EESEtatistical Image Processing anE d Multidimensional Modeling Information Science and Statistics SSSeries Editors: M. Jordan Robert Nowak Bernhard Schölkopf Forothertitlespublishedinthisseries,goto www.springer.com/series/3816 Paul Fieguth Statistical Image Processing and Multidimensional Modeling Paul Fieguth Department of Systems Design Engineering Faculty of Engineering University of Waterloo Waterloo Ontario N2L-3G1 Canada [email protected] ISSN1613-9011 ISBN978-1-4419-7293-4 e-ISBN978-1-4419-7294-1 DOI10.1007/978-1-4419-7294-1 Springer New York Dordrecht Heidelberg London Library of Congress Control Number: 2010938436 ©SpringerScience + BusinessMedia,LLC2011 Allrightsreserved.Thisworkmaynotbetranslatedorcopiedinwholeorinpartwithoutthewritten permissionofthepublisher(SpringerScience+BusinessMedia,LLC,233SpringStreet,NewYork,NY 10013,USA),exceptforbriefexcerptsinconnectionwithreviewsorscholarlyanalysis.Useinconnection withanyformofinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilar ordissimilarmethodologynowknownorhereafterdevelopedisforbidden. Theuseinthispublicationoftradenames,trademarks,servicemarks,andsimilarterms,eveniftheyare notidentifiedassuch,isnottobetakenasanexpressionofopinionastowhetherornottheyaresubject toproprietaryrights. Printedonacid-freepaper Springer is part of Springer Science+Business Media (www.springer.com) Preface Asayoungprofessorin1997ItaughtmygraduatecourseinStochasticImagePro- cessingforthefirsttime.Lookingbackonmyroughnotesfromthattime,thecourse musthavebeenanearimpenetrabledisasterforthegraduatestudentsenrolled,with alonglistoferrors,confusions,andbadnotation. Witheveryrepetitionthecourseimproved,withsignificantchangestonotation,con- tent, and flow. However, at the same time that a cohesive, large-scale form of the course took shape, the absence of any textbook covering this material became in- creasinglyapparent.Thereare countlesstextson the subjectsof image processing, Kalmanfiltering,andsignalprocessing,howeverpreciouslittleforrandomfieldsor spatialstatistics.ThefewtextsthatdocoverGibbsmodelsorMarkovrandomfields tendto behighlymathematicalresearchmonographs,notwellsuitedasatextbook foragraduatecourse. Morethanjustagraduatecoursetextbook,thistextwasdevelopedwiththegoalof being a useful reference for graduate students working in the areas of image pro- cessing, spatialstatistics, and randomfields. In particular,thereare manyconcepts whichareknownanddocumentedintheresearchliterature,whichareusefulforstu- dentstounderstand,butwhichdonotappearinmanytextbooks.Thisperceptionis drivenbymyownexperienceasaPhDstudent,whichwouldhavebeenconsiderably simplifiedifIhadhadatextaccessibletomeaddressingsomeofthefollowinggaps: • FFT-basedestimation(Section8.3) • Anice,simple,cleardescriptionofmultigrid(Section9.2.5) • Theinferenceofdynamicmodelsfromcross-statistics(Chapter10) • A clear distinction and relationship between squared and unsquared kernels (Chapter5) V VI Preface • AgraphicalsummaryrelatingGibbsandMarkovmodels(Figure6.11) Tofacilitatetheuseofthistextbookandthemethodsdescribedwithinit,Iammaking availableonline(seepageXV)muchofthecodewhichIdevelopedforthistext.This code,somecolourfigures,and(hopefullyfew)erratacanbefoundfromthisbook’s homepage: http://ocho.uwaterloo.ca/book This text has benefited from the work, support, and ideas of a great many people. I owe a debt of gratitude to the countless researchers upon whose work this book isbuilt, andwhoare listed inthe bibliography.Please acceptmyapologiesforany omissions. The contents of this book are closely aligned with my research interests over the pasttenyears.Consequentlytheworkofanumberofmyformergraduatestudents appearsinsomeforminthisbook,andIwouldliketorecognizethecontributionsof SimonAlexander,WesleyCampaigne,GabrielCarballo,MichaleJamieson,FuJin, FakhryKhellah,YingLiu,andAzadehMohebi. I would like to thank my Springer editor, John Kimmel, who was an enthusiastic supporterof this text, and highly tolerantof my slow pace in writing. Thanksalso