Astronomy&Astrophysicsmanuscriptno.sm˙epic˙fluxes09 (cid:13)c ESO2009 January26,2009 Statistical evaluation of the flux cross-calibration of the XMM-Newton EPIC cameras S.Mateos1,R.D.Saxton2,A.M.Read1,andS.Sembay1 9 1 DepartmentofPhysicsandAstronomy,UniversityofLeicester.UniversityRoad,Leicester,UK 0 2 XMMSOC,ESAC,Apartado78,28691VillanuevadelaCan˜ada,Madrid,Spain 0 2 26January2009 n ABSTRACT a J Context.ThesecondXMM-Newtonserendipitoussourcecatalogue, 2XMM,providestheidealdatabaseforperformingastatistical 6 evaluationofthefluxcross-calibrationoftheXMM-NewtonEuropeanPhotonImagingCameras(EPIC). 2 Aims.We aim to evaluate the status of the relative flux calibration of the EPICcameras on board the XMM-Newton observatory (MOS1,MOS2,andpn)andinvestigatethedependenceofthecalibrationonenergy(from0.2to12keV),positionofthesourcesin ] thefieldofviewoftheX-raydetectors,andlifetimeofthemission. M Methods.Wecompiledthedistributionoffluxpercentagedifferencesforlargesamplesof‘goodquality’objectsdetectedwithatleast I twooftheEPICcameras.ThemeanoffsetofthefluxesanddispersionofthedistributionswasthenfoundbyGaussianfitting.Count h. ratetofluxconversionwasperformedwithafixedspectralmodel.Theimpactontheresultsofvaryingthismodelwasinvestigated. p Results.ExcellentagreementwasfoundbetweenthetwoEPICMOScamerastobetterthan4%overtheentireenergyrangewhere - theEPICcamerasarebestcalibrated(0.2-12.0keV).WefoundthatMOScamerasregister7-9%higherfluxthanEPICpnbelow4.5 o keV anda10-13% fluxexcessatthehighest energies(&4.5keV). Noevolutionof thefluxratiosisseenwithtime,except atthe r lowest energies(.0.5keV), wherewefound astrongdecrease intheMOStopnfluxratiowithtime.Thiseffect isknown tobe t s duetoagraduallydegradingMOSredistributionfunction.Thefluxratiosshowsomedependenceondistancefromtheopticalaxis a inthesensethattheMOStopnfluxexcessincreaseswithoff-axisangle.Furthermore, inthe4.5-12.0 keVband thereisastrong [ dependenceoftheMOStopnexcessfluxontheazimuthal-angle.TheseresultsstronglysuggestthatthecalibrationoftheReflection GratingArray(RGA)blockingfactorsisincorrectathighenergies.Finally,werecommendwaystoimprovethecalculationoffluxes 1 infutureversionsofXMM-Newtonserendipitoussourcecatalogues. v 6 Keywords.Instrumentation:detectors–Methods:statistical 2 0 4 1. Introduction higherthanpnfluxes(seeStuhlingeretal.2008),andhasbeen . 1 showntohavebothtimeandenergydependence.Fordetailson 0 ESA’s XMM-Newton observatory (Jansen et al. 2001) was the calibration of other XMM-Newton science instruments see 9 launched in December 1999. XMM-Newton carries on board Stuhlingeretal.(2008). 0 three identical Wolter type 1 telescopes with 58 nested mirror In this work we use a large sample of serendipitous X-ray : shells. At the focal plane of each mirror there is a European v sourcestostudythefluxcross-calibrationofthe EPICcameras Photon Imaging Camera (EPIC) that recordsimages and spec- i as a function of various parameters. We investigated the per- X tra of celestial X-ray sources (Stru¨der et al. 2001; Turner et formanceoftheEPICinstrumentsbycarryingoutasystematic r al.2001).Twoofthecamerasusefront-illuminatedEPIC-MOS a (Metal-OxideSemi-conductor)CCDs asX-raydetectors(here- analysisofthecamera-to-camerafluxratioforalargenumberof sourceswith‘goodquality’X-raydatainvariousenergybands after,MOS1andMOS2),whilethethirdcamerausesanEPIC- over the XMM-Newton lifetime. We compare the fluxes mea- pn(p-n-junction)CCD(hereafter,pn).EPIChasafield-of-view (FOV) of 30′ diameter,moderate energy resolution and can be sured by the EPIC cameras in different energy bands covering the entire energy range from 0.2 keV to 12.0 keV, for sources operatedinvariousobservationalmodesrelatedtothereadouts detectedatdifferentepochsanddetectedatdifferentpositionsin in each mode (Kendziorra et al. 1997; Kendziorra et al. 1999; thefieldofview.Inthiswaywecaninvestigatehowinstrumen- Kuster et al. 1999; Ehle et al. 2001). The two telescopes with taleffectssuchasthedetectorquantumefficiency,pointspread the MOS cameras at the focal plane have a Reflection Grating function(PSF)andmirrorvignettingfunctionaffecttherelative Spectrometermountedbehindthe mirrors(RGS, denHerderet fluxcalibrationoftheEPICcameras.Thisisanimportantcom- al.2001).Theincidentlightissplitroughly50%:50%between plementtostudiesbaseduponbrighttargets,whicharenecessar- theRGSandMOScameras. ilyrestrictedtothecentralCCDoftheMOScameras.Theouter The absolute and relative calibration