ebook img

Statistical Intervals PDF

631 Pages·2017·6.559 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Statistical Intervals

Statistical Intervals WILEY SERIES IN PROBABILITY AND STATISTICS The Wiley Series in Probability and Statistics is well established and authoritative. It covers many topics of current research interest in both pure and applied statistics and probability theory. Written by leading statisticians and institutions, the titles span both state-of-the-art developmentsintheieldandclassicalmethods. Relecting the wide range of current research in statistics, the series encompasses applied, methodologicalandtheoreticalstatistics,rangingfromapplicationsandnewtechniquesmade possiblebyadvancesincomputerizedpracticetorigoroustreatmentoftheoreticalapproaches. Thisseriesprovidesessentialandinvaluablereadingforallstatisticians,whetherinacademia, industry,government,orresearch. Acompletelistoftitlesinthisseriesappearsattheendofthevolume. Statistical Intervals A Guide for Practitioners and Researchers SecondEdition William Q. Meeker DepartmentofStatistics,IowaStateUniversity Gerald J. Hahn GeneralElectricCompany,GlobalResearchCenter(Retired)Schenectady,NY Luis A. Escobar DepartmentofExperimentalStatistics,LouisianaStateUniversity Copyright©2017byJohnWiley&Sons,Inc.Allrightsreserved. PublishedbyJohnWiley&Sons,Inc.,Hoboken,NewJersey. PublishedsimultaneouslyinCanada. Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,ortransmittedinanyformorbyanymeans, electronic,mechanical,photocopying,recording,scanning,orotherwise,exceptaspermittedunderSection107or108of the1976UnitedStatesCopyrightAct,withouteitherthepriorwrittenpermissionofthePublisher,orauthorizationthrough paymentoftheappropriateper-copyfeetotheCopyrightClearanceCenter,Inc.,222RosewoodDrive,Danvers,MA 01923,(978)750-8400,fax(978)750-4470,oronthewebatwww.copyright.com.RequeststothePublisherforpermission shouldbeaddressedtothePermissionsDepartment,JohnWiley&Sons,Inc.,111RiverStreet,Hoboken,NJ07030,(201) 748-6011,fax(201)748-6008,oronlineathttp://www.wiley.com/go/permission. LimitofLiability/DisclaimerofWarranty:Whilethepublisherandauthorhaveusedtheirbesteffortsinpreparingthis book,theymakenorepresentationsorwarrantieswithrespecttotheaccuracyorcompletenessofthecontentsofthisbook andspeciicallydisclaimanyimpliedwarrantiesofmerchantabilityoritnessforaparticularpurpose.Nowarrantymaybe createdorextendedbysalesrepresentativesorwrittensalesmaterials.Theadviceandstrategiescontainedhereinmaynot besuitableforyoursituation.Youshouldconsultwithaprofessionalwhereappropriate.Neitherthepublishernorauthor shallbeliableforanylossofproitoranyothercommercialdamages,includingbutnotlimitedtospecial,incidental, consequential,orotherdamages. Forgeneralinformationonourotherproductsandservicesorfortechnicalsupport,pleasecontactourCustomerCare DepartmentwithintheUnitedStatesat(800)762-2974,outsidetheUnitedStatesat(317)572-3993orfax(317)572-4002. Wileyalsopublishesitsbooksinavarietyofelectronicformats.Somecontentthatappearsinprintmaynotbeavailablein electronicformats.FormoreinformationaboutWileyproducts,visitourwebsiteatwww.wiley.com. LibraryofCongressCataloging-in-PublicationData: Names:Meeker,WilliamQ.|Hahn,GeraldJ.|Escobar,LuisA. Title:Statisticalintervals:aguideforpractitionersandresearchers. Description:Secondedition/WilliamQ.Meeker,GeraldJ.Hahn,LuisA. Escobar.|Hoboken,NewJersey:JohnWiley&Sons,Inc.,[2017]| Includesbibliographicalreferencesandindex. Identiiers:LCCN2016053941|ISBN9780471687177(cloth)|ISBN9781118595169(epub) Subjects:LCSH:Mathematicalstatistics. Classiication:LCCQA276.H222017|DDC519.5/4–dc23LCrecordavailable athttps://lccn.loc.gov/2016053941 PrintedintheUnitedStatesofAmerica 10 9 8 7 6 5 4 3 2 1 ToKaren,Katherine,Josh,Liam,Ayla,andmyparents W.Q.M. ToBea,AdrienneandLou,SusanandJohn,JudyandBen, andZachary,Eli,Sam,LeahandEliza G.J.H. Tomygrandchildren:Olivia,Lillian,Nathaniel,Gabriel, Samuel,Emmett,andJackson L.A.E. Contents PrefacetoSecondEdition xxv PrefacetoFirstEdition xxix Acknowledgments xxxiii AbouttheCompanionWebsite xxxv 1 Introduction,BasicConcepts,andAssumptions 1 1.1 StatisticalInference 2 1.2 DifferentTypesofStatisticalIntervals:AnOverview 3 1.3 TheAssumptionofSampleData 3 1.4 TheCentralRoleofPracticalAssumptionsConcerningRepresentativeData 4 1.5 EnumerativeversusAnalyticStudies 5 1.5.1 DifferentiatingbetweenEnumerativeandAnalyticStudies 6 1.5.2 StatisticalInferenceforAnalyticStudies 7 1.5.3 InferentialversusPredictiveAnalyses 7 1.6 BasicAssumptionsforInferencesfromEnumerativeStudies 8 1.6.1 DeinitionoftheTargetPopulationandFrame 8 1.6.2 TheAssumptionofaRandomSample 8 1.6.3 MoreComplicatedRandomSamplingSchemes 9 1.7 ConsiderationsintheConductofAnalyticStudies 11 1.7.1 AnalyticStudies 11 1.7.2 TheConceptofStatisticalControl 11 1.7.3 OtherAnalyticStudies 12 1.7.4 HowtoProceed 12 1.7.5 PlanningandConductinganAnalyticStudy 12 1.8 ConvenienceandJudgmentSamples 13 1.9 SamplingPeople 14 1.10 IninitePopulationAssumptions 15 1.11 PracticalAssumptions:Overview 15 1.12 PracticalAssumptions:FurtherExample 17 1.13 PlanningtheStudy 18 vii viii CONTENTS 1.14 TheRoleofStatisticalDistributions 19 1.15 TheInterpretationofStatisticalIntervals 19 1.16 StatisticalIntervalsandBigData 21 1.17 CommentConcerningSubsequentDiscussion 21 2 OverviewofDifferentTypesofStatisticalIntervals 23 2.1 ChoiceofaStatisticalInterval 23 2.1.1 PurposeoftheInterval 24 2.1.2 CharacteristicofInterest 24 2.2 ConidenceIntervals 25 2.2.1 ConidenceIntervalforaDistributionParameter 25 2.2.2 ConidenceIntervalforaDistributionQuantile 25 2.2.3 ConidenceIntervalfortheProbabilityofMeetingSpeciications 25 2.2.4 One-SidedConidenceBounds 26 2.2.5 InterpretationsofConidenceIntervalsandBounds 26 2.3 PredictionIntervals 27 2.3.1 PredictionIntervaltoContainaSingleFutureObservation 27 2.3.2 PredictionIntervaltoContainAllofmFutureObservations 27 2.3.3 PredictionIntervaltoContainatLeastkoutofmFuture Observations 28 2.3.4 PredictionIntervaltoContaintheSampleMeanorSampleStandard DeviationofaFutureSample 28 2.3.5 One-SidedPredictionBounds 28 2.3.6 InterpretationofPredictionIntervalsandBounds 28 2.4 StatisticalToleranceIntervals 29 2.4.1 ToleranceIntervaltoContainaProportionofaDistribution 29 2.4.2 One-SidedToleranceBounds 29 2.4.3 Interpretationofβ-ContentToleranceIntervals 30 2.4.4 β-ExpectationToleranceIntervals 30 2.5 WhichStatisticalIntervalDoIUse? 30 2.6 ChoosingaConidenceLevel 31 2.6.1 FurtherElaboration 31 2.6.2 ProblemConsiderations 31 2.6.3 SampleSizeConsiderations 32 2.6.4 APracticalConsideration 32 2.6.5 FurtherRemarks 32 2.7 Two-SidedStatisticalIntervalsversusOne-SidedStatisticalBounds 33 2.8 TheAdvantageofUsingConidenceIntervalsInsteadofSigniicanceTests 33 2.9 SimultaneousStatisticalIntervals 34 3 Constructing Statistical Intervals Assuming a Normal Distribution Using Simple Tabulations 37 3.1 Introduction 38 3.1.1 TheNormalDistribution 38 3.1.2 UsingtheSimpleFactors 39 3.2 CircuitPackVoltageOutputExample 39 3.3 Two-SidedStatisticalIntervals 40 3.3.1 SimpleTabulationsforTwo-SidedStatisticalIntervals 40 3.3.2 Two-SidedIntervalExamples 41 3.3.3 ComparisonofTwo-SidedStatisticalIntervals 42 CONTENTS ix 3.4 One-SidedStatisticalBounds 42 3.4.1 SimpleTabulationsforOne-SidedStatisticalBounds 42 3.4.2 One-SidedStatisticalBoundExamples 44 3.4.3 ComparisonofOne-SidedStatisticalBounds 45 4 MethodsforCalculatingStatisticalIntervalsforaNormalDistribution 47 4.1 Notation 48 4.2 ConidenceIntervalfortheMeanofaNormalDistribution 49 4.3 ConidenceIntervalfortheStandardDeviationofaNormalDistribution 49 4.4 ConidenceIntervalforaNormalDistributionQuantile 50 4.5 ConidenceIntervalfortheDistributionProportionLess(Greater)thana SpeciiedValue 52 4.6 StatisticalToleranceIntervals 53 4.6.1 Two-SidedToleranceIntervaltoControltheCenterofaDistribution 53 4.6.2 