Charan Singh Rayat Statistical Methods in Medical Research Statistical Methods in Medical Research Charan Singh Rayat Statistical Methods in Medical Research CharanSinghRayat DepartmentofHistopathology PostgraduateInstituteofMedicalEducation&Research Chandigarh,India ISBN978-981-13-0826-0 ISBN978-981-13-0827-7 (eBook) https://doi.org/10.1007/978-981-13-0827-7 LibraryofCongressControlNumber:2018954730 #SpringerNatureSingaporePteLtd.2018 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartofthe materialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors, and the editorsare safeto assume that the adviceand informationin this bookarebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictional claimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSingaporePteLtd. The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721, Singapore Foreword ItgivesmegreatpleasureinwritingtheforewordtoStatisticalMethodsinMedical ResearchbyDr.CSRayat,whohasmorethan32years’experienceinapplications of statistical methods in Biomedical Research. Dr. Rayat has more than 13 years postdoctoral research and teaching experience with great instinct for quantitative diagnostic pathology and has been on the editorial boards of reputed international medicaljournals. The main aim of his book is to create interest of medical researchers and postgraduate students in the wonderful applications of statistical methods for analyzing the research findings as well as routine determinations of biochemical investigationsforfindingsignificanceofoutcomeofresearchand“statisticalquality control”ofroutine“medicallaboratories”foraccreditationandcompetence. The book would be of great use for medical professionals, researchers, and students of biomedical sciences and other disciplines too. I wish Dr. Rayat great success in his endeavor and feel really happy for the release of the first edition of thebook. DepartmentofCytology, PranabDeyMD.FRCPath. PGIMER Chandigarh,India March2018 v Preface Null hypothesis (H ) is the cardinal principle of equality in groups of objects or o subjects under study. It is the foundation of Statistical Science. The extent of rejection of null hypothesis through statistical analysis validates our research or inferenceaboutgroupofsubjects,objects,orstandardoperatingprocedures(SOPs) understudy. Statisticalanalysisplaysavitalroleinmaterialscience,businessanalysis,sports, management,andbiomedicalresearch.Avarietyofbooksareavailableonstatistical analysisforstudentsofmathematics,commerce,andmanagement,butnotasingle bookisavailablefor biomedicalresearchers andbasicmedicalscientistswho have notstudiedmathematicsatundergraduatelevel.IexpressmygratitudetoDr.Pranab Dey, Professor, Department of Cytology, PGIMER, Chandigarh, for encouraging metowritethisbookforbiomedicalresearchersandbasicmedicalscientists. This book has been written with a focus on the requirements of students of variousspecialtiesofmedicalscience,basicmedicalscientists,andhealthworkers. Problems with solutions have been illustrated under various chapters for compre- hensive understanding of the statistical methods and their applications. I am of the definiteviewthatthisbookwouldmeettherequirementsofstudentsofmedicineand basic medical sciences. I adore the pioneers in the subject whose theories and methodshavebeencitedinthisbookanddedicatethebooktothegalaxyofpioneers. IwouldliketoconveymythankstomysonEr.HarpreetSinghRayat,asoftware engineer,anddaughterMs.AmandeepKaur,M.Com.,ICWA,fortheirsupportand critical comments on the manuscript.Microsoft Office 365ProPlus, Version 1708, licensed to my son, has been used as source of Microsoft Excel for generating probability tables and data handling. I am very thankful to Ms. Jagjeet Kaur Saini and Dr. Naren Aggarwal of Springer India Pvt. Ltd, for taking interest in my manuscriptandputtinginsincereeffortsforpublishingthisbook. vii viii Preface I hope that this book would be liked by teachers and researchers in the field of MedicineandBasicMedicalSciences,andwouldlessentheirdependencyonothers for statistical analysis. Any suggestions for improving this book would be highly acknowledgedandappreciated. Chandigarh C.S.Rayat India March2018 Contents 1 IntroductiontoStatistics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 DefinitionsofStatistics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 OriginandDevelopmentofStatistics. . . . . . . . . . . . . . . . . . . 