraltypecalibrationfromRusseil(2003). V The distance uncertainty is evaluated from the photometric uncertaintiesasσ /d =(ln(10)/5)×[σ +R ×σ +R ×σ + d V V B V V σRV×EB−V].Todeterminethedistance,weadoptedtheRV value oftheareawherethestarsarelying(Fig.7a). We considered the U-band completeness level (see Sect. 2.1), assuming a typical diffuse extinction (A = V 0.7 mag kpc−1, Marshall et al. 2006) and a mean extinction of A =5magatthedistanceofNGC6334–NGC6357,andtak- V ingtheabsoluteU magnitudefora B3V(Schmidt-Kaler1983) andaO9.5V(Martins&Plez2006)starwecanestimatethatwe havea90%meancompletenesslevelforB3VandO9.5Voutto 3300 pc and 5000 pc, respectively. At these distances, we can (b) probethenearestspiralarmstructure. In the model of Russeil et al. (2007), the line of sight in the direction of NGC 6334 – NGC 6357, is expected to cross the Sagittarius-Carina arm at ∼1.5 kpc, the Scutum-Crux arm at ∼3 kpc, the Norma arm at ∼4.3 kpc, and a small feature around6kpc.FortheHouetal.(2009)model,thedistancetothe armsareslightlydifferent:0.82kpc,2.9kpcand4.7kpcforthe Sagittarius-Carina, Scutum-Crux, and Norma arms. Figure 7a showspeaksat1kpc,1.8kpc,2.6kpc,and4.6kpc.Everypeak canbeassociatedwithaspiralarm. Toestimatethepossibleimpactofourassumptionsaboutthe main-sequencetypeofthestars,wenote(Table2)that65%are main sequence stars, 17% are type III stars, and 9% are type I stars.Wethenrepeatedourdeterminationofthestellardistance distribution (Fig. 7b) considering these proportions of class V and III and adopting an average factor of 1.5 for the distance of class III stars, respectively, to class V stars. We can discern (c) that the featuresare globallyrecoveredwith peaksat distances ofaround1.4,2.6,and4.6kpc. Fig.5. Far infrared dust emission of the 8 zones. The plots are TheaveragedistanceoftheNGC6334-NGC6357complex log(I(60)/I(100))versuslog(I(12)/I(25))a),X1versusRV b)andX2 (1.75 kpc) places it in the Sagittarius-Carina arm, although it versusR c).Labels2,6,and8correspondtotheregionsNGC6357, V appears to be located slightly farther away than the first stel- NGC6334,andGM24,respectively. lar peak. Such a configuration was already noted for the other Sagittarius-Carina arm HII region RCW108 (Georgelin et al. 1996)atadistanceof1.4kpc,whilethestellarpeakofthefield Wesuggestthatthereisaglobaldifferencebetweenthedust starsisat1.1kpc.Inparallel,Tovmassianetal.(1996),studying sizedistributionsofNGC6334andNGC6357.ThesimilarR anareaofabout12◦2 centeredonl = 297◦,b = −1◦ findatthe V in both regions suggests that their big grain content is similar, distanceoftheSagittarius-Carinaarmtwoseparatestellarasso- whileNGC6357containsmoreverysmallgrains.TheOBstars ciationsat1.2and1.5kpc.Thissuggeststhatthereisapossible inNGC6357seemthentohavealreadyre-processedpartofthe branch of the arm or a possible age gradient(with HII regions dust, which could be interpreted as a more evolved status for andfieldstarslocatedatthefarandnearedgeofthearm).Itis NGC6357thanforNGC6334. most probable that there is a non-zero age gradient across the A142,page8of21 D.Russeiletal.:StatisticalstudyofOBstarsinNGC6334andNGC6357 Table3.Meanstarnumberandsurfacedensity. Zone: 1 2 3 4 5 6 7 8 Number: 327 458 409 595 113 199 194 99 Numberper◦2: 346.4 394.8 281.9 1075.9 465.0 314.9 570.6 436.1 NGC6357 354.000 GP3i5s3m.2is+ 204.9 AH03J1725 2.000 353.000 1.500 1.000 0.500 GUM 63 352.000 GUM 64b Bochum 13 -0.500 GGU35M1. 26+20.5 GUM 61 -1.500 -1.000 351.000 NGC6334 GM24 (a) -2.000 Fig.6.Hαimage(UKSTHαsurvey,Parkeretal.2005)oftheHiire- gionsNGC6334andNGC6357(Galacticcoordinates). Thedifferent regionsarelabeled.OverplottedaretheO-B3starsinthedistancerange of1.5to1.95kpc(redcircles)andstellarclusters/groups(yellowsym- bolsandnames).Clusters/groupswithoutnameareclustersfromBica etal.(2003)andFeigelsonetal.(2009). Sagittarius-Carinaarm,asMel’niketal.(1998)show,becausea stratification of stellar ages exists across the Sagittarius-Carina arm,withyoungobjectsbeinglocatedneartheinneredgeofthe arm,whileoldgroupingslieclosertotheouteredge. (b) 5.5.TheOBstarscensus Uncertainty about the first phase of high-mass star formation Fig.7.a)DistributionofdistancestoOBstars(blackhistogram).Only concerns the relative lengths of the lifetimes of high-mass starswithdistanceuncertaintiessmallerthan400pchavebeenconsid- IR-quiet and high-luminosity protostars as well as prestellar ered.ThebluedashedhistogramistheBstardistribution,whilethered dashedhistogramistheOstardistribution.b)Distributionofdistances sourcesdetectedinsubmmsurveys(Motteetal.2007).Tohelp toOBstarsassumingaproportionofclassVandclassIIIstarsof65% resolvethisuncertainty,weperformedacensusofmassivestars and17%. (earlierthanB3)intheNGC6334-NGC6357complex,because the statistical lifetime is measuredrelativeto the knownage of OBstars. (Diaset al. 2002). For Pismis 24, Wang etal. (2007) identified The 2.7 GHz radio continuum flux of NGC 6334 and 34O-B3starsfromX-raystudies.Theinformationontheclus- NGC 6357 is 439.4 ± 13.5 Jy and 924.1 ± 29.0 Jy, respec- ter AH03J1726-34.4 is very sparse. AH03J1726-34.4 contains tively(fluxesestimatedfromPaladinietal.2003).Thesefluxes atleast4OBstars(Neckel1984;Damkeetal.2006).We were correspond to ionising photons fluxes (on a logarithmic scale) abletocountatleast38OBstarsassociatedwithNGC6357. of50.04s−1 and50.37s−1. FromTable2,we evaluatethestel- ForNGC6334(Fig.6),Neckel(1978)found14O-B3stars lar ionising photon flux for both regions using Panagia (1973) from optical photometry, and Bica et al. (2003) listed 7 em- andSternbergetal.(2003).Thisledto50.04s−1 and50.32s−1 beddedclusters/groupsassociatedwithradiosources.Feigelson forNGC6334andNGC6357,respectively,ingoodagreement et al. (2009) show (from a X-ray census of stellar sources in with the radio values and suggests that the main ionizing stars NGC6334)acomplicatedspatialpatternwith ∼10distinctstar are clearly identified. However, to have a complete census of clusters(theheavilyobscuredclustersaremostlyassociatedwith OB stars we must also consider the OB stars that are not opti- known far-infrared sources and radio HII regions). They also callyvisible. founddozensoflikelyOBstars,bothinclusters,anddispersed In NGC 6357, two open clusters (Fig. 6) were previously throughouttheregion,suggestingthatstarformationinthecom- identified, the well-known Pismis 24 and AH03J1726-34.4 plex has proceeded over millions of years. Tapia et al. (1996) A142,page9of21 A&A538,A142(2012) deduced that the young cluster embedded in NGC 6334I has Acknowledgements. Part of this work was supported by the ANR (Agence around 93 stars members brighter than K = 16 and that the Nationalepourlarecherche)project“PROBES”,numberANR-08-BLAN-0241. majorityofthe observedmembersare ZAMSstars earlierthan PartofthisworkwascompletedthankstoSIMBADandCDS.Theauthorsac- knowledgeD.CloweandM.P.Ulmer,respectively PIandCo-IoftheNOAO B3-B4.Tapiaetal.