ebook img

Statistical Methods for Survival Trial Design: With Applications to Cancer Clinical Trials Using R PDF

275 Pages·2018·10.363 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Statistical Methods for Survival Trial Design: With Applications to Cancer Clinical Trials Using R

Statistical Methods for Survival Trial Design With Applications to Cancer Clinical Trials Using R Chapman & Hall/CRC Biostatistics Series Shein-Chung Chow, Duke University of Medicine Byron Jones, Novartis Pharma AG Jen-pei Liu, National Taiwan University Karl E. Peace, Georgia Southern University Bruce W. Turnbull, Cornell University Recently Published Titles Repeated Measures Design with Generalized Linear Mixed Models for Randomized Controlled Trials Toshiro Tango Clinical Trial Data Analysis Using R and SAS, Second Edition Ding-Geng (Din) Chen, Karl E. Peace, Pinggao Zhang Clinical Trial Optimization Using R Alex Dmitrienko, Erik Pulkstenis Cluster Randomised Trials, Second Edition Richard J. Hayes, Lawrence H. Moulton Quantitative Methods for HIV/AIDS Research Cliburn Chan, Michael G. Hudgens, Shein-Chung Chow Sample Size Calculations in Clinical Research, Third Edition Shein-Chung Chow, Jun Shao, Hansheng Wang, Yuliya Lokhnygina Randomization, Masking, and Allocation Concealment Vance Berger Statistical Topics in Health Economics and Outcomes Research Demissie Alemayehu, Joseph C. Cappelleri, Birol Emir, Kelly H. Zou Applied Surrogate Endpoint Evaluation Methods with SAS and R Ariel Alonso, Theophile Bigirumurame, Tomasz Burzykowski, Marc Buyse, Geert Molenberghs, Leacky Muchene, Nolen Joy Perualila, Ziv Shkedy, Wim Van der Elst Medical Biostatistics, Fourth Edition Abhaya Indrayan, Rajeev Kumar Malhotra Self-Controlled Case Series Studies: A Modelling Guide with R Paddy Farrington, Heather Whitaker, Yonas Ghebremichael Weldeselassie Bayesian Methods for Repeated Measures Lyle D. Broemeling Modern Adaptive Randomized Clinical Trials: Statistical and Practical Aspects Oleksandr Sverdlov Medical Product Safety Evaluation: Biological Models and Statistical Methods Jie Chen, Joseph Heyse, Tze Leung Lai Statistical Methods for Survival Trial Design: With Applications to Cancer Clinical Trials Using R Jianrong Wu For more information about this series, please visit: https://www.crcpress.com/go/biostats Statistical Methods for Survival Trial Design With Applications to Cancer Clinical Trials Using R Jianrong Wu CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2018 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business No claim to original U.S. Government works Printed on acid-free paper Version Date: 20180509 International Standard Book Number-13: 978-1-138-03322-1 (Hardback) This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers. For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged. Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe. Library of Congress Cataloging-in-Publication Data Names: Wu, Jianrong, author. Title: Statistical methods for survival trial design : with applications to cancer clinical trials using R / Jianrong Wu. Description: Boca Raton : Taylor & Francis, 2018. | Includes bibliographical references and index. Identifiers: LCCN 2018008225 | ISBN 9781138033221 (hardback) Subjects: LCSH: Clinical trials--Statistical methods. | Cancer--Research--Methodology. | Medicine--Research--Methodology. | R (Computer program language) Classification: LCC R853.C55 W8 2018 | DDC 610.72/4--dc23 LC record available at https://lccn.loc.gov/2018008225 Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com and the CRC Press Web site at http://www.crcpress.com Contents Preface ix List of Figures xi List of Tables xiii 1. Introduction to Cancer Clinical Trials 1 1.1. General Aspects of Cancer Clinical Trial Design . . . . . . . 2 1.1.1. Study Objectives . . . . . . . . . . . . . . . . . . . . . 2 1.1.2. Treatment Plan . . . . . . . . . . . . . . . . . . . . . . 3 1.1.3. Eligibility Criteria . . . . . . . . . . . . . . . . . . . . 3 1.1.4. Statistical Considerations . . . . . . . . . . . . . . . . 3 1.2. Statistical Aspects of Cancer Survival Trial Design . . . . . . 3 1.2.1. Randomization . . . . . . . . . . . . . . . . . . . . . . 3 1.2.2. Stratification . . . . . . . . . . . . . . . . . . . . . . . 4 1.2.3. Blinding . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2.4. Sample Size Calculation . . . . . . . . . . . . . . . . . 5 2. Survival Analysis 9 2.1. Survival Distribution . . . . . . . . . . . . . . . . . . . . . . 9 2.1.1. Exponential Distribution . . . . . . . . . . . . . . . . 11 2.1.2. Weibull Distribution . . . . . . . . . . . . . . . . . . . 14 2.1.3. Gamma Distribution . . . . . . . . . . . . . . . . . . . 14 2.1.4. Gompertz Distribution . . . . . . . . . . . . . . . . . . 16 2.1.5. Log-Normal Distribution. . . . . . . . . . . . . . . . . 19 2.1.6. Log-Logistic Distribution . . . . . . . . . . . . . . . . 19 2.2. Survival Data . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.3. Fitting the Parametric Survival Distribution . . . . . . . . . 25 2.4. Kaplan-Meier Estimates . . . . . . . . . . . . . . . . . . . . . 26 2.5. Median Survival Time . . . . . . . . . . . . . . . . . . . . . . 30 2.6. Log-Rank Test . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.7. Cox Regression Model . . . . . . . . . . . . . . . . . . . . . . 39 3. Counting Process and Martingale 41 3.1. Basic Convergence Concepts . . . . . . . . . . . . . . . . . . 41 3.2. Counting Process Definition . . . . . . . . . . . . . . . . . . 42 3.3. Filtration and Martingale . . . . . . . . . . . . . . . . . . . . 43 v vi Contents 3.4. Martingale Central Limit Theorem . . . . . . . . . . . . . . . 45 3.5. Counting Process Formulation of Censored Survival Data . . 46 4. Survival Trial Design under the Parametric Model 49 4.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4.2. Weibull Model . . . . . . . . . . . . . . . . . . . . . . . . . . 50 4.3. Test Statistic . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 4.4. Distribution of the MLE test . . . . . . . . . . . . . . . . . . 53 4.5. Sample Size Formula . . . . . . . . . . . . . . . . . . . . . . 54 4.6. Sample Size Calculation . . . . . . . . . . . . . . . . . . . . . 55 4.7. Accrual Duration Calculation . . . . . . . . . . . . . . . . . . 58 4.8. Example and R code . . . . . . . . . . . . . . . . . . . . . . 58 5. Survival Trial Design under the Proportional Hazards Model 61 5.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 5.2. Proportional Hazards Model . . . . . . . . . . . . . . . . . . 62 5.3. Asymptotic Distribution of the Log-Rank Test . . . . . . . . 64 5.4. Schoenfeld Formula . . . . . . . . . . . . . . . . . . . . . . . 68 5.5. Rubinstein Formula . . . . . . . . . . . . . . . . . . . . . . . 72 5.6. Freedman Formula . . . . . . . . . . . . . . . . . . . . . . . . 74 5.7. Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 5.8. Sample Size Calculation under Various Models . . . . . . . . 79 5.9. Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 5.10.Optimal Properties of the Log-Rank Test . . . . . . . . . . . 88 5.10.1. Optimal Sample Size Allocation . . . . . . . . . . . . 88 5.10.2. Optimal Power . . . . . . . . . . . . . . . . . . . . . . 90 5.11.Precise Formula . . . . . . . . . . . . . . . . . . . . . . . . . 90 5.12.Exact Formula . . . . . . . . . . . . . . . . . . . . . . . . . . 93 6. Survival Trial Design under the Cox Regression Model 99 6.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 6.2. Test Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . 100 6.3. Asymptotic Distribution of the Score Test . . . . . . . . . . 101 6.4. Sample Size Formula . . . . . . . . . . . . . . . . . . . . . . 103 7. Complex Survival Trial Design 109 7.1. Extension of the Freedman Formula . . . . . . . . . . . . . . 111 7.1.1. Example and R code . . . . . . . . . . . . . . . . . . . 113 7.2. Lakatos Formula . . . . . . . . . . . . . . . . . . . . . . . . . 117 7.3. Markov Chain Model with Simultaneous Entry . . . . . . . . 118 7.4. Computation Formulae . . . . . . . . . . . . . . . . . . . . . 120 7.5. Markov Chain Model with Staggered Entry . . . . . . . . . . 122 7.6. Examples and R code . . . . . . . . . . . . . . . . . . . . . . 125 Contents vii 8. Survival Trial Design under the Mixture Cure Model 141 8.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 8.2. Testing Differences in Cure Rates . . . . . . . . . . . . . . . 143 8.2.1. Mixture Cure Model . . . . . . . . . . . . . . . . . . . 143 8.2.2. Asymptotic Distribution . . . . . . . . . . . . . . . . . 145 8.2.3. Sample Size Formula . . . . . . . . . . . . . . . . . . . 147 8.2.4. Optimal Log-Rank Test . . . . . . . . . . . . . . . . . 148 8.2.5. Comparison . . . . . . . . . . . . . . . . . . . . . . . . 149 8.2.6. Example and R code . . . . . . . . . . . . . . . . . . . 151 8.2.7. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . 154 8.3. Testing Differences in Short- and Long-Term Survival . . . . 154 8.3.1. Hypothesis Testing . . . . . . . . . . . . . . . . . . . . 154 8.3.2. Ewell and Ibrahim Formula . . . . . . . . . . . . . . . 155 8.3.3. Simulation . . . . . . . . . . . . . . . . . . . . . . . . 158 8.3.4. Example and R code . . . . . . . . . . . . . . . . . . . 159 8.3.5. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . 164 9. A General Group Sequential Procedure 167 9.1. Brownian Motion . . . . . . . . . . . . . . . . . . . . . . . . 167 9.2. Sequential Conditional Probability Ratio Test . . . . . . . . 168 9.3. Operating Characteristics . . . . . . . . . . . . . . . . . . . . 174 9.4. Probability of Discordance . . . . . . . . . . . . . . . . . . . 175 9.5. SCPRT Design . . . . . . . . . . . . . . . . . . . . . . . . . . 175 10.Sequential Survival Trial Design 177 10.1.Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 10.2.Sequential Procedure for the Parametric Model . . . . . . . . 177 10.2.1. Sequential Wald Test. . . . . . . . . . . . . . . . . . . 178 10.2.2. SCPRT for the Parametric Model . . . . . . . . . . . 180 10.3.Sequential Procedure for the Proportional Hazard Model . . 185 10.3.1. Sequential Log-Rank Test . . . . . . . . . . . . . . . . 185 10.3.2. Information Time . . . . . . . . . . . . . . . . . . . . 189 10.3.3. SCPRT for the PH Model . . . . . . . . . . . . . . . . 191 11.Sequential Survival Trial Design Using Historical Controls 199 11.1.Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 199 11.2.Sequential Log-Rank Test with Historical Controls . . . . . . 200 11.2.1. Sample Size Calculation . . . . . . . . . . . . . . . . . 201 11.2.2. Information Time . . . . . . . . . . . . . . . . . . . . 202 11.2.3. Group Sequential Procedure . . . . . . . . . . . . . . . 204 11.3.Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208 viii Contents 12.Some Practical Issues in Survival Trial Design 211 12.1.Parametric vs. Nonparametric Model . . . . . . . . . . . . . 211 12.2.Nonproportional Hazards Model . . . . . . . . . . . . . . . . 212 12.3.Accrual Patterns . . . . . . . . . . . . . . . . . . . . . . . . . 212 12.4.Mixed Populations . . . . . . . . . . . . . . . . . . . . . . . . 213 12.5.Loss to Follow-Up . . . . . . . . . . . . . . . . . . . . . . . . 213 12.6.Noncompliance and Drop-In . . . . . . . . . . . . . . . . . . 214 12.7.Competing Risk . . . . . . . . . . . . . . . . . . . . . . . . . 215 A. Likelihood Function for the Censored Data 219 B. Probability of Failure under Uniform Accrual 221 C. Verification of the Minimum Sample Size Conditions 223 D.R Codes for the Sample Size Calculations 225 E. Derivation of the Asymptotic Distribution 231 F. Derivation of Equations for Chapter 8 235 Bibliography 237 Index 247 Preface The clinical trial has become a major research tool for developing advanced cancer treatments. In recent years, the pharmaceutical industry, hospitals, and other research centers have been increasingly active in conducting cancer clinical trials with time-to-event endpoints. Statistical methods for designing and monitoring such trials have been available for many years, and a number of books have addressed this topic, including those by Chow et al. (2003), Julious (2010), Cook and DeMets (2008), Jennison and Turnbull (2000), and Proschanetal.(2006).However,asnoneofthesebookswaswrittenspecifically to address the design and monitoring of survival clinical trials, they contain onlylimitedmaterialonthattopic.Forexample,inthebookbyJulious,only onechapterdiscussessamplesizecalculationundertheexponentialmodeland proportional hazards model, and some of the presented approaches to sample sizecalculationandadjustingforlosstofollow-upareinappropriate.Thebook by Chow et al. is also limited with regard to its discussion of the exponential model, and its presentation of the method of Lakatos for complex survival trial design not only lacks sufficient detail but also contains errors. The book by Jennison and Turnbull is an excellent reference for group sequential trial design, but its coverage of survival trial design is limited to a single chapter. Cancertreatmenthasprogresseddramaticallyinrecentdecades,suchthat itisnowcommontoseeacureorlong-termsurvivalinasignificantproportion ofpatientswithvarioustypesofcancer,e.g.,breastcancer,non-Hodgkinlym- phoma,leukemia,prostatecancer,melanoma,orheadandneckcancer(Ewell and Ibrahim, 1997). Until now, however, the principles of designing survival trials in which a proportion of the participants are expected to be cured have notbeenpublishedinanybookorimplementedinanycommerciallyavailable software. Thisbookisintendedtoprovideacomprehensiveintroductiontothemost commonlyusedmethodsforsurvivaltrialdesignandmonitoringandtohigh- light some recent developments in the area. I hope this book will serve as a referencebookforresearchersconductingclinicaltrialswithsurvivalendpoints and for statisticians designing survival clinical trials for the pharmaceutical industry, hospitals, or other cancer research centers. It may also serve as a textbook for graduate students in the biostatistics field who wish to learn survival analysis and/or acquire basic knowledge of clinical trial design and sample size calculation. The main focus of this book is on the methodology of sample size calcula- tion, and clinical trial design and monitoring are illustrated using data from ix

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.