of the XMM-Newton MOS CCDs are operatedexclusivelyin FullFramemode(i.e. instrumentshasbeenmonitoredandstudiedsincelaunch.These PrimeFullWindowmode)whichhasapile-upthresholdof0.7 studiesare mostlybasedondetailedspectralanalysesofbright cts/s1. ‘calibration’targetsthathavebeenobservedregularlybyXMM- Newton. The relative flux calibration of the EPIC cameras is known to be better than 7% on-axis, with MOS fluxes being 1 See the on line XMM-Newton User Handbook http://xmm.esac.esa.int/external/xmm user support/ Sendoffprintrequeststo:[email protected] documentation/uhb/ 2 S.Mateosetal.:Statisticalevaluationofthefluxcross-calibrationoftheXMM-NewtonEPICcameras For this analysis we have used the sources in the second 5 2. XMM-Newton serendipitous source catalogue, 2XMM (Watson et al. 2008). 2XMM is the largest catalogue of X-ray sources compiled to date, containing more than 240 000 sources, and 2 therefore provides the ideal data base to conduct this study. Furthermore,we have used the same energyband definition as o in2XMM:0.2-0.5keV,0.5-1.0keV,1.0-2.0keV,2.0-4.5keVand ati 4.5-12.0keV. ux r 1.5 This paper is organised as follows: In §2 we give a short pn fl 1/ description of the source detection procedure used to compile S the 2XMM catalogue (§2.1)and present the criteria for selection MO 1 ofsourcesforthisanalysis(§2.2).In§3weexplaintheapproach used to calculate the fluxes of the objects. The main results of 5 this work are presented in §4 and discussed in §5. Finally, the 0. conclusionsaresummarisedin§6. 10 100 1000 104 pn counts (band 5) 2. TheXMM-Newtondata Fig.1. MOS1 to pn flux ratio as a function of pn number of counts(backgroundsubtracted)inthe4.5-12.0keVenergyband. Inordertocarryoutouranalysisweusedthe3491observations includedinthesecondXMM-Newtonserendipitoussourcecat- alogue,2XMM.ThecataloguecontainsobservationsfromXMM- algorithm.Smoothedbackgroundmapsforeachcameraanden- Newton up to revolution 1338 and includes all the main MOS ergybandareproducedbytheSAStaskesplinemapwhichper- and pn observing modes. Only observations that were pub- formsasplinefitonthesource-freeimages,aftermaskingoutall licly available by 2007 May 01 are included in the catalogue2. sourcesdetectedbyeboxdetect.Eboxdetectisrunforasec- 2XMMcontains246897X-raysourcedetections(sourceswithan ondtimeusingthebackgroundmapsproducedbyesplinemap, EPIC 0.2-12.0 keV detection likelihood ≥6) of which 191870 whichincreasesthesensitivityofthesourcedetection. are unique X-ray sources. Extended sources comprise ∼8% The final source lists and source parameter estimation are of the detections. The data was processed with the XMM- obtained with the SAS task emldetect. Emldetect performs Newton Science Analysis Software (SAS v7.1.03) and a con- a maximum likelihood fitting of the distribution of counts of stantpipelineconfiguration.Thisguaranteesthatwehaveauni- sources detected by eboxdetect with the instrumental point formdataset. spreadfunction(PSF)overacircularareaof60′′radiuscentred atthesourcepositions.Thefittingisperformedusingatabulated energyandpositiondependentPSF.Inaddition,emldetectcar- 2.1.Sourcedetection ries out a fit with the PSF convolvedwith a beta-modelprofile The source detection algorithm used to make 2XMM, in orderto search for sourcesextendedin X-rays. The free pa- eboxdetect-emldetect,isrunonthethreeEPICcamerasand rametersof the fits are the source position, countrates and ex- on five energybandssimultaneously:0.2-0.5keV, 0.5-1.0keV, tent.Positionandextentareconstrainedtothebest-fitvaluefor 1.0-2.0 keV, 2.0-4.5 keV and 4.5-12.0 keV4. Images, cleaned all cameras and energy bands, while count rates are fitted sep- for periods of high background during the observations, are arately for each camera and energy band. Emldetectuses the created for each camera and energy band with the SAS task exposuremapstocorrectthecountratesforinstrumentaleffects evselect. For the MOS cameras events with PATTERN≤12 (mirrorvignetting,detectorquantumefficiencyand filter trans- (single and double events) are used at all energies while for mission).Countratesandthereforefluxesgivenbyemldetect pn, events with PATTERN=0 (single events) below 0.5 keV arebackgroundsubtractedandcorrectedforPSFlosses,i.e.they and with PATTERN≤4 (single and double events) above 0.5 correspondtothefluxintheentirePSF. keV are used instead. Detection masksdefining the area of the detector suitable for source detection are created with