(1996)found12faintsources(detectedonly observingtime(NOAO2009A-0137),andL.Guennoufortheirimplicationin in K band) centered on the HII region NGC 6334E. They es- theNOAOobservations. timated that the ionization of NGC 6334E requires at least an O7.5ZAMSstaror12-13B0-B0.5ZAMSstars.Theythenpro- posed that a cluster of B stars is responsible for the ionization References of NGC 6334E.Bochum 13, a cluster at the north-westborder Adami,C.,Picat,J.P.,Savine,C.,etal.2006,A&A,451,1159 of NGC 6334, and at the same distance, contains5 O-B3 stars Ahumada,A.,Claría,J.,&Bica,E.2007,A&A,473,437 (McSwain2005) andaclusterdominatedbyafewyoungmas- Bertelli,G.,Bressan,A.,Chiosi,C.,etal.1994,A&AS,106,275 sivestars(∼10)liesinthecoreofGM24(Tapiaetal.1991).We Bertin,E.,&Arnouts,S.1996,A&AS,117,393 thencountatleast150OBstarsassociatedwithNGC6334. Bertin,E.,Mellier,Y.,&Radovich,M.2002,ASPC,281,228 Bica,E.,Dutra,C.,&Barbuy,B.2003,A&A,397,177 OurUBVdataprovideanestimateof40additionaloptically Bohigas,J.,Tapia,M.,Roth,M.,etal.2004,AJ,127,2826 visibleO-B3starsatthedistanceofNGC6334-NGC6357com- Boulanger,F.,Beuchman,C.,Désert,F.,etal.1988,ApJ,332,328 plex (Fig. 6), giving a total count of at least 228 OB stars. We Cardelli,J.A.,Clayton,G.C.,&Mathis,J.S.1989,ApJ,345,245 canthusestimatethat230massivestars(earlierthanB3)belong Carey,S.,Noriega-Crespo,A.,&Mizuno,D.2009,PASP,121,76 Carpenter,J.2001,AJ,121,2851 totheentirecomplex. Caswell,J.,&Haynes,R.1987,A&A,171,261 In Russeil et al. (2010), we presented a census of high- Chini,R.,&Kruegel,E.1983,A&A,117,289 mass young stellar objects at various evolutionary stages: we Chini,R.,&Wargau,W.1990,A&A,227,213 identified 1 starless clump, 6 IR-quiet protostars, and 9 high- Chini,R.,Elsasser,H.,&Neckel,T.1980,A&A,91,186 Conti,P.,&Vacca,W.1990,AJ,100,431 luminosity IR protostars in NGC 6334-NGC 6357. Since the Curti,R.,etal.2003,2MASSAll-SkyPointSources(Pasadena:NASA/IPAC), timescaleofthehigh-massyoungobjectscannotbederiveddi- http://iras.ipac.caltech.edu/applications/Gator rectly, a statistical method was used. Assuming a steady star Damke,G.,Barba,R.,&Morrell,N.2006,Rev.Mex.Astron.Astrofis.,26,180 formation, the ratio of the number of objects at each stage is deGrijs,R.,O’Connell,R.W.,&Gallagher,J.S.2001,AJ,121,768 Désert,F.,Boulanger,F.,&Puget,J.L.1990,A&A,237,215 proportional to the stage timescale. The unit of time was esti- Dias,W.,Alessi,B.,Moitinho,A.,etal.2002,A&A,389,871 mated from the number and age of OB stars. The adopted age Durret,F.,Laganá,T.F.,Adami,C.,&Bertin,E.2010,A&A,517,A94 of OB stars in NGC 6334-NGC 6357 comes from the age of Epchtein,N.,deBatz,B.,Capoani,L.,etal.1997,Msngr,87,27 theclusterPismis24,whichisbetween1.73Myr(Masseyetal. Fang,X.,Storey,P.J.,&Liu,X.-W.2011,A&A,530,A18 2001) and 5± 3 Myr (Ahumada et al. 2007). This means that Feigelson,E.,Martin,A.,McNeill,C.,etal.2009,AJ,138,227 from our number of ∼230 OB stars, one high-mass young ob- Fitzpatrick,E.L.2004,ASPC,309,33 Georgelin,Y.M.,Russeil,D.,Marcelin,M.,etal.1996,A&AS,120,41 jectcorrespondstoastatisticallifetimeofbetween∼7.5×103yr Greve,A.2010,A&A,518,A62 and∼2.2×104yr.Wecanthen,inNGC6334-NGC6357,esti- Gum,C.S.1955,MmRAS,67,155 matethatthestarlessandtheprotostellarphaseshaveastatistical Gyulbudaghian,A.,&Maghakian,T.1977,PAZh,3,113 lifetimeof7.5×103−2.2×104 yr and1.1×105−3.3×105 yr, Hanson,M.,Howarth,I.,&Conti,P.1997,ApJ,489,698 Heiles,C.,Reach,W.,&Koo,B.1988,ApJ,332,313 respectively. Hou,L.G.,Han,J.L.,&Shi,W.B.2009,A&A,499,473 Jones,A.2005,Proc.ThedustyandMolecularUniverse,ESAP,577,239 Koornneef,J.1983,A&A,128,84 6. Conclusions Kraemer,K.,&Jackson,J.1999,ApJS,124,439 Kroupa,P.2001,MNRAS,322,231 Landolt,A.U.2009,AJ,137,4186 The results that we have presented in this paper stress the ef- Leitherer, C. 1999, Spectrophotometric Dating of Stars and Galaxies, ed. I. fectivenessofmulticoloropticalphotometryinthestudyofthe Hubeny,S.Heap,&R.Cornett,ASPConf.Proc.,192,3 extinction and distance towards HII regions. Our large stellar Lortet,M.,Testor,G.,&Niemela,V.1984,A&A,140,24 samplehasallowedustocarryoutastatisticalstudyofthelocal Marshall,D.J.,Robin,A.C.,Reylé,C.,etal.2006,A&A,453,635 structureoftheMilky-Way,aswellasthecensusofO-B3starsin Martins,F.,&Plez,B.2006,A&A,457,637 Massey,P.,DeGioia-Eastwood,K.,&Waterhouse,E.2001,AJ,121,1050 theNGC6334-NGC6357star-formingcomplex.Spectroscopic Mazzei,P.,&Barbaro,G.2008,MNRAS,390,706 informationofourlargeO-B3stellarsampleisnowrequiredto Mazzei,P.,&Barbaro,G.2011,A&A,527,A34 confirmthephotometricspectraltypesandimproveourdistance Mel’nik,A.,Sitnik,T.,Dambis,A.,etal.1998,AstL,24,594 determinations. Moffat,A.,&Vogt,N.1973,A&AS,10,135 Asexpected,thetotal-to-selectiveextinctioncoefficient,R , Monet,F.,Levine,S.E.,Canzian,B.,etal.2003,AJ,125,98 V Motte,F.,Bontemps,S.,Schilke,P.,etal.2007,A&A,476,1243 ishigherinastar-formingregionsuchasNGC6334-NGC6357 Neckel,T.1978,A&A,69,51 than in the diffuse interstellar medium. Futhermore, this coef- Neckel,Th.1984,A&A,137,58 ficient varies throughoutthe HII regions, suggesting that there Neckel,Th.,&Chini,R.1981,A&AS,45,451 O’Dell,C.R.,&Wen,Z.1992,ApJ,387,229 is a variation in the dust properties on the same scale. The R V Paladini,R.,Burigana,C.,&Davies,R.2003,A&A,397,213 valuesweobtainedforNGC6334andNGC6357(3.56±0.15 Panagia,N.1973,AJ,78,929 and3.53±0.08,respectively)haveallowedustodeterminemore Pandey,A.,Ogura,K.,&Sekiguchi,K.2000,PASJ,52,847 preciselythe distanceofthese regions.We haveconfirmedthat Pandey,A.,Upadhyay,K.,Nakada,Y.,etal.2003,A&A,397,191 theyarelocatedatanaveragedistanceof1.75kpc.Ourcensus Parker,Q.,Phillipps,S.,Pierce,M.,etal.2005,MNRAS,362,689 Persi,P.,&Tapia,M.2008,HandbookofStarFormingRegions,Vol.II:The of O-B3 stars in the NGC 6334-NGC 6357 star-forming com- SouthernSkyASPMonographPublications,ed.B.Reipurth,5,456 plexhasidentifiedatotalof300O-B3stars.Thiscensusisim- Pinheiro,M.,Copetti,M.,&Oliviera,V.2010,A&A,521,A26 portant to help us to determine the statistical lifetimes of the Rieke,G.,&Lebofsky,M.1985,ApJ,288,618 different stages of the high-massstar formation in NGC 6334- Roslund,C.1966,Arkiv.Astr.,4,101 Russeil,D.2003,A&A,397,133 NGC 6357 that we observe in the infrared with the Herschel Russeil,D.,Adami,C.,&Georgelin,Y.M.2007,A&A,470,161 satellite(Russeiletal.,inprep.). Russeil,D.,Zavagno,A.,Motte,F.,etal.2010,A&A,515,A55 A142,page10of21
Description: