ebook img

Statistical Properties of the Interbeat Interval Cascade in Human Subjects PDF

0.27 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Statistical Properties of the Interbeat Interval Cascade in Human Subjects

STATISTICAL PROPERTIES OFTHEINTERBEAT INTERVALCASCADE INHUMAN SUBJECTS FatemehGhasemi,1J.Peinke,2M.RezaRahimiTabar,2,3andMuhammadSahimi4 1DepartmentofPhysics,SharifUniversityofTechnology,Tehran11365,Iran 1CarlvonOssietzkyUniversity,InstituteofPhysics,D-26111Oldenburg,Germany 3CNRSUMR6529,ObservatoiredelaCoˆted’Azur,BP4229,06304NiceCedex4,France 4DepartmentofChemicalEngineeringandMaterialsScience,UniversityofSouthernCalifornia,LosAngeles,California90089-1211,USA 6 0 Statisticalpropertiesofinterbeatintervalscascadeareevaluatedbyconsideringthejointprobabilitydistribution 0 P(∆x2,τ2;∆x1,τ1)fortwointerbeatincrements∆x1and∆x2ofdifferenttimescalesτ1andτ2.Wepresent 2 evidencethattheconditionalprobabilitydistributionP(∆x ,τ |∆x ,τ )mayobeyaChapman-Kolmogorov 2 2 1 1 equation.ThecorrespondingKramers-Moyal(KM)coefficientsareevaluated.Itisshownthatwhilethefirstand n secondKMcoefficients,i.e.,thedriftanddiffusioncoefficients,takeonwell-definedandsignificantvalues,the a J higher-ordercoefficientsintheKMexpansionareverysmall. Asaresult,thejointprobabilitydistributionsof 1 theincrementsintheinterbeatintervalsobeyaFokker-Planckequation.Themethodprovidesanoveltechnique 3 for distinguishing the two classes of subjects in terms of the drift and diffusion coefficients, which behave differentlyfortwoclassesofthesubjects,namely,healthysubjectsandthosewithcongestiveheartfailure. ] M 05.10.Gg,05.40.-a,05.45.Tp,87.19.Hh Q o. I.INTRODUCTION logicalprocesses.25−33InFigure1samplesofinterbeatsfluc- i tuations of healthy subjects and those with congestive heart b Cardiacinterbeatintervalsnormallyfluctuateinacomplex failure(CHF)areshown. - q manner.1−6 Recent studies reveal that under normal condi- [ tions, beat-to-beat fluctuations in the heart rate may display extended correlations of the type typically exhibited by dy- 1.2 1 v namical systems far from equilibrium. It has been argued,2 1 1 for example, that the various stages of sleep may be char- 5 acterized by long-range correlations of heart rates separated x(t) 0.8 0 by a largenumberof beats. The interbeatfluctuationsin the 1 0.6 heart rates belong to a much broader class of many natural, 0 aswellasman-made,phenomenathatarecharacterizedbya 06 degree of stochasticity. Turbulent flows, fluctuations in the 0.40 10000 t 20000 / stock market prices, seismic recordings, the internet traffic, o andpressurefluctuationsinpacked-bedchemicalreactorsare i 1.1 b exampleof time-dependentstochastic phenomena,while the - surfaceroughnessofmanymaterials7,8 areexamplesofsuch 1 q phenomenathatarelengthscale-dependent. : v The focus of the present paper is on the intriguing statis- x(t) 0.9 i X tical properties of interbeat interval sequences, the analysis 0.8 ofwhichhasattractedtheattentionofresearchersfromdiffer- ar entdisciplines.9−15Analysisofheartbeatfluctuationsfocused 0.7 initially on short-time oscillations associated with breath- 0 5000 10000 t 15000 20000 FIG. 1. Time series of interbeat intervals x(t) versus interval ing, blood pressure and neuroautonomic control.16,17 Stud- numbertforatypicalpersonwithcongestiveheartfailure(bottom) ies of longer heartbeat records, however, revealed 1/f−like andahealthysubject(top). behavior.18,19 Recent analysis of very long time series indi- cates that under healthy conditions, interbeat intervals may Recently, Friedrich and Peinke were able34 to derive a exhibitpower-lawanticorrelations,20followuniversalscaling Fokker-Planck (FP) equation for describing the evolution of intheirdistributions,21andarecharacterizedbyabroadmul- the probability distribution function of stochastic properties tifractal spectrum.22 Such scaling features change with the of turbulent free jets, in terms of the relevant length scale. diseaseandadvancedage.23 Thepossibleexistenceofscale- Theypointedoutthattheconditionalprobabilitydensityofthe invariantpropertiesin theseeminglynoisyheartbeatfluctua- incrementsof a stochastic field (forexample, the increments tionsismaybeattributedtohighlycomplex,nonlinearmecha- inthevelocityfieldinturbulentflow)satisfiestheChapman- nismsofphysiologicalcontrol,24asitisknownthatcircadian Kolmogorov(CK)equation,eventhoughthethevelocityfield rhythmsare associated with periodicchangesin key physio- 1 itself contains long-range, nondecaying correlations. As is well-known, satisfying the CK equation is a necessary con- ditionforanyfluctuatingdatatobeaMarkovianprocessover 0.7 therelevantlength(ortime)scales.35Hence,onehasawayof analyzing stochastic phenomena in terms of the correspond- 0.6 ingFPandCKequations. Inthispaperthemethodproposed by Friedrich and Peinke is used to compute the Kramers- 0.5 Moyal (KM) coefficients for the increments of interbeat in- tervalsfluctuatations,∆x(τ)=x(t+τ)−x(t). Here,∆xis ) x10.4 theinterbeatincrementswhich,forallthesamples,isdefined ∆ | as,∆x ≡ ∆x/στ,whereστ isthestandarddeviationsofthe ∆x20.3 increments in the interbeats data. It is shown that the first P( and second KM coefficients representing, respectively, the driftanddiffusioncoefficientsintheFPequation,havewell- 0.2 defined values, while the third- and fourth-orderKM coeffi- cientsaresmall. Therefore,a FPevolutionequation35 isde- 0.1 velopedfortheprobabilitydensityfunction(PDF)P(∆x,τ) which, in turn, is used to gain information on changing the shapeofPDFasafunctionofthetimescaleτ36(seealsoRef. ∆x 2 [37]foranotherinterestingandcarefully-analyzedexampleof FIG. 2. Test of Chapman-Kolmogorov equation for theapplicationoftheCKequationtostochasticphenomena). ∆x = −0.42, ∆x = 0and ∆x = 0.42. Thesolid and open The plan of this paper is as follows. In Section 2 we de- 1 1 1 symbolsrepresent, respectively, thedirectly-evaluatedPDFandthe scribetheFriedrich-PeinkemethodintermsofaKM expan- oneobtainedfromEq. (1). ThePDFsareshiftedinthehorizontal sionandtheFPequation.WethenapplythemethodinSection directionsforclarity.Valuesof∆xaremeasuredinunitsofthestan- 3totheanalysisoftheincrementsintheinterbeatfluctuations. darddeviationoftheincrements. Thetimescalesτ ,τ andτ are 1 2 3 10,30,and20,respectively. II.THEKRAMERS-MOYALEXPANSIONAND It is well-known that the CK equation yields an evolution FOKKER-PLANCKEQUATION equation for the distribution function P(∆x,τ) across the scales τ. The CK equation, when formulated in differential A completecharacterizationof the statistical propertiesof form,yieldsa masterequation,whichtakesonthe formofa theinterbeatfluctuationrequiresevaluationofthejointPDFs, FPequation:35 P (∆x ,τ ,···,∆x ,τ ), for an arbitrary N, the number N 1 1 N N of data points. If the phenomenon is a Markov process, an d P(∆x,τ)= importantsimplificationarisesinthat,theN-pointjointPDF dτ P is generatedby the productof the conditionalprobabili- N ∂ ∂2 tiesP(∆xi+1,τi+1|∆xi,τi),fori = 1,···,N −1. Thus,as − D(1)(∆x,τ)+ D(2)(∆x,τ) P(∆x,τ). (2) (cid:20) ∂∆x ∂∆x2 (cid:21) the first step of analyzing a stochastic time series, we check whethertheincrementsinthedatafollowaMarkovchain.As The drift and diffusion coefficients, D(1)(∆x,τ) and mentionedabove,anecessaryconditionforastochasticphe- D(2)(∆x,τ),areestimateddirectlyfromthedataandthemo- nomenontobeaMarkovprocessisthattheCKequation,34 mentsM(k) oftheconditionalprobabilitydistributions: P(∆x2,τ2|∆x1,τ1)= D(k)(∆x,τ)= 1 lim M(k) , (3) k!∆τ→0 d(∆x )P(∆x ,τ |∆x ,τ )P(∆x ,τ |∆x ,τ ), (1) 3 2 2 3 3 3 3 1 1 Z 1 M(k) = d∆x′ (∆x′−∆τ)kP(∆x′,τ +∆τ|∆x,τ) . shouldholdforanyvalueofτ , intheintervalτ < τ < ∆τ Z 3 2 3 τ .35Therefore,wecheckthevalidityoftheCKequationfor 1 (4) describingthedatausingmanyvaluesofthe∆x triplets,by 1 comparingthe directly-evaluatedconditionalprobabilitydis- The coefficients D(k)(∆x,τ) are known as the Kramers- tributions P(∆x ,τ |∆x ,τ ) with those calculated accord- Moyal(KM)coefficients. 2 2 1 1 ing to right-hand side of Eq. (1). In Fig. 2, the directly- computed PDF is compared with the one obtained from Eq. (1). Allowingforastatisticalerroroftheorderofthesquare A.ApplicationtoAnalyzingHeartbeatData rootofthenumberofeventsineachbin,wefindthatthePDFs arestatisticallyidentical. As an application of the method, we analyzed both day- time(12:00pmto18:00pm)andnighttime(12:00amto6:00 2 am) heartbeat time series of healthy subjects, and the day- timerecordsofpatientswithCHF.Ourdatabaseincludes10 D(2)(∆x,τ)= healthysubjects(7femalesand3maleswithagesbetween20 and50,andanaverageageof34.3years),and12subjectswith 0.11 0.287 CHF, with 3 femalesand 9 males with ages between 22 and 0.01+ (∆x)2+ 0.057+ , (5) (cid:18) τ (cid:19) (cid:18) τ (cid:19) 71,andanaverageageof60.8years). Theresultingdriftand diffusioncoefficients,D(1)andD(2),aredisplayedinFigures whereasforthepatientswithCHFweobtain, 3and4. ItturnsoutthatthedriftcoefficientD(1) is alinear function of ∆x, whereas the diffusivity D(2) is quadratic in D(1)(∆x,τ)=−0.013∆x−0.0018, ∆x. Estimatesofthesecoefficientsarelessaccurateforlarge valuesof∆xand,thus,theuncertaintiesincrease. Usingthe D(2)(∆x,τ)= datasetforthehealthysubjectswefindthat, 0.005 0.066 0.005+ (∆x)2+ 0.013+ . (6) (cid:18) τ (cid:19) (cid:18) τ (cid:19) τ=10 WealsocomputedtheaverageofthecoefficientsD(1) and 0.06 τ=15 D(2)fortheentiresetofthehealthysubjects,aswellasthose τ=20 with CHF. According to the Pawula‘s theorem,34,37 the KM 0.04 expansionistruncatedafterthesecondterm,providedthatthe fourth-order coefficient D(4)(∆x,τ) vanishes. For the data 0.02 that we analyze the coefficient D(4) is about 110D(2) for the (1)∆D(x) 0 hheeaaEllqtthhuyyatssiuoubnbjsjee(cc5ttss),aaannnddd(ta6hb)oossuteattw2e10ittDhha(Ct2t)HhfFeordhrtaihvfotescetohewefifisthacmiCeneHtsoFr.fdoerrthoef magnitude,whereasthediffusioncoefficientsforgivenτ and -0.02 ∆xaredifferentbyaboutoneorderofmagnitude.Thispoints toarelativelysimplewayofdistinguishingthetwoclassesof -0.04 thesubjects. Moreover,theτ-dependenceofthediffusionco- efficientforthehealthysubjectsisstrongerthanthatofthose -0.06 withCHF (inthe sense thatthe numericalcoefficientsof the -1 -0.5 0 0.5 1 τ−1 are largerfor the healthysubjects). These are shown in ∆x Figures3and4. Thestrongτ−dependenceofthediffusioncoefficientD(2) forthehealthysubjectsindicatesthatthenatureofthePDFof their increments∆x for given τ, i.e., P(∆x,τ), is intermit- τ=3 τ=5 tent,andthatitsshapeshouldchangestronglywithτ. How- τ=15 ever,forthesubjectswithCHFthePDFisnotsosensitiveto 0.4 thechangeofthetimescaleτ,henceindicatingthattheincre- ments’fluctuationsforthesubjectswithCHFisnotintermit- tent. Theseresultsarecompletelycompatiblewiththerecent 0.3 discoveriesthattheinterbeatfluctuationsforhealthysubjects x) and those with CHF have fractal and multifractalproperties, ∆ (2)D(0.2 respectively.22 III.SUMMARY 0.1 Wehaveshownthattheprobabilitydensityoftheinterbeat 0 intervalincrementssatisfiesaFokker-Planckequation,which encodestheMarkoviannatureoftheincrements’fluctuations. -3 -2 -1 0 1 2 ∆x WehavebeenabletocomputereliablythefirsttwoKramers- Moyalcoefficientsforthestochasticprocesses∆x-thedrift FIG. 3. The drift and diffusion coefficients D(1)(∆x) and anddiffusioncoefficientsintheFPrepresentation-and,using D(2)(∆x),estimatedfromEq. (5)forahealthysubject,followlin- the polynomialansatz,34 obtain simple expressionsfor them earandquadraticbehavior,respectively. intermsof∆xandthetimescaleτ. Wehaveshownthatthe driftanddiffusioncoefficientsofthe incrementsintheinter- D(1)(∆x,τ)=−0.03∆x−0.0046, beat fluctuations of healthy subjects and patients with CHF 3 havedifferentbehavior,whenanalyzedbythemethodweuse ianmotionorothertypesofstochasticprocessesthatgiverise in this paper. Hence, they help one to distinguish the two tosuchcorrelations.Inthatmethodonedistinguisheshealthy groups of the subjects. Moreover, one can obtain the form subjectsfromthosewithCHFintermsofthetypeofthecor- ofthepathprobabilityfunctionaloftheincrementsinthein- relationsthatmightexistinthedata. Forexample,ifthedata terbeat intervals in the time scale, which naturally encodes followafractionalBrownianmotion,thenthecorresponding thescaledependenceoftheprobabilitydensity. This,inturn, Hurst exponent H is used to distinguish the two classes of providesaclearphysicalpictureoftheintermittentnatureof thesubjects,asH <0.5(>0.5)indicatesnegative(positive) interbeatintervalsfluctuations. correlationsinthedata, whileH = 0.5indicatesthatthein- crements in the data follow Brownian motion. The method proposed in the present paper is different from such analy- ses in that, the increments in the data are analyzed in terms of Markov processes. This is not in contradiction with the 0.06 τ=2 τ=5 previousanalyses.Ouranalysisdoesindicatetheexistenceof τ=15 correlationsintheincrements,but,asiswell-knowninthethe- 0.04 oryofMarkovprocesses,suchcorrelations,thoughextended, eventually decay. We distinguish the healthy subjects from 0.02 those with CHF in termsof the differencesbetweenthe drift and diffusion coefficients of the Fokker-Plank equation that ∆x) 0 weconstructfortheincrementaldatawhich,inourview,pro- (1)D( vides a clearer and more physical way of understanding the differences between the two groups of the subjects than the -0.02 previousmethod. -0.04 -0.06 -3 -2 -1 0 1 2 3 ∆x [1] C.-K.Peng,J.Mietus,J.M.Hausdorrf,S.Havlin,H.E.Stanley, andA.L.Golbereger,Phys.Rev.Lett.70,1343(1993). [2] A.Bunde, S.Havlin, J.W.Kantelhardt, T. Penzel, J.-H.Peter, andK.Voigt,Phys.Rev.Lett.85,3736(2000). τ=2 [3] P.Bernaola-Galvan,P.Ch.Ivanov,L.N.Amaral,andH.E.Stan- τ=5 0.1 τ=15 ley,Phys.Rev.Lett.87,168105(2001). [4] V.Schulte-Frohlinde, Y.Ashkenanzy, P.Ch.Ivanov, L.Glass, A.L.Goldberger,andH.E.Stanley,Phys.Rev.Lett.87,068104 0.08 (2001). [5] Y. Ashkennanzy, P.Ch. Ivanov, S. Havlin, C.K. Peng, A.L. x) Goldberger,andH.E.Stanly,Phys.Rev.Lett.86,1900(2001). (2)∆D(0.06 [[76]] ST..KTouruqsuealato,,PhRyasn.dRoemv.EHe6t9ro,g0e3n1o9u1s6M(2a0t0e4r)ia.ls (Springer, New York,2002). 0.04 [8] M.Sahimi,HetrogenousMaterials,VolumeII(Springer,New York,2003). 0.02 [9] M.MackeyandL.Glass,Science197,287(1977). [10] M.M.Wolf,G.A.Varigos,D.Hunt, andJ.G.Sloman,Med.J. Aust.2,52(1978). 0 [11] R.I.Kitney,D.Linkens,A.C.Selman,andA.A.McDonald,Au- -3 -2 -1 0 1 2 3 ∆x tomedica4,141(1982). [12] TheoryofHeart,editedbyL.Glass,P.Hunter,andA.McCul- FIG. 4. The drift and diffusion coefficients D(1)(∆x) and loch(Springer,NewYork,1991),p.3. D(2)(∆x)are estimatedfrom theEq. (6) for typical patientswith [13] J.B.Bassingthwaighte,L.S.Liebovitch,andB.J.West,Fractal congestive heart failure, and follow linear and quadratic behavior, Physiology(OxfordUniversityPress,NewYork,1994). respectively. [14] J.Kurths,A.Voss,P.Saparin,A.Witf,H.J.Kilner,andN.Wes- sel,Chaos5,88(1995). Letusemphasizethatthepreviousanalysis1−6 ofthedata [15] G. Sugihara, A. Allan, D. Sobel, and K.D.Allan, Proc. Natl. thatweconsiderinthispaperindicatedthattheremaybelong- Acad.Sci.USA93,2608(1996). rangecorrelationsinthedatawhichmightbecharacterizedby [16] R.I.KitneyandO.Rompelman,TheStudyofHeart-RateVari- self-affinefractaldistributions,suchasthefractionalBrown- ability(OxfordUniversityPress,London,1980). 4 [17] S.Akselrod,D.Gordon,F.A.Ubel,D.C.Shannon,A.C.Barger, andR.J.Cohen,Science213,220(1981). [18] M.KobayashiandT.Musha,IEEETrans.Biomed.Eng.29,456 (1982). [19] J.P.Saul, P.Albrecht, D.Berger, and R.J.Cohen, inComput- ersinCardiology(IEEEComputerSocietyPress,Washington, 1987),p.419. [20] C.-K. Peng, S. Havlin, H.E. Stanley, and A.L. Goldberger, Chaos5,82(1995);R.G.TurcottandM.C.Teich,Ann.Biomed. Eng.24,269(1996). [21] P. Ch. Ivanov, M.G. Rosenblum, C.-K. Peng, J. Mietus, S. Havlin, H.E. Stanley, and A.L. Goldberger, Nature 383, 323 (1996). [22] P.Ch.Ivanov,L.A.N.Amaral,A.L.Goldberger,S.Havlin,M.G. Rosenblum, Z.R. Struzik, and H.E. Stanley, Nature 399, 461 (1999). [23] L.A.Lipsitz,J.Mietus,G.B.Moody,andA.L.Goldberger,Cir- culation 81, 1803 (1990); D.T.Kaplan, et al., Biophys. J. 59, 945 (1991); N. Iyengar, et al., Am. J. Physiol. 271, R1078 (1996). [24] M.F. Shlesinger and B.J. West, in Random Fluctuations and PatternGrowth:ExperimentsandTheory,editedbyH.E.Stan- leyand N. Ostrowsky (Kluwer Academic Publishers, Boston, 1988). [25] H.Moelgaard,K.E.Soerensen,andP.Bjerregaard,Am.J.Car- diol.68,777(1991). [26] P.Ch.Ivanov,etal.,PhysicaA249,587(1998). [27] C.-K.Peng, S.V.Buldyrev, S. Havlin, M. Simons, H.E. Stan- ley,andA.L.Goldberger, Phys.Rev.E491685(1994); C.-K. Peng,J.M.Hausdorff, andA.L.Goldberger, inNonlinearDy- namics,Self-Organization,andBiomedicine,editedbyJ.Wal- leczek(CambridgeUniversityPress,Cambridge,1999). [28] A.L.Goldberger,etal.,HeartAm.J.128,202(1994). [29] R.W. Peters, et al., J. Am. Coll. Cardiol. 23, 283 (1994); S. Behrens,etal.,Am.J.Cardiol.80,45(1997). [30] P.Ch.Ivanov,L.A.N.Amaral,A.L.Goldberger,andH.E.Stan- ley,Europhys.Lett.43,363(1998). [31] P.Ch.Ivanov, A.Bunde,L.A.N.Amaral,S.Havlin,J.Fritsch- Yelle,R.M.Baevsky,H.E.Stanley,andA.L.Goldberger,Euro- phys.Lett.48,594(1999). [32] R.M.BerneandM.N.Levy,CardiovascularPhysiology,6thed. (C.V.Mosby,St.Louis,1996). [33] HeartRateVariability,editedbyM.MalikandA.J.Camm(Fu- tura,Armonk,NewYork,1995). [34] R.FriedrichandJ.Peinke,Phys.Rev.Lett.78,863(1997); R. Friedrich,J.Peinke,andC.Renner,ibid.84,5224(2000); M. RagwitzandH.Kantz,ibid.87,254501(2001). [35] H. Risken, The Fokker-Planck Equation (Springer, Berlin, 1984). [36] J.Davoudi and M.R. RahimiTabar, Phys. Rev.Lett.82, 1680 (1999). [37] G.R.Jafari, S.M.Fazlei, F.Ghasemi, S.M.VaezAllaei, M.R. RahimiTabar,A.IrajiZad,andG.Kavei,Phys.Rev.Lett.91, 226101(2003). 5

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.