1 1.3 ConceptofProbability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.4 DefinitionofProbability. . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.5 TypesofEvents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.6 DifferentTheoriesofProbability. . . . . . . . . . . . . . . . . . . . . . 4 1.6.1 ClassicalorPrioriProbability. . . . . . . . . . . . . . . . . 4 1.6.2 RelativeTheoryofProbability. . . . . . . . . . . . . . . . . 5 1.6.3 SubjectiveApproach. . . . . . . . . . . . . . . . . . . . . . . . 5 1.6.4 AxiomaticTheoryofProbability. . . . . . . . . . . . . . . 5 1.7 UsesofProbability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.8 TheoremsofProbability. . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2 CollectingStatisticalData. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.1 MethodsofCollectionofData. . . . . . . . . . . . . . . . . . . . . . . . 13 2.1.1 ProcedureforCollectionofData. . . . . . . . . . . . . . . 13 2.1.2 PlanningtheStudy. . . . . . . . . . . . . . . . . . . . . . . . . 13 2.1.3 DevisingtheQuestionsandMakingtheSchedule. . . 14 2.1.4 PopulationandSamples. . . . . . . . . . . . . . . . . . . . . 14 2.1.5 UsingSchedulestoObtaintheInformation. . . . . . . . 15 2.1.6 EditingtheSchedules. . . . . . . . . . . . . . . . . . . . . . . 16 2.1.7 OrganizingtheData. . . . . . . . . . . . . . . . . . . . . . . . 16 2.1.8 PresentationandAnalysis. . . . . . . . . . . . . . . . . . . . 16 3 TabulatedPresentationofData. . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.1 ExamplesDepictingTabulatedPresentationofData. . . . . . . . 17 4 DiagrammaticPresentationofData. . . . .. . . . . .. . . . . .. . . . . . .. 21 4.1 Usefulness. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4.2 Limitations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4.3 CharacteristicsofDiagramsandRulesforDrawingThese. . . . 21 4.4 DifferentTypesofDiagrams. . . . . . . . . . . . . . . . . . . . . . . . . 22 ix x Contents 5 GraphicPresentationofData. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 5.1 ConstructionofGraph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 5.2 ChoiceofScale. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 5.3 PlottingofData. .. . . . . . .. . . . . .. . . . . .. . . . . .. . . . . . .. 28 5.4 GraphsofTimeSeriesorHistorigrams. . . . . . . . . . . . . . . . . . 28 5.5 ComparisonofTimeSeries. . . . . . . . . . . . . . . . . . . . . . . . . . 29 5.6 SemilogarithmicScale. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 5.7 InterpretationsofSemilogCurves. .. . . . . . . . .. . . . . . . . . .. 29 5.8 PropertiesofaLogarithmicScale. . . . . . . . . . . . . . . . . . . . . . 30 5.9 NormalFrequencyCurve:PropertiesofNormal FrequencyCurveAreGivenBelow. . . . . . . . . . . . . . . . . . . . 30 5.10 ModeratelyAsymmetricalCurve. . . . . . . . . . . . . . . . . . . . . . 31 5.11 ExtremelyAsymmetricalCurve. . . . . . . . . . . . . . . . . . . . . . . 31 6 MeasuresofCentralTendency. . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 6.1 PropertiesofAverage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 6.2 Characteristicsof“RepresentativeAverage”. . . . . . . . . . . . . . 33 6.3 TypesofAverages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 6.4 ArithmeticMean(x(cid:1)). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 6.5 ArithmeticMean(x(cid:1))ofUngroupedData. . . . . . . . . . . . . . . . . 34 6.6 ArithmeticMean(x(cid:1))ofGroupedData. .. . . . . . . .. . . . . . . .. 34 6.7 ShortcutMethodforCalculating“Mean”(x(cid:1)). . . . . . . . . . . . . . 35 6.8 MeritsandDrawbacksofMean(x(cid:1)):AsListedinTable6.4. . . 37 6.9 GeometricMean(G(cid:1)). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 6.10 UsefulnessofGeometricMean(G(cid:1)). .. . . . . . . . .. . . . . . . . .. 37 6.11 MeritsandDrawbacksofGeometricMean(G(cid:1)):AsListedin Table6.7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 6.12 WeightedMean. . .. . . . .. . . .. . . .. . . . .. . . .. . . .. . . . .. 39 6.13 CrudeDeathRate(CDR). . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 6.14 StandardizedDeathRate(SDR). . . . . . . . . . . . . . . . . . . . . . . 40 6.15 Median(~x). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 6.16 UsefulnessofMedian(~x). . . . . . . . . . . . . . . . . . . . . . . . . . . 41 6.17 TheComputationofMedian(~x)ofUnclassifiedData. . . . . . . 41 6.18 TheComputationofMedian(~x)ofClassifiedData. . . . . . . . . 42 6.19 MeritsandDrawbacksofMedian(~x). . . . . . . . . . . . . . . . . . . 42 6.20 Mode(bx). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 6.21 CalculatingMode(bx)inUngroupedData. . . . . . . . . . . . . . . . 43 6.22 CalculatingMode(bx)inGroupedData. . . . . . . . . . . . . . . . . . 43 6.23 PropertiesofMode(bx). .. . . . . . . . . . . . .. . . . . . . . . . . .. . . 44 6.24 ComparisonofMean(x(cid:1)),Median(~x),andMode(bx). . . . . . . . 44 6.25 WhentoUseMean(x(cid:1)),Median(~x),andMode(bx)?. . . . . . . . . 44 6.25.1 UseofMean(x(cid:1)). . . . . . . . . . . . . . . . . . . . . . . . . . . 44 6.25.2 UseofMedian(~x). . . . . . . . . . . . . . . . . . . . . . . . . 44 6.25.3 UseofMode(bx). . . . . . . . . . . . . . . . . . . . . . . . . . . 45 6.26 Quartiles,Deciles,andPercentiles. . . . . . . . . . . . . . . . . . . . . 45 Contents xi 7 MeasuresofDispersion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 7.1 Definition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 7.2 VariousMeasuresofDispersion. . . . . . . . . . . . . . . . . . . . . . . 47 7.2.1 Range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 7.2.2 QuartileDeviation. . . . . . . . . . . . . . . . . . . . . . . . . 48 7.2.3 MeanDeviation. . . . . . . . . . . . . . . . . . . . . . . . . . . 49 7.2.4 StandardDeviation. . . . . . . . . . . . . . . . . . . . . . . . . 52 7.3 SymbolsRepresentingtheStandardDeviation. . . . . . . . . . . . . 53 7.4 SymbolsUsedinStatisticalAnalysis. . . . . . . . . . . . . . . . . . . 53 7.5 FormulaeforCalculatingStandardDeviation fromUngroupedData. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 7.6 ComputationofMeasuresofDispersion. . . . . . . . . . . . . . . . . 54 7.6.1 FromUngroupedData. . . . . . . . . . . . . . . . . . . . . . 54 7.7 FormulaeforCalculatingStandardDeviation fromGroupedData. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 7.8 ComputingStandardDeviationfromClassifiedData. . . . . . . . 56 7.9 ShortcutMethodforComputing“StandardDeviation” fromClassifiedData. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 7.10 MeritsandDemeritsofVariousMeasuresofDispersion. . . . . 59 7.11 WhentoUseVariousMeasuresofDispersion?. . . . . . . . . . . . 60 8 Correlation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 8.1 CausationandCorrelation. . . . . . . . . . . . . . . . . . . . . . . . . . . 61 8.2 OneVariableBeingaCauseofAnother. . . . . . . . . . . . . . . . . 61 8.2.1 BothVariablesBeingtheResult ofaCommonCause. . . . . . . . . . . . . . . . . . . . . . . . 61 8.2.2 Chance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 8.3 MethodsofStudyingCorrelation. . . . . . . . . . . . . . . . . . . . . . 62 8.3.1 TheScatterDiagram. . . . . . . . . . . . . . . . . . . . . . . . 62 8.3.2 PearsonCoefficientofCorrelation forUngroupedData. . . . . . . . . . . . . . . . . . . . . . . . 62 8.3.3 RegressionLine. . . . . . . . . . . . . . . . . . . . . . . . . . . 67 8.4 Proportionsof“r”. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 9 Chi-SquareTest(χ2–Test). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 9.1 DegreesofFreedom. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 9.2 LevelsofSignificance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 9.3 Applicationsofχ2–Test. . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 9.3.1 DoubleVariableData. . . . . . . . . . . . . . . . . . . . . . . 70 9.3.2 GoodnessofFitTest. . . . . . . . . . . . . . . . . . . . . . . . 71 9.4 CoefficientofContingency. . . . . . . . . . . . . . . . . . . . . . . . . . 74 9.5 Yates’Correction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 9.6 ApplicationofYates’CorrectiontoMultivariableData. . . . . . 78 9.7 Inference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79