ebook img

Statistical modeling for management PDF

255 Pages·2008·1.123 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Statistical modeling for management

iv SSttaattiissttiiccaall MMooddeelliinngg ffoorr MMaannaaggeemmeenntt iv TSo a ntumaber otf veirys pattienti pceoplea (Youl know who you are), Andrea, Alex, …and all Portuguese waiters. Graeme Hutcheson Modeling for Luiz Moutinho Management iv Statistical Modeling for Management Graeme D. Hutcheson Luiz Moutinho iv © Graeme D Hutcheson and Luiz Moutinho2008 First published 2008 Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the Copyright, Designs and Patents Act, 1988, this publication may be reproduced, stored or transmitted in any form, or by any means, only with the prior permission in writing of the publishers, or in the case of reprographic reproduction, in accordance with the terms of licences issued by the Copyright Licensing Agency. Enquiries concerning reproduction outside those terms should be sent to the publishers. SAGE Publications Ltd 1 Oliver’s Yard 55 City Road London EC1Y 1SP SAGE Publications Inc. 2455 Teller Road Thousand Oaks, California 91320 SAGE Publications India Pvt Ltd B 1/I 1 Mohan Cooperative Industrial Area Mathura Road New Delhi 110 044 SAGE Publications Asia-Pacific Pte Ltd 33 Pekin Street #02-01 Far East Square Singapore 048763 Library of Congress Control Number: 2007931607 British Library Cataloguing in Publication data A catalogue record for this book is available from the British Library ISBN 978-0-7619-7011-8 ISBN 978-0-7619-7012-5 (pbk) Typeset by C&M Digitals (P) Ltd., Chennai, India Printed in Great Britain by The Cromwell Press Ltd, Trowbridge, Wiltshire Printed on paper from sustainable resources Contents ListofTables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix ListofFigures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii 1 MeasurementScales 1 1.1 ContinuousData. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.1.1 Theunderlyingdistribution . . . . . . . . . . . . . . . . . . . . . 2 1.1.2 Recordingthedata . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.1.3 Applyingmathematicaloperations . . . . . . . . . . . . . . . . . 5 1.2 OrderedCategoricalData . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.2.1 Theunderlyingdistribution . . . . . . . . . . . . . . . . . . . . . 6 1.2.2 Recordingthedata . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.2.3 Applyingmathematicaloperations . . . . . . . . . . . . . . . . . 11 1.3 UnorderedCategoricalData. . . . . . . . . . . . . . . . . . . . . . . . 13 1.3.1 Theunderlyingdistribution . . . . . . . . . . . . . . . . . . . . . 13 1.3.2 Recordingthedata . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.3.3 Applyingmathematicaloperations . . . . . . . . . . . . . . . . . 14 1.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2 ModelingContinuousData 17 2.1 TheGeneralizedLinearModel . . . . . . . . . . . . . . . . . . . . . . 17 2.2 TheOrdinaryLeast-SquaresModel . . . . . . . . . . . . . . . . . . . . 19 2.2.1 SimpleOLSregression . . . . . . . . . . . . . . . . . . . . . . . 19 Computingandinterpretingmodelparameters. . . . . . . . . . . 21 Predictingtheresponsevariable . . . . . . . . . . . . . . . . . . 22 Goodness-of-fitstatistics . . . . . . . . . . . . . . . . . . . . . . 23 2.2.2 MultipleOLSregression . . . . . . . . . . . . . . . . . . . . . . 29 Computingandinterpretingmodelparameters. . . . . . . . . . . 29 Predictingtheresponsevariable . . . . . . . . . . . . . . . . . . 31 Goodness-of-fitstatistics . . . . . . . . . . . . . . . . . . . . . . 31 2.3 CategoricalExplanatoryVariables . . . . . . . . . . . . . . . . . . . . 35 2.4 AnalyzingSimpleExperimentalDesignsforContinuousData. . . . . . 36 2.4.1 Unrelatedgroupsdesign . . . . . . . . . . . . . . . . . . . . . . 36 ComparingtwogroupsusingOLSregression . . . . . . . . . . . 36 vi CONTENTS ComparingmorethantwogroupsusingOLSregression . . . . . 42 Comparingtwogroupsusingat-test . . . . . . . . . . . . . . . . 46 ComparingmorethantwogroupsusingANOVA . . . . . . . . . 47 2.4.2 Relatedgroupsdesigns . . . . . . . . . . . . . . . . . . . . . . . 47 ComparingtwogroupsusingOLSregression . . . . . . . . . . . 48 ComparingmorethantwogroupsusingOLSregression . . . . . 53 Comparingtwogroupsusingat-test . . . . . . . . . . . . . . . . 54 ComparingmorethantwogroupsusingANOVA . . . . . . . . . 55 2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3 ModelingDichotomousData 57 3.1 TheGeneralizedLinearModel . . . . . . . . . . . . . . . . . . . . . . 57 3.2 TheLogisticRegressionModel . . . . . . . . . . . . . . . . . . . . . . 62 3.2.1 Simplelogisticregression . . . . . . . . . . . . . . . . . . . . . 62 ComputingandInterpretingModelParameters . . . . . . . . . . 63 Predictedprobabilities . . . . . . . . . . . . . . . . . . . . . . . 65 Goodness-of-fitstatistics . . . . . . . . . . . . . . . . . . . . . . 66 3.2.2 MultipleLogisticRegression . . . . . . . . . . . . . . . . . . . . 69 Computingandinterpretingmodelparameters. . . . . . . . . . . 71 Predictedprobabilities . . . . . . . . . . . . . . . . . . . . . . . 73 Goodness-of-fitstatistics . . . . . . . . . . . . . . . . . . . . . . 73 3.2.3 Categoricalexplanatoryvariables . . . . . . . . . . . . . . . . . 76 Computingandinterpretingmodelparameters. . . . . . . . . . . 77 Predictedprobabilities . . . . . . . . . . . . . . . . . . . . . . . 78 Goodness-of-fitstatistics . . . . . . . . . . . . . . . . . . . . . . 80 3.3 AnalyzingSimpleExperimentalDesignsforDichotomousData . . . . 82 3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 4 ModelingOrderedData 83 4.1 TheGeneralizedLinearModel . . . . . . . . . . . . . . . . . . . . . . 83 4.2 TheProportionalOddsModel. . . . . . . . . . . . . . . . . . . . . . . 83 4.2.1 Simpleproportionalodds . . . . . . . . . . . . . . . . . . . . . . 85 Checkingtheproportionaloddsassumption . . . . . . . . . . . . 86 Computingandinterpretingmodelparameters. . . . . . . . . . . 88 Predictedprobabilities . . . . . . . . . . . . . . . . . . . . . . . 89 Goodness-of-fitstatistics . . . . . . . . . . . . . . . . . . . . . . 90 4.2.2 Multipleproportionalodds . . . . . . . . . . . . . . . . . . . . . 93 Checkingtheproportionaloddsassumption . . . . . . . . . . . . 94 Computingandinterpretingmodelparameters. . . . . . . . . . . 94 Predictedprobabilities . . . . . . . . . . . . . . . . . . . . . . . 96 Goodness-of-fitstatistics . . . . . . . . . . . . . . . . . . . . . . 97 4.2.3 Categoricalexplanatoryvariables . . . . . . . . . . . . . . . . . 100 4.3 AnalyzingSimpleExperimentalDesignsforOrderedData . . . . . . . 106 4.3.1 Unrelatedgroupsdesign . . . . . . . . . . . . . . . . . . . . . . 107 4.3.2 Relatedgroupsdesign . . . . . . . . . . . . . . . . . . . . . . . 113 4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 CONTENTS vii 5 ModelingUnorderedData 121 5.1 TheGeneralizedLinearModel . . . . . . . . . . . . . . . . . . . . . . 121 5.2 TheMulti-nomialLogisticRegressionModel . . . . . . . . . . . . . . 122 5.2.1 Simplemulti-nomiallogisticregression . . . . . . . . . . . . . . 123 Computingandinterpretingmodelparameters. . . . . . . . . . . 123 Predictedprobabilities . . . . . . . . . . . . . . . . . . . . . . . 126 Goodness-of-fitstatistics . . . . . . . . . . . . . . . . . . . . . . 127 5.2.2 Multiplemulti-nomiallogisticregressionincluding categoricalvariables . . . . . . . . . . . . . . . . . . . . . . . . 130 Computingandinterpretingmodelparameters. . . . . . . . . . . 131 Predictedprobabilities . . . . . . . . . . . . . . . . . . . . . . . 133 Goodness-of-fitstatistics . . . . . . . . . . . . . . . . . . . . . . 134 5.3 AnalyzingSimpleExperimentalDesignsforUnorderedData . . . . . . 137 5.3.1 Unrelatedgroupsdesign . . . . . . . . . . . . . . . . . . . . . . 137 5.3.2 Relatedgroupsdesign . . . . . . . . . . . . . . . . . . . . . . . 145 5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 6 NeuralNetworks 153 6.1 CognitiveTheory–NodesandLinks–MentalManipulationofData . . 153 6.1.1 Roots: Aparallelmodelofthebrain . . . . . . . . . . . . . . . . 153 6.1.2 Neuralnetworksembodyaprocessoflearning . . . . . . . . . . 154 6.1.3 ImplementationofNNs . . . . . . . . . . . . . . . . . . . . . . . 157 6.1.4 Thebackpropagationalgorithm(BP) . . . . . . . . . . . . . . . . 158 Detailsofthealgorithm. . . . . . . . . . . . . . . . . . . . . . . 161 6.1.5 BasicpropertiesoftheSOM . . . . . . . . . . . . . . . . . . . . 164 6.1.6 Potentialbenefitsoftheapproach . . . . . . . . . . . . . . . . . 167 6.1.7 Businessapplications . . . . . . . . . . . . . . . . . . . . . . . . 167 6.2 Example-Applications. . . . . . . . . . . . . . . . . . . . . . . . . . . 168 6.2.1 Theresearchmodel . . . . . . . . . . . . . . . . . . . . . . . . . 168 6.2.2 Analysisofthedata . . . . . . . . . . . . . . . . . . . . . . . . . 170 6.2.3 Labelingofhiddennodes: malebuyers . . . . . . . . . . . . . . 171 6.2.4 Labelingofhiddennodes: femalebuyers . . . . . . . . . . . . . 172 6.2.5 Findings: malecarbuyers . . . . . . . . . . . . . . . . . . . . . 172 6.2.6 Findings: femalecarbuyers . . . . . . . . . . . . . . . . . . . . 174 6.2.7 Conclusionsandimplications . . . . . . . . . . . . . . . . . . . 175 7 ApproximateAlgorithmsforManagementProblems 177 7.1 GeneticAlgorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 7.1.1 Sitelocationanalysisusinggeneticalgorithms . . . . . . . . . . 179 7.1.2 Chromosomerepresentation . . . . . . . . . . . . . . . . . . . . 180 7.1.3 Fitnessfunction . . . . . . . . . . . . . . . . . . . . . . . . . . . 180 7.1.4 Geneticoperators . . . . . . . . . . . . . . . . . . . . . . . . . . 181 7.1.5 Simpleillustration . . . . . . . . . . . . . . . . . . . . . . . . . 181 7.2 TabuSearch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 7.2.1 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183 viii CONTENTS 7.2.2 Applicationoftabusearchtosegmentation . . . . . . . . . . . . 183 7.3 SimulatedAnnealing . . . . . . . . . . . . . . . . . . . . . . . . . . . 184 7.3.1 Salesterritorydesignusingsimulatedannealing . . . . . . . . . . 185 7.3.2 InformationaboutasingleSCU . . . . . . . . . . . . . . . . . . 186 7.3.3 Themodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 7.3.4 Contiguity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188 7.3.5 Equalworkload . . . . . . . . . . . . . . . . . . . . . . . . . . . 188 7.3.6 Equalityofsalespotential . . . . . . . . . . . . . . . . . . . . . 188 7.3.7 Profit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 7.3.8 Applicationofsimulatedannealing . . . . . . . . . . . . . . . . 190 8 OtherStatistical,MathematicalandCo-patternModelingTechniques 191 8.1 DiscriminantAnalysis . . . . . . . . . . . . . . . . . . . . . . . . . . 191 8.2 AutomaticInteractionDetection(AID) . . . . . . . . . . . . . . . . . 191 8.3 LogicalTypeDiscriminantModels: TheC5Algorithm . . . . . . . . 192 8.4 MultidimensionalScaling . . . . . . . . . . . . . . . . . . . . . . . . 198 8.5 ConjointAnalysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199 8.6 CorrespondenceAnalysis . . . . . . . . . . . . . . . . . . . . . . . . 200 8.7 LatentAnalysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201 8.8 FuzzySets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203 8.9 FuzzyDecisionTrees . . . . . . . . . . . . . . . . . . . . . . . . . . 205 8.10 ArtificialIntelligence . . . . . . . . . . . . . . . . . . . . . . . . . . 206 8.11 ExpertSystems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 8.11.1 Methodbasedonmarketingmainadvantagesmain limitationsapplications . . . . . . . . . . . . . . . . . . . . . 207 8.12 FuzzyLogicandFuzzyExpertSystems. . . . . . . . . . . . . . . . . 208 8.13 RoughSetTheory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208 8.14 VariablePrecisionRoughSets(VPRS) . . . . . . . . . . . . . . . . . 210 8.14.1 AnoverviewofVPRS . . . . . . . . . . . . . . . . . . . . . . 210 8.15 Dempster-ShaferTheory. . . . . . . . . . . . . . . . . . . . . . . . . 212 8.16 ChaosTheory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215 8.17 DataMining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217 8.17.1 Miningandrefiningdata . . . . . . . . . . . . . . . . . . . . . 217 8.17.2 Siftware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218 8.17.3 Invasionofthedatasnatchers . . . . . . . . . . . . . . . . . . 218 8.17.4 Miningwithquerytools . . . . . . . . . . . . . . . . . . . . . 219 8.18 DataMining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220 8.18.1 Acomputingperspectiveondatamining . . . . . . . . . . . . 221 8.18.2 Dataminingtools . . . . . . . . . . . . . . . . . . . . . . . . 221 8.18.3 Trynewdata-miningtechniques–theycanovercome, augmenttraditionalstatanalysis . . . . . . . . . . . . . . . . . 221 References 223 Index 231 List of Tables 1 MeasurementScales 1 1.1 Examplesofintervalandratioscales . . . . . . . . . . . . . . . . . . 4 1.2 Anexampleofcategorizedcontinuousdata . . . . . . . . . . . . . . 5 1.3 Orderedcategoricalcodingofarmyrank: exampleI . . . . . . . . . 7 1.4 Orderedcategoricalcodingofarmyrank: exampleII . . . . . . . . . 8 1.5 Unorderedcategoricalcodingofarmyrank . . . . . . . . . . . . . . 8 1.6 Continuousvariablescodedasorderedcategories . . . . . . . . . . . 9 1.7 Acontinuousvariablecodedasorderedcategoricaldata . . . . . . . 10 1.8 Representingageusingorderedcategories . . . . . . . . . . . . . . . 10 1.9 Mis-codinganorderedcategoricalvariable . . . . . . . . . . . . . . 11 1.10 Highesteducationalattainment . . . . . . . . . . . . . . . . . . . . . 12 1.11 Unorderedcategoricaldata: codingexampleI . . . . . . . . . . . . . 13 1.12 Unorderedcategoricaldata: codingexampleII . . . . . . . . . . . . 14 1.13 Numberofcarssoldinayear . . . . . . . . . . . . . . . . . . . . . 14 2 ModelingContinuousData 17 SimpleOLSregression . . . . . . . . . . . . . . . . . . . . . . . . 19 2.1 Data: icecreamconsumption . . . . . . . . . . . . . . . . . . . . . 20 2.2 Regressionparameters . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.3 Predictionsofconsumption. . . . . . . . . . . . . . . . . . . . . . . 23 2.4 Computingthedevianceforthemodel“consumption=α” . . . . . . 25 2.5 Computing the deviance for the model “consumption = α + β temperature” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.6 Assessingsignificancebycomparingmodeldeviances . . . . . . . . 27 2.7 Analysisofdeviancetable: thesignificanceofvariables . . . . . . . 28 2.8 Estimatingthesignificanceofindividualparametersusing t-statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 MultipleOLSregression . . . . . . . . . . . . . . . . . . . . . . . 29 2.9 Regressionparameters . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.10 Confidenceintervals . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.11 Predictionsofconsumption. . . . . . . . . . . . . . . . . . . . . . . 32

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.