the SAS 2.2.Selectionofsources task emaskfor each camera. Energy-dependentexposuremaps are computed with the SAS task eexpmap. The eexpmap task Themeasuredfluxofasourcecanbesignificantlydifferentbe- usesthelatestcalibrationinformationforthemirrorvignetting, tweencamerasforreasonsotherthana cross-calibrationeffect. detector quantum efficiency and filter transmission to compute ForexamplealargediscrepancyintheEPICfluxescanbefound the telescope and instrumental throughput efficiency as a ifthesourcepositionfallsinaCCD gapinoneofthecameras. functionofenergyandpositionintheFOV.Quantumefficiency, Inordertoreducethenumberof‘problematic’casesincludedin filter transmission and vignetting are evaluated at the mean ouranalysis,weperformedthefollowingfilteringtothesource energyofeachenergyband. lists: Initial source lists are obtained using the SAS task eboxdetectby employing a simple sliding box cell detection 1. We used only sources detected as point-like by the source detectionalgorithm. 2 XMM-Newton started taking scientific observations in January 2. Sourceswith<200backgroundsubtractedcountsintheen- 2000. ergy band of interest and on each camera were excluded. 3 http://xmm.esac.esa.int/sas/8.0.0/ This requirementis used to avoid biases introducedby im- 4 In the 4.5-12.0 keV band pn photons with energies between 7.8- posing a minimum value of the detection likelihood and 8.2keV wereexcludedinordertoavoidtheinstrumental background insisting that the source is detected in both cameras (see producedbyCuK-lines(Lumbetal.2002). Fig.1). S.Mateosetal.:Statisticalevaluationofthefluxcross-calibrationoftheXMM-NewtonEPICcameras 3 Table1.Countratetofluxenergyconversionfactors(ecf)a. Energyband Open Thin Medium Thick keV ecf ecf ecf ecf ecf ecf ecf ecf ecf ecf ecf ecf pn m1 m2 pn m1 m2 pn m1 m2 pn m1 m2 0.2-0.5 16.530 3.094 3.142 9.056 1.725 1.738 7.880 1.514 1.521 4.699 0.985 0.983 0.5-1.0 10.256 2.191 2.196 8.253 1.807 1.810 7.995 1.756 1.759 6.138 1.426 1.428 1.0-2.0 6.166 2.125 2.132 5.878 2.028 2.034 5.779 1.993 1.999 4.999 1.775 1.781 2.0-4.5 1.982 0.758 0.762 1.950 0.747 0.751 1.927 0.738 0.742 1.827 0.708 0.712 4.5-12.0 0.556 0.144 0.151 0.555 0.144 0.151 0.554 0.143 0.151 0.548 0.141 0.149 aEnergyconversionfactorshavebeencalculatedforeachcamera,opticalblockingfilteroftheobservationandenergyband.Toobtainthevalues apower-lawspectralmodelofphotonindexΓ=1.7andobservedabsorptionN =3×1020cm−2wasassumed.Theecfaregiveninunitsof H 1011ctscm2erg−1. 3. Sources with off-axis angle5 greater than 12′ are excluded to ensure that no azimuthal biases are introduced; beyond this radius, sources begin to fall outside of the MOS CCD boundaries at various different azimuthal angles. Sources within this radius that fall on CCD gaps are also excluded ifthedetectorcoverage(weightedwiththelocalPSF)isless than15%(thesesourcesareconsiderednon-detectionsinthe 2XMMcatalogue)6. 4. Sources with a 2.0-12.0 keV observed flux ≥6×10−12ergcm−2s−1 have been excluded from the analysis as these objects suffer from pile-up7 and therefore theirmeasuredfluxisunderestimated. 3. Countratetofluxconversion Thefluxesofthesourceshavebeencomputedas RATE Fig.2. Variation of the effective area of the EPIC cameras (for Flux= ecf the medium filter) as a functionof energy.The dot-dashedand solid lines show the effective area for the EPIC pn camera, for where RATE are the source count rates in units of ctss−1 and singlepixelevents(usedbelow0.5keV)andforsingle+double ecfaretheenergyconversionfactorsfromcountratestofluxes, pixelevents(usedabove0.5keV)respectively.Thedashedline inunitsofctscm2erg−1.Countratesarebackgroundsubtracted showstheeffectiveareafortheEPICMOScameras. and are correctedfor PSF losses and variationsof the effective exposureacrosstheEPICFOV. Inordertocalculatetheenergyconversionfactorsitisnec- The energy conversion factors are different for each EPIC essary to assume a spectral model. In the case of 2XMM and camera and depend on the optical blocking filter used for the also for this work we have assumed that the model that best observation and the observing mode8. The dependence of the reproduces the broad band X-ray emission of the sources is a energyconversionfactorsonthe observingmodeis small(1.0- power-lawwith photonindexΓ = 1.7andobservedabsorption 2.0%), hence the ecf values have only been computed for the N =3×1020cm−2. This model has been found to be a good PrimeFullWindow mode, which is the observing mode most H representationofthespectraofthebulkof2XMMsources(Watson frequentlyusedforXMM-Newtonobservations.Theecfvalues etal.2008).Notethatthefluxeshavenotbeencorrectedforthe have been computed for each EPIC camera, energy band and Galacticabsorptionalongthelineofsight,andthereforetheyare opticalblockingfilter. absorbedfluxes. Sincethereleaseof2XMMtherehavebeenimportantupdates 5 The off-axis angle is the separation of the source position in the onthe calibrationinformationof theEPIC cameras.Forexam- FOVfromtheopticalaxis. ple,forthepn,newversionsofthepublicredistributionmatrix 6 Wehavecheckedthattheuseofsourceswithsmalldetectorcover- files(rmf)areavailable.Themostrecentpubliccalibrationfiles9 age(.50%)hasnoimpactontheresultsofouranalysis. availableatthetimeofwriting,wereusedtocreatematricesused 7 Ifasourceisbrightenough,twoormoreX-rayphotonsmightde- inthe computationoftheenergyconversionfactors.These dif- posittheirchargeinasinglepixelorinneighbouringpixelsduringone ferfromtheEPICcalibrationfilesusedinthepipelineprocess- read-out cycle. This is known as pile-up. In such a case these events arerecognisedasonesingleeventwithanenergyequivalenttothesum ingofthe2XMMcatalogue.Notethatcorrectionfactorstoapply of the contributing photon energies. Pile-upreduces thecounts inthe to the 2XMM fluxes are provided in the on-line documentation centralpartofthesource,resultinginfluxloss. ofthe catalogue10. As indicatedin Sec. 2.1, the eventselection 8 Each EPIC camera is equipped with a set of three usedinthe2XMMpipelineisforthepndetector:PATTERN≤4at separate filters, named thick, medium and thin. For a detailed description of the science modes of the EPIC 9 http://xmm2.esac.esa.int/external/xmm sw cal/calib/ cameras see the on line XMM-Newton User Handbook epic files.shtml http://xmm.esac.esa.int/external/xmm user support/ 10 http://xmmssc-www.star.le.ac.uk/Catalogue/ documentation/uhb/ xcat public 2XMM.html 4 S.Mateosetal.:Statisticalevaluationofthefluxcross-calibrationoftheXMM-NewtonEPICcameras Fig.3.Distributionsofthepercentagefluxdifferencebetweenthe EPICpnandMOS1 camerasasa functionofthe energyband. The best-fit of the experimentaldistributions with a Gaussian function is shown with a smooth solid line and the corresponding best-fitparameters(meananddispersion)andnumberofsourcesinvolvedintheanalysisarelistedin theupper-leftcornerofthe plots(alsogiveninTable2).Errorsare90%confidence. energies above 0.5 keV and PATTERN=0 only at energies be- lowerthan2XMMfluxesatenergiesbelow0.5keVwhileathigher low 0.5 keV. For the MOS camerasPATTERN≤12 selection is energiestheEPICpnfluxchangesare<1%(seecalibrationnotes madeatallenergies.Therefore,fortheEPICpndetectorweused XMM-CCF-REL-189,XMM-CCF-REL-205). thePrimeFullWindowmodeon-axisredistributionmatricesfor For the MOS cameras new quantum efficiency files (see singlesonly(fortheenergyband0.2-0.5keV)andsinglesplus XMM-CCF-REL-235)have become available since the release doubles(fortheenergybandsabove0.5keV).Thefluxesgiven of 2XMM. In addition, a significant change in the MOS low en- bytheEPICpncamerafromthenewcalibrationareoverall∼2% ergyredistributioncharacteristicswithtimehasbeenconfirmed. S.Mateosetal.:Statisticalevaluationofthefluxcross-calibrationoftheXMM-NewtonEPICcameras 5 Fig.4.DistributionsofthepercentagefluxdifferencebetweentheEPICMOS1andMOS2camerasasafunctionoftheenergyband. Thebest-fitoftheexperimentaldistributionswithaGaussianfunctionisshownwithasmoothsolidlineandthecorrespondingbest- fitparameters(meananddispersion)andnumberofsourcesinvolvedintheanalysisarelistedintheupper-leftcorneroftheplots (alsogiveninTable2).Errorsare90%confidence. Thiseffectisimportantonlyforsourceswithaseparationfrom toinvestigatetheEPICfluxcross-calibrationusingthelatestcal- theopticalaxis.2′,whichinmostcasesisthetargetoftheob- ibrationavailable we computednew MOS redistributionmatri- servation (Read et al. 2006). To account for this effect, epoch- cesmorerepresentativeofthe currentcalibrationthan theones dependentMOSredistributionmatriceshavebeengeneratedfor used in 2XMM. The MOS1 and MOS2 response matrices were usebyobservers(XMM-CCF-REL-202).Howeverforthiswork computedwiththeSAStaskrmfgenforrevolution375,on-axis, wehavefollowedtheapproachof2XMMandusedanaveragere- andforPATTERNsfrom0-12.ThesechangesintheMOScali- sponsetocomputetheMOSenergyconversionfactors.Inorder brationhaveresultedinanincreaseofMOSfluxescomparedto 6 S.Mateosetal.:Statisticalevaluationofthefluxcross-calibrationoftheXMM-NewtonEPICcameras Table2.SummaryofthestatisticalcomparisonofEPICfluxesindifferentenergybands. Energyband pnvs.MOS1 pnvs.MOS2 MOS2vs.MOS1 (keV) µ(%) σ N µ(%) σ N µ(%) σ N srcs srcs srcs 0.2-0.5 −2.0±0.5 16.0±0.5 909 1.2±0.4 13.2±0.4 885 −0.9±0.3 9.0±0.4 1092 0.5-1.0 −7.9±0.1 8.2±0.2 2132 −8.2±0.1 7.9±0.2 2197 1.0±0.2 7.8±0.3 2626 1.0-2.0 −8.5±0.2 7.5±0.2 2721 −9.1±0.2 7.3±0.2 2781 0.3±0.2 7.2±0.2 3282 2.0-4.5 −7.1±0.2 7.1±0.2 1527 −6.5±0.2 7.4±0.2 1546 −0.7±0.2 7.1±0.2 1769 4.5-12.0 −12.5±0.5 9.8±0.5 484 −9.0±0.5 9.5±0.5 502 −3.8±0.2 8.0±0.2 549 µandσaretheχ2best-fitmeananddispersionoftheGaussiandistributionusedtofitthedata.N isthetotalnumberofsourcesinvolvedinthe srcs analysis.Errorsare90%confidence. the quoted values in 2XMM by ∼5-8% in the 0.2-0.5 keV band, Table3.Groupingdefinitionusedtostudythetimedependence ∼4% in the 0.5-1.0 keV energy band and ∼1% from 1.0-2.0 oftheEPICfluxcross-calibration. keV.AthigherenergiesthechangesinMOSfluxarenegligible. An investigationofthe EPICflux cross-calibrationusingMOS Revolutiona Nb obs epochandpositiondependentresponsesisbeyondthescopeof 28-290 730 this paper. Howeveras we will see in Sec. 5 the use of an ’av- 291-552 919 erage’ MOS response for all sources has a small effect on the 553-814 901 815-1076 739 mainconclusionsofthisworkasthetimedependenteffectonly 1077-1338 202 affects a small fraction of the objects involved in our analysis aRangeofXMM-Newtonrevolutionsingroup.bTotalnumberof andatlowenergiesonly(below∼0.5keV). observationswithrevolutioningroup. On-axis MOS and pn effective area files were producedby theSAStaskarfgen.Thecountratesfromemldetectarecor- rectedfortheeffectiveexposurealongtheFOV(whichincludes vignettingand badpixelcorrections)andthe PSF encloseden- ergy fraction. Hence the effective areas were generated by dis- abling these corrections, as indicated in the documentation of relativefluxcalibrationbetweenthetwoMOScamerasisbetter theSAStaskarfgen.MOSandpneffectiveareacurvesforthe than4%atallenergiessampledbyouranalysis. mediumfilterareshowninFig.2.Forpnweshowtheeffective In order to obtain the conversion factors from count rate area curvesused to computeecf values bothaboveand below to flux we assumed the same spectral model for all sources. 0.5keV.TheenergyconversionfactorsarelistedinTable1. Howeverwe knowthatthesourcesthatpopulatethe X-raysky have a broad range of spectral shapes. For example, the X-ray 4. Results emissionofAGN oftenshowsmorespectralcomplexitythana simplepowerlaw(excessX-rayabsorption,softexcess).Indeed Inordertoquantifythesystematicdifferenceinfluxbetweenthe eventhedistributionofbroadbandcontinuumshapesisknown EPIC cameras we have performed a statistical analysis, com- to have an intrinsic dispersion ∆Γ∼0.2-0.3 (see e.g. Mateos et paring the flux ratio for large samples of sources selected as al. 2005).Furthermore,atsoftX-rayenergiesandbrightfluxes specified in Sec. 2. We computed for each source the value the contribution from non-AGN populations to the X-ray sky, (Si−Sj)/Sj whereSi andSj arethefluxesofthesourcemea- mainlystarsandclustersofgalaxieswiththermalspectra,isnot suredbycameras(i,j)respectively. negligible(Mateosetal.2008).Wehaveinvestigatedtheimpact The obtaineddistributionswere fitted with a Gaussian pro- ofthevarietyofspectralshapesonthefluxcross-calibrationof file,which,thankstothelargenumberofobjectsinvolvedinthe theEPICcameras.Inordertoquantifytheimpactofthechosen analysis, providedin all cases a goodenoughrepresentationof spectralmodelonthemeasuredEPICfluxcross-calibrationwe thedistributionofvalues. havecomputedthechangeinthefluxratiobetweencamerasfor avaryingpower-lawspectralmodel.Weperformedthecalcula- tion by varying the continuumshape up to ∆Γ=0.6. Our simu- 4.1.Energydependence lations have shown that the chosen spectral model has a small Fig. 3 and Fig. 4 show the distributions of difference in flux effect on the measured flux from 0.5 keV to 4.5 keV where a (inpercentageunits)whencomparingpnandMOScamerasfor ∆Γ=0.6 variation changes the measured flux by less than 4%. sources detected in different energy bands. The results of the TheEPICMOSandpnfluxeshaveamuchstrongerdependence comparisonbetweenpnandMOS2areverysimilartothoseob- on the spectral model used to compute the ecf in the 0.2-0.5 tained for the pn and MOS1 cameras therefore we only show keV and 4.5-12.0keV energy bands where a ∆Γ=0.6 can vary the latter. The smoothsolidlines showthe χ2 best-fitGaussian themeasuredfluxesby∼15%.Whilethespectralmodelhasan distributionsofthedata.Thebest-fitparametersandnumberof importanteffectonthemeasuredflux,theimpactonthefluxra- sourcesinvolvedintheanalysisareshownintheupper-leftcor- tiobetweencamerasissmall.Inordertoconfirmthisresultwe ner of the plotsand are listed in Table 2. Fig. 5 showsthe sys- havealsocomputedthefluxratiodistributionsfromthesub-set tematic difference in the measured flux between cameras as a ofsourceswhosehardnessratiosareconsistentwiththespectral functionofenergy. model assumed to calculate the ecf. We found that the results ThemeanfluxdifferencebetweentheMOSandpncameras werelargelyindistinguishablefromthe‘fullset’ofsources,thus is less than10%at energies≤4.5keV and∼10-13%above4.5 confirmingthatourapproachofusingafixedspectralmodelto keV. In all but the very lowest energy cases MOS fluxes are computesourcefluxeshasasmallimpactonthemainresultsof found to be higher than those reported for the pn camera. The ouranalysis. S.Mateosetal.:Statisticalevaluationofthefluxcross-calibrationoftheXMM-NewtonEPICcameras 7 Fig.5.MeanpercentagefluxdifferencebetweentheEPICcam- Fig.6.PercentagefluxdifferencebetweentheEPICcamerasat erasasa functionofenergy.Thex-axisshowsthe energyband different energies as a function of time. Top: pn-MOS1 com- identificationnumberused in this work:1:0.2-0.5keV, 2: 0.5- parison.Middle:pn-MOS2comparison.Bottom:MOS2-MOS1 1.0keV,3:1.0-2.0keV,4:2.0-4.5keVand5:4.5-12.0keV.Top: comparison.Errorsare90%confidence. pn-MOS1comparison.Middle:pn-MOS2comparison.Bottom: MOS2-MOS1comparison.Errorsare90%confidence. 4.2.Timedependence Herewepresentthedependenceofthefluxcross-calibrationof theEPICcamerasonthelifetimeofthemission.Todothatwe havecomputedthedistributionsofEPICfluxratiosforsources 8 S.Mateosetal.:Statisticalevaluationofthefluxcross-calibrationoftheXMM-NewtonEPICcameras Fig.8. Variation of the percentage flux difference between the EPIC cameras as a function of the azimuthal position of the sources in the FOV of the MOS cameras (see Sec. 4.3 and Fig. 9). Only sourceswith MOS off-axis values >2′ have been includedintheanalysis.Thex-axisshowstheenergybandiden- tification number used in this work: 1: 0.2-0.5 keV, 2: 0.5-1.0 keV, 3: 1.0-2.0 keV, 4: 2.0-4.5 keV and 5: 4.5-12.0 keV. Data pointsateachenergybandhavebeenshiftedslightlyalongthe x-axisforclarity.Errorsare90%confidence. detected at different epochs. We have grouped our sources in fiveXMM-Newtonrevolutionintervalsofthesamesizetohave a uniform sampling of the lifetime of the mission. The group- ing definition is shown in Table 3 while the observed time de- pendence of the flux cross-calibration of the EPIC cameras at differentenergiesisshowninFig.6. Fig.7. Variation of the percentage flux difference between the The flux cross-calibration between the MOS cameras does EPIC cameras as a function of the energy band for sources at notdependsignificantlyontimeandtheresultseemstoholdat differentMOSoff-axisangles.Thex-axisshowstheenergyband allenergies.WhencomparingpnandMOSfluxes,nosignificant identificationnumberused in this work:1:0.2-0.5keV, 2: 0.5- changeof the fluxratio withtime is seen atenergiesabove0.5 1.0keV,3:1.0-2.0keV,4:2.0-4.5keVand5:4.5-12.0keV.Data keV.However,astrongtemporaldependenceofthefluxratiois pointsateachenergybandhavebeenshiftedslightlyalongthex- foundinthe0.2-0.5keVband,inthesensethatpnfluxesseemto axisfor clarity.Top:pn-MOS1comparison.Middle:pn-MOS2 increase with respectto MOS fluxesat higher revolutions.The comparison.Bottom:MOS2-MOS1comparison.Errorsare90% effectismoreimportantwhencomparingpnandMOS2fluxes. confidence. We note that there is some scatter in the pn vs. MOS1 values obtained at different epochs at energies above 4.5 keV due to lowstatistics,althoughthepointsareconsistentat2-3σ. S.Mateosetal.:Statisticalevaluationofthefluxcross-calibrationoftheXMM-NewtonEPICcameras 9 Fig.9.MOS1andMOS2CCDlayoutsandCCDnumbering(smallnumbersonthetoprightcorneroftheCCDs).Thepositionof theRGSsisindicatedwithashadedrectangle.Thediagonalcrossandlarge’FLAGn’textindicatethepositionalflagsettings.The MOSdiagramsareco-alignedsuchthattheindividualsourcesoccupythesamepositionineachdiagram-e.g.asourceinthemiddle ofMOS1CCD6,liesinthemiddleoftheCCD2/CCD7boundaryinMOS2. 4.3.DependenceonpositionofsourcesintheFOV cameras, sources lying along the RGA dispersion axis show a largegradientinMOSvs.pnrelativeflux. ItiswellknownthattheresponseoftheXMM-Newtonmirrors andtheEPICinstrumentsvarieswithpositionintheFOV.Here we investigate the relative flux cross-calibration of the EPIC 5. Discussion cameras,bycomparingthe EPICfluxesforsourcesatdifferent off-axisandazimuthalangles. The resultsforthe fullsourcesample showan excellentagree- The variationof the percentageflux differencebetween the ment between the two MOS cameras; better than 4% over the EPIC pn and MOS cameras as a function of energy band for entireenergyrangeofthecameras.TheMOScameraspresenta sourcesatdifferentMOSoff-axisanglesisshowninFig.7.Here consistentexcessin flux comparedwith the pn of ∼7-9%from sourceshavebeendividedintogroupswithMOSoff-axisangles 0.5keVto4.5keVand∼10-13%athigherenergies(&4.5keV). of0′-2′,2′-5′,5′-8′and8′-12′. TheseresultsareinagreementwiththefindingsofStuhlingeret There is a clear trend for sources further from the optical al. (2008), who performeda carefulanalysis of 168 bright on- axis to show an increased flux in the MOS cameras relative to axissources. pn.ThisisparticularlyapparentforMOS1.Inthelowestenergy At low energies (0.2-0.5 keV) the agreement between the bandtheon-axissourcesshowasignificantexcessofpnfluxrel- EPIC cameras is seemingly better (<3%). However, a strong ativetotheMOS.Thisisaverydifferentresultthanobtainedfor trend in the flux ratios with observation epoch, in this band, is sources at larger off-axis angles. In both MOS cameras, in the evidentasshowninFig.6.Thiscanbeexplainedbytheevolu- highestenergybandthe MOSfluxexcessincreasesby10-15% tionoftheMOSredistributioncharacteristicswithtime.Inthis as the off-axis angle increases. This highly significant result is analysis we have used a single response matrix for each of the likely to be due to inaccuracies in the calibration of either the MOS cameras, relevant for an on-axis source observed in rev- vignetting,thePSFortheRGA obscuration.Asafurtherdiag- olution 375, which will necessarily be inaccurate for observa- nostic we have produced samples of sources with a MOS off- tions made at earlier and later epochs. The redistributionfunc- axisangle>2′ (toreducetheeffectduetothechangeinthelow tionevolvessuchthatanincreasingfractionofX-rayssufferin- energy redistribution characteristics of the MOS cameras with complete charge collection. The effect is increasingly stronger time, see Sec. 3) andthendividedintofourdifferentazimuthal towards lower energies. The evolution of the MOS rmf seems anglebins.TheresultsareshowninFig.8.ForbothMOScam- to be related to the total X-ray radiation dose received by a eras, the positionalflags indicate the quadrantsdelineatedby a pixel which will clearly be higher at the centre of the detector diagonalcross centred on CCD=1, RAWX=300, RAWY=300, wherebrightsourcesarepreferentiallyplaced(Readetal.2006). suchthatflag=1extendstowardsthelowRGAobscuration(i.e. SourcesatMOSoff-axisanglesgreaterthan∼2′ areessentially highMOSthroughput)direction,andflag=3extendstowardsthe immunetothiseffect. highRGA obscuration(i.e. low MOSthroughput)direction,as For MOS on-axis sources, photons from the energy band showninFig.9. 0.2-0.5keV can be redistributed in energy below the detection Inthe4.5-12.0keVbandthereisaverystrongdependenceof thresholdandlostwhilephotonsfromenergyband0.5-1.0keV theMOStopnfluxratioontheazimuthalangle.ForbothMOS canberedistributedintothe0.2-0.5keVenergyband.Theeffect 10 S.Mateosetal.:Statisticalevaluationofthefluxcross-calibrationoftheXMM-NewtonEPICcameras the pn/MOS1, pn/MOS2 and MOS2/MOS1 ratios respectively bringingthemintobetteragreementwiththevaluesatenergies from 0.5 keV to 4.5 keV. It is clear from this that the use of a singleMOSrmftocalculatetheglobalfluxratiosatthelowest energiesisnotcorrect. Atthehighestenergies,4.5-12.0keV,theMOS1/pnfluxex- cessincreasesto10-13%.FromFig.6thishasnoobvioustem- poralvariationbutfromFig.7andFig.8itisdependentonboth theoff-axisangleandtheazimuthalangle.TheMOSexcessin- creasesby∼10%fromon-axistooff-axisandthereisa10-15% variationwithazimuthalangle.Attheseenergiesthevignetting functionandpoint-spreadfunctionevolvequicklywithoff-axis angle, suggesting that inaccuracies in one or both of these cal- ibration quantities may be responsible. At medium to high en- ergiesthegroundcalibrationdataavailableonindividualCCDs suggests that CCD to CCD variations in detector response are not responsible for the apparent azimuthal dependence seen in