to copyeditor Valerie Grecofor her carefulexaminationof grammarand punctua- tion(andwhereanyremainingerrorsaremine,nothers).I wouldlike tothankthe anonymousreviewers,whoreadthetextthoroughlyandwhoprovidedexceptionally helpfulconstructivecriticism.Iwouldalsoliketothankthenon-anonymousreview- ers,friendsandstudentswhogavethetextanotherlook:WernerFieguth,BettyPries, AkshayaMishra,AlexanderWong,LiLiu,andGeraldMwangi. I would like to thank Christoph Garbe and Michael Winckler, the two people who coordinatedmystayattheUniversityofHeidelberg,wherethistextwascompleted. MythankstotheDeutscherAkademischerAustauschDienst,theHeidelbergGradu- ateSchool,andtotheHeidelbergCollaboratoryforImageProcessingforsupporting myvisit. ManythanksandappreciationtoBettyforencouragingthisproject,andtothekids inAppendixCforjustbeingwhotheyare. Waterloo,Ontario PaulFieguth July,2010 Contents Preface V TableofContents VII ListofExamples XIII ListofCodeSamples XV Nomenclature XVII 1 Introduction 1 PartI Inverse Problems andEstimation 11 2 InverseProblems 13 2.1 DataFusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.2 Posedness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.3 Conditioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.4 RegularizationandPriorModels . . . . . . . . . . . . . . . . . . . 29 2.4.1 DeterministicRegularization . . . . . . . . . . . . . . . . . 34 2.4.2 BayesianRegularization . . . . . . . . . . . . . . . . . . . 37 2.5 StatisticalOperations . . . . . . . . . . . . . . . . . . . . . . . . . 40 2.5.1 CanonicalProblems . . . . . . . . . . . . . . . . . . . . . 40 2.5.2 PriorSampling . . . . . . . . . . . . . . . . . . . . . . . . 42 2.5.3 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 44 2.5.4 PosteriorSampling . . . . . . . . . . . . . . . . . . . . . . 49 2.5.5 ParameterEstimation . . . . . . . . . . . . . . . . . . . . . 50 Application2:OceanAcousticTomography . . . . . . . . . . . . . . . . 50 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 ForFurtherStudy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 SampleProblems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3 StaticEstimationandSampling 57 3.1 Non-BayesianEstimation . . . . . . . . . . . . . . . . . . . . . . . 58 VII VIII CONTENTS 3.2 BayesianEstimation . . . . . . . . . . . . . . . . . . . . . . . . . 64 3.2.1 BayesianStaticProblem . . . . . . . . . . . . . . . . . . . 67 3.2.2 BayesianEstimationandPriorMeans . . . . . . . . . . . . 68 3.2.3 ApproximateBayesianEstimators . . . . . . . . . . . . . . 70 3.2.4 Bayesian/NonBayesianDuality . . . . . . . . . . . . . . . 73 3.3 StaticSampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 3.4 DataFusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 Application3:AtmosphericTemperatureInversion[282] . . . . . . . . . 78 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 ForFurtherStudy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 SampleProblems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 4 DynamicEstimationandSampling 85 4.1 TheDynamicProblem . . . . . . . . . . . . . . . . . . . . . . . . 86 4.1.1 First-OrderGauss–MarkovProcesses . . . . . . . . . . . . 88 4.1.2 Static—DynamicDuality . . . . . . . . . . . . . . . . . . 89 4.2 KalmanFilterDerivation . . . . . . . . . . . . . . . . . . . . . . . 93 4.3 KalmanFilterVariations . . . . . . . . . . . . . . . . . . . . . . . 100 4.3.1 KalmanFilterAlgorithms . . . . . . . . . . . . . . . . . . 102 4.3.2 Steady-StateKalmanFiltering . . . . . . . . . . . . . . . . 107 4.3.3 KalmanFilterSmoother . . . . . . . . . . . . . . . . . . . 109 4.3.4 NonlinearKalmanFiltering . . . . . . . . . . . . . . . . . 114 4.4 DynamicSampling . . . . . . . . . . . . . . . . . . . . . . . . . . 118 4.5 DynamicEstimationforDiscrete-StateSystems . . . . . . . . . . . 119 4.5.1 MarkovChains . . . . . . . . . . . . . . . . . . . . . . . . 119 4.5.2 TheViterbiAlgorithm . . . . . . . . . . . . . . . . . . . . 120 4.5.3 ComparisontoKalmanFilter . . . . . . . . . . . . . . . . 122 Application4:TemporalInterpolationofOceanTemperature[191] . . . . 125 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 ForFurtherStudy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 SampleProblems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 PartII Modelling ofRandom Fields 131 5 MultidimensionalModelling 133 5.1 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 5.2 CouplingandDimensionalityReduction . . . . . . . . . . . . . . . 135 5.3 SparseStorageandComputation . . . . . . . . . . . . . . . . . . . 139 5.3.1 SparseMatrices . . . . . . . . . . . . . . . . . . . . . . . . 139 5.3.2 MatrixKernels . . . . . . . . . . . . . . . . . . . . . . . . 141 5.3.3 Computation . . . . . . . . . . . . . . . . . . . . . . . . . 143 5.4 Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 5.5 DeterministicModels . . . . . . . . . . . . . . . . . . . . . . . . . 149 5.5.1 BoundaryEffects . . . . . . . . . . . . . . . . . . . . . . . 153 CONTENTS IX 5.5.2 DiscontinuityFeatures . . . . . . . . . . . . . . . . . . . . 155 5.5.3 Prior-MeanConstraints . . . . . . . . . . . . . . . . . . . . 156 5.6 StatisticalModels . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 5.6.1 AnalyticalForms . . . . . . . . . . . . . . . . . . . . . . . 160 5.6.2 AnalyticalFormsandNonstationaryFields . . . . . . . . . 164 5.6.3 Recursive/DynamicModels . . . . . . . . . . . . . . . . . 166 5.6.4 BandedInverse-Covariances . . . . . . . . . . . . . . . . . 167 5.7 ModelDetermination . . . . . . . . . . . . . . . . . . . . . . . . . 169 5.8 ChoiceofRepresentation . . . . . . . . . . . . . . . . . . . . . . . 172 Application5:SyntheticApertureRadarInterferometry[53] . . . . . . . 173 ForFurtherStudy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 SampleProblems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 6 MarkovRandomFields 179 6.1 One-DimensionalMarkovianity . . . . . . . . . . . . . . . . . . . 180 6.1.1 MarkovChains . . . . . . . . . . . . . . . . . . . . . . . . 181 6.1.2 Gauss–MarkovProcesses . . . . . . . . . . . . . . . . . . . 181 6.2 MultidimensionalMarkovianity . . . . . . . . . . . . . . . . . . . 182 6.3 Gauss–MarkovRandomFields . . . . . . . . . . . . . . . . . . . . 185 6.4 CausalGauss–MarkovRandomFields . . . . . . . . . . . . . . . . 189 6.5 GibbsRandomFields . . . . . . . . . . . . . . . . . . . . . . . . . 192 6.6 ModelDetermination . . . . . . . . . . . . . . . . . . . . . . . . . 199 6.6.1 AutoregressiveModelLearning . . . . . . . . . . . . . . . 199 6.6.2 NoncausalMarkovModelLearning . . . . . . . . . . . . . 201 6.7 ChoicesofRepresentation . . . . . . . . . . . . . . . . . . . . . . 207 Application6:TextureClassification . . . . . . . . . . . . . . . . . . . . 208 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 ForFurtherStudy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212 SampleProblems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212 7 HiddenMarkovModels 215 7.1 HiddenMarkovModels . . . . . . . . . . . . . . . . . . . . . . . . 216 7.1.1 ImageDenoising . . . . . . . . . . . . . . . . . . . . . . . 216 7.1.2 ImageSegmentation . . . . . . . . . . . . . . . . . . . . . 219 7.1.3 TextureSegmentation . . . . . . . . . . . . . . . . . . . . 220 7.1.4 EdgeDetection . . . . . . . . . . . . . . . . . . . . . . . . 221 7.2 ClassesofJointMarkovModels . . . . . . . . . . . . . . . . . . . 222 7.3 ConditionalRandomFields . . . . . . . . . . . . . . . . . . . . . . 225 7.4 Discrete-StateModels . . . . . . . . . . . . . . . . . . . . . . . . . 227 7.4.1 LocalGibbsModels . . . . . . . . . . . . . . . . . . . . . 228 7.4.2 NonlocalStatistical-TargetModels . . . . . . . . . . . . . . 229 7.4.3 LocalJointModels . . . . . . . . . . . . . . . . . . . . . . 230 7.5 ModelDetermination . . . . . . . . . . . . . . . . . . . . . . . . . 231 Application7:ImageSegmentation . . . . . . . . . . . . . . . . . . . . . 233 ForFurtherStudy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
Description: