ebook img

Statistical Inference for Fractional Diffusion Processes (Wiley Series in Probability and Statistics) PDF

277 Pages·2010·1.203 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Statistical Inference for Fractional Diffusion Processes (Wiley Series in Probability and Statistics)

Statistical Inference for Fractional Diffusion Processes WILEY SERIES IN PROBABILITY AND STATISTICS Established by WALTERA. SHEWHART and SAMUEL S. WILKS Editors David J. Balding, Noel A. C. Cressie, Garrett M. Fitzmaurice, Harvey Goldstein,Geert Molenberghs, David W. Scott, Adrian F.M. Smith, Ruey S. Tsay, Sanford Weisberg Editors Emeriti Vic Barnett, J. Stuart Hunter, David G. Kendall,Jozef L. Teugels A complete list of the titles in this series appears at the end of this volume. Statistical Inference for Fractional Diffusion Processes B. L. S. Prakasa Rao Department of Mathematics and Statistics, University of Hyderabad, India A John Wiley and Sons, Ltd., Publication Thiseditionfirstpublished2010 2010JohnWiley&SonsLtd JohnWiley&SonsLtd,TheAtrium,SouthernGate,Chichester,WestSussex,PO198SQ,UnitedKingdom Fordetailsofourglobaleditorialoffices,forcustomerservicesandforinformationabouthowtoapplyfor permissiontoreusethecopyrightmaterialinthisbookpleaseseeourwebsiteatwww.wiley.com. Therightoftheauthortobeidentifiedastheauthorofthisworkhasbeenassertedinaccordancewiththe Copyright,DesignsandPatentsAct1988. Allrightsreserved.Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,ortransmitted, inanyformorbyanymeans,electronic,mechanical,photocopying,recordingorotherwise,exceptaspermitted bytheUKCopyright,DesignsandPatentsAct1988,withoutthepriorpermissionofthepublisher. Wileyalsopublishesitsbooksinavarietyofelectronicformats.Somecontentthatappearsinprintmaynot beavailableinelectronicbooks. Designationsusedbycompaniestodistinguishtheirproductsareoftenclaimedastrademarks.Allbrandnames andproductnamesusedinthisbookaretradenames,servicemarks,trademarksorregisteredtrademarksof theirrespectiveowners.Thepublisherisnotassociatedwithanyproductorvendormentionedinthisbook. Thispublicationisdesignedtoprovideaccurateandauthoritativeinformationinregardtothesubjectmatter covered.Itissoldontheunderstandingthatthepublisherisnotengagedinrenderingprofessionalservices. Ifprofessionaladviceorotherexpertassistanceisrequired,theservicesofacompetentprofessionalshould besought. LibraryofCongressCataloging-in-PublicationData PrakasaRao,B.L.S. Statisticalinferenceforfractionaldiffusionprocesses/B.L.S.PrakasaRao. p.cm.–(Wileyseriesinprobabilityandstatistics) Summary:”StatisticalInferenceforFractionalDiffusionProcesseslooksatstatisticalinferenceforstochastic processes modeled by stochastic differential equations driven by fractional Brownian motion.Other related topics, such as sequential inference, nonparametric and non parametric inference and parametric estimation arealsodiscussed”–Providedbypublisher. Includesbibliographicalreferencesandindex. ISBN978-0-470-66568-8 1.Fractionalcalculus.2.Probabilities.I.Title. QA314.P732010 515’.83–dc22 2010010075 AcataloguerecordforthisbookisavailablefromtheBritishLibrary. ISBN:978-0-470-66568-8 Typesetin10/12Times-RomanbyLaserwordsPrivateLimited,Chennai,India PrintedinSingaporebyMarkonoPrintMediaPteLtd. Inmemory of mymaternal grandfather Kanchinadham VenkataSubrahmanyam for teaching me the three ‘R’s (Reading, Writing and Arithmetic) withlove and affection Contents Preface xi 1 Fractional Brownian motion and related processes 1 1.1 Introduction 1 1.2 Self-similar processes 2 1.3 Fractional Brownian motion 7 1.4 Stochastic differential equations driven by fBm 24 1.5 Fractional Ornstein–Uhlenbeck-type process 30 1.6 Mixed fBm 33 1.7 Donsker-type approximation for fBm with Hurst index H > 1 35 2 1.8 Simulation of fBm 36 1.9 Remarks on application of modeling by fBm in mathematical finance 39 1.10 Pathwise integration with respect to fBm 39 2 Parametric estimation for fractional diffusion processes 45 2.1 Introduction 45 2.2 SDEs and local asymptotic normality 45 2.3 Parameter estimation for linear SDEs 47 2.4 Maximum likelihood estimation 48 2.5 Bayes estimation 51 2.6 Berry–Esseen-type bound for MLE 58 2.7 (cid:1)-upper and lower functions for MLE 60 2.8 Instrumental variable estimation 69 3 Parametric estimation for fractional Ornstein–Uhlenbeck-type process 77 3.1 Introduction 77 3.2 Preliminaries 78 3.3 Maximum likelihood estimation 79 3.4 Bayes estimation 83 3.5 Probabilities of large deviations of MLE and BE 84 3.6 Minimum L -norm estimation 93 1 viii CONTENTS 4 Sequential inference for some processes driven by fBm 101 4.1 Introduction 101 4.2 Sequential maximum likelihood estimation 101 4.3 Sequential testing for simple hypothesis 105 5 Nonparametric inference for processes driven by fBm 115 5.1 Introduction 115 5.2 Identification for linear stochastic systems 115 5.3 Nonparametric estimation of trend 130 6 Parametric inference for some SDEs driven by processes related to fBm 143 6.1 Introduction 143 6.2 Estimation of the translation of a process driven by fBm 143 6.3 Parametric inference for SDEs with delay governed by fBm 156 6.4 Parametric estimation for linear system of SDEs driven by fBms with different Hurst indices 163 6.5 Parametric estimation for SDEs driven by mixed fBm 173 6.6 Alternate approach for estimation in models driven by fBm 181 6.7 Maximum likelihood estimation under misspecified model 184 7 Parametric estimation for processes driven by fractional Brownian sheet 189 7.1 Introduction 189 7.2 Parametric estimation for linear SDEs driven by a fractional Brownian sheet 189 8 Parametric estimation for processes driven by infinite-dimensional fBm 205 8.1 Introduction 205 8.2 Parametric estimation for SPDEs driven by infinite-dimensional fBm 205 8.3 Parametric estimation for stochastic parabolic equations driven by infinite-dimensional fBm 213 9 Estimation of self-similarity index 219 9.1 Introduction 219 9.2 Estimation of the Hurst index H when H is a constant and 1 <H <1 for fBm 220 2 9.3 Estimation of scaling exponent function H(.) for locally self-similar processes 225 10 Filtering and prediction for linear systems driven by fBm 229 10.1 Introduction 229

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.