Two-SidedToleranceIntervaltoControlBothTailsofaDistribution 54 4.6.3 One-SidedToleranceBounds 55 4.7 PredictionIntervaltoContainaSingleFutureObservationortheMeanofm FutureObservations 55 4.8 PredictionIntervaltoContainatLeastkofmFutureObservations 56 4.8.1 Two-SidedPredictionInterval 56 4.8.2 One-SidedPredictionBounds 57 4.9 PredictionIntervaltoContaintheStandardDeviationofmFuture Observations 58 4.10 TheAssumptionofaNormalDistribution 59 4.11 AssessingDistributionNormalityandDealingwithNonnormality 60 4.11.1 ProbabilityPlotsandQ–QPlots 60 4.11.2 InterpretingProbabilityPlotsandQ–QPlots 60 4.11.3 DealingwithNonnormalData 62 4.12 DataTransformationsandInferencesfromTransformedData 63 4.12.1 PowerTransformations 63 4.12.2 ComputingStatisticalIntervalsfromTransformedData 64 4.12.3 ComparisonofInferencesUsingDifferentTransformations 65 4.12.4 Box–CoxTransformations 66 4.13 StatisticalIntervalsforLinearRegressionAnalysis 66 4.13.1 ConidenceIntervalsforLinearRegressionAnalysis 67 4.13.2 ToleranceIntervalsforLinearRegressionAnalysis 68 4.13.3 PredictionIntervalsforRegressionAnalysis 68 4.14 StatisticalIntervalsforComparingPopulationsandProcesses 68 5 Distribution-FreeStatisticalIntervals 73 5.1 Introduction 74 5.1.1 Motivation 74 5.1.2 Notation 75 5.2 Distribution-FreeConidenceIntervalsandOne-SidedConidenceBounds foraQuantile 78 5.2.1 CoverageProbabilitiesforDistribution-FreeConidenceIntervalsor One-SidedConidenceBoundsforaQuantile 78 5.2.2 UsingInterpolationtoObtainApproximateDistribution-Free ConidenceBoundsorConidenceIntervalsforaQuantile 78 5.2.3 Distribution-FreeOne-SidedUpperConidenceBoundsfora Quantile 79 x CONTENTS 5.2.4 Distribution-FreeOne-SidedLowerConidenceBoundsfora Quantile 82 5.2.5 Distribution-FreeTwo-SidedConidenceIntervalforaQuantile 84 5.3 Distribution-FreeToleranceIntervalsandBoundstoContainaSpeciied ProportionofaDistribution 86 5.3.1 Distribution-FreeTwo-SidedToleranceIntervals 86 5.3.2 Distribution-FreeOne-SidedToleranceBounds 88 5.3.3 MinimumSampleSizeRequiredforConstructingaDistribution-Free Two-SidedToleranceInterval 88 5.4 PredictionIntervalsandBoundstoContainaSpeciiedOrderedObservation inaFutureSample 89 5.4.1 CoverageProbabilitiesforDistribution-FreePredictionIntervals andOne-SidedPredictionBoundsforaParticularOrdered Observation 89 5.4.2 Distribution-FreeOne-SidedUpperPredictionBoundforY 90 (j) 5.4.3 Distribution-FreeOne-SidedLowerPredictionBoundforY 91 (j) 5.4.4 Distribution-FreeTwo-SidedPredictionIntervalforY 92 (j) 5.5 Distribution-FreePredictionIntervalsandBoundstoContainatLeastkof mFutureObservations 93 5.5.1 Distribution-FreeTwo-SidedPredictionIntervalstoContainatLeast kofmFutureObservations 93 5.5.2 Distribution-FreeOne-SidedPredictionBoundstoExceedorBe ExceededbyatLeastkofmFutureObservations 96 6 StatisticalIntervalsforaBinomialDistribution 99 6.1 Introduction 100 6.1.1 TheBinomialDistribution 100 6.1.2 OtherDistributionsandRelatedNotation 100 6.1.3 NotationforDataandInference 101 6.1.4 BinomialDistributionStatisticalIntervalProperties 101 6.1.5 TwoExamples,Motivation,andaCaution 101 6.2 ConidenceIntervalsfortheActualProportionNonconforminginthe SampledDistribution 102 6.2.1 Preliminaries 102 6.2.2 TheConservativeMethod 103 6.2.3 TheWald(NormalTheory)ApproximateMethod 105 6.2.4 TheAgresti–CoullAdjustedWald-ApproximationMethod 105 6.2.5 TheJeffreysApproximateMethod 107 6.2.6 ComparisonsandRecommendations 108 6.3 ConidenceIntervalfortheProportionofNonconformingUnitsinaFinite Population 112 6.3.1 TheConservativeMethod 113 6.3.2 Large-PopulationApproximateMethod 114 6.4 ConidenceIntervalsfortheProbabilitythattheNumberofNonconforming UnitsinaSampleisLessthanorEqualto(orGreaterthan)aSpeciied Number 114 6.5 ConidenceIntervalsfortheQuantileoftheDistributionoftheNumberof NonconformingUnits 116 6.5.1 Two-SidedConidenceIntervalfory 116 p 6.5.2 One-SidedConidenceBoundsfory 117 p

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.