the4.5-12.0keVbandinFigure8.Forexample,thespreadinthe measuredquantumefficiencyoftheMOSCCDsislessthan5% from4.5to6.5keVandistoosmalltoaccountforthe15%vari- ationseeninthepntoMOS2fluxratiointhe4.5-12.0keVband. Inprinciplethepncamerahasnoazimuthaldependenceforany ofthecalibrationquantities,whereasthevignettingoftheMOS camerasisstronglyaffectedbythetransmissionoftheRGSgrat- ings(Turneret al. 2001). Furthermore,becausethe outerMOS chips lie on two distinct planes, it is believed that small < 5% Fig.10.MOSvignettingfactorasafunctionofazimuthalangle variationsduetothePSFmayexist(Saxtonetal.2003). atenergiesof1keV(solidlines)and10keV(dottedlines),and In Fig. 10 we show the current calibration of the MOS vi- foroff-axisanglesof(toptobottom)3′,9′and15′. gnettingfunctionforoff-axisanglesof3′,9′ and15′ asafunc- tion of the azimuthal angle. The azimuthal dependency, due to obscuration by the RGA structure, is both energy and off- is negligible at energiesabove∼1 keV. For a given source, the axis angle dependent. At 10 keV and 9′ off-axis it drops by strongest evolution in observed flux occurs in the 0.2-0.5 keV 25%betweenthehighMOSthroughputdirection(azimuth=0◦; band and is dependentupon the intrinsic spectrum. Highly ab- MOS flag 1 in Fig. 8 and Fig. 9) and the opposite direction sorbed sources which have a very low 0.2-0.5 keV to 0.5-1.0 (azimuth=180◦;MOSflag3inFig.8andFig.9).Thereforethe keVratiowillshowanincreasein0.2-0.5keVfluxasmorepho- resultspresentedinFig.8arehighlysuggestivethatacalibration tonsaregainedfromthe0.5-1.0keVbandthanarelost. change is required: increasing the magnitude of the azimuthal The majorityofsourcesin thissample,however,haverela- vignetting variation at high energies would bring the points in tively soft spectra, for example AGN with low absorption,and Fig. 8 closer together. Furthermore, a change in the radial vi- theevolutionofthermfcausesalossof0.2-0.5keVfluxasmore gnetting calibration to increase the overall MOS throughputat photons are lost below threshold than gained from the 0.5-1.0 the highest energies might also be required. This is especially keVenergyband.ThisisconfirmedbyFig.7wherethe0.2-0.5 thecaseforMOS1wherealargeoveralloffsetathighenergies keVratioatsmalloff-axisanglesissignificantlydifferentfrom isseeninFig.5. theotherpoints.Wehavecheckedthatthedistributionofoff-axis ThoughtheeffectintroducedbytheouterMOSchipslying anglesof the sourcesare very similar at all epochsused in our on two distinct planes is thought to be small, it can be exam- analysis, therefore the time dependence observed in the MOS inedinthepresentanalysis.TheouterMOSchipsrunup-down, vs.pn0.2-0.5keVfluxratios(seeFig.6)cannotbeexplainedas up-down around the central chip, such that the positional flag anartificialeffectduetotheincreasingfractionofnearon-axis settingsusedinFig.8andFig.9divideMOS1intotwoflags(2 sourceswithtime. and4)thataredominatedbyan‘up’chipandbya‘down’chip, InFig.8weseethat,oncethesourcesfromtheinnermost2′ and are free from the gross effects of the azimuthal vignetting areexcludedfromtheanalysis,the0.2-0.5keVfluxratiosshow (atazimuth=0◦andazimuth=180◦).Thesituationisnotasgood aspreadofupto∼8%withthedetectorazimuthalangle.Asthis forMOS2as,althoughCCDs6and3canbecomparedbycom- fluxratioismostlystronglyinfluencedbythecalibrationofthe paringflags1and3,thesepositionssufferthelargestdeviations detectorrmfswesuspectthatthisspreadisduetointrinsicCCD inazimuthalvignettingduetotheRGAobscuration.ForMOS1 to CCD variations in the low energy response of the 14 MOS atleastthoughwecanexaminetheMOSchipplanePSFeffect and12pnCCDs.Thequalityofthegroundcalibrationdatabe- ontheobtainedsourcefluxes:thefluxratiovaluesinthesetwo low500eVisnotsufficienttodiscriminatebetweendifferentde- areas (MOS1, flags 2 and 4) in Fig. 8 are seen to agree with vices(XMM-EPICinstrumentteam,privatecommunication)so each other very well (within 2%), indicating that the effect on we cannotcompareourresultsdirectlywith a predictionbased theouterMOSchipslyingontwodistinctplanesisverysmall. on the available calibration data. Further progress on this will requiretheaccumulationofsufficientnumbersofsourcestoen- 6. Conclusions ablecomparisonstobemadeonspecificcombinationsofCCDs. Excluding sources from the innermost 2′, the 0.2-0.5 keV We have used the second XMM-Newton serendipitous source flux ratios are -11.4±0.3%, -4.6±0.6% and -4.8±0.7% for catalogue, 2XMM to compile large samples of ‘good quality’