ebook img

Statistical downscaling for hydrological and environmental applications PDF

179 Pages·2019·9.484 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Statistical downscaling for hydrological and environmental applications

Statistical Downscaling for Hydrological and Environmental Applications Statistical Downscaling for Hydrological and Environmental Applications Taesam Lee and Vijay P. Singh CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2019 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business No claim to original U.S. Government works Printed on acid-free paper International Standard Book Number-13: 978-1-138-62596-9 (Hardback) This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged, please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers. For permission to photocopy or use material electronically from this work, please access www. copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged. Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe. Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com and the CRC Press Web site at http://www.crcpress.com TL: Wife Misun and children Sooin and Yeojun VPS: Wife Anita, son Vinay, daughter Arti, daughter-in-law Sonali, son-in-law Vamsi, and grandsons Ronin, Kayden, and Davin Contents Preface.......................................................................................................................xi List of Abbreviations..............................................................................................xiii Authors .....................................................................................................................xv Chapter 1 Introduction ..........................................................................................1 1.1 Why Statistical Downscaling? ...................................................1 1.2 Climate Models .........................................................................1 1.3 Statistical Downscaling .............................................................2 1.4 Selection of Model Scheme .......................................................3 1.5 Structure of Chapters .................................................................6 1.6 Summary and Conclusion .........................................................7 Chapter 2 Statistical Background .........................................................................9 2.1 Probability and Statistics ...........................................................9 2.1.1 Probabilistic Theory .....................................................9 2.1.1.1 Probability Density Function and Cumulative Distribution Function ................9 2.1.1.2 Descriptors of Random Variables .................9 2.1.2 Discrete Probability Distributions ..............................10 2.1.2.1 Bernoulli Distribution .................................11 2.1.2.2 Binomial Distribution .................................11 2.1.3 Continuous Probability Distributions .........................12 2.1.3.1 Normal Distribution and Lognormal Distributions ...............................................12 2.1.3.2 Exponential and Gamma Distributions ......13 2.1.3.3 Generalized Extreme Value and Gumbel Distribution ...................................15 2.1.4 Parameter Estimation for Probability Distributions ...16 2.1.4.1 Method of Moments ....................................16 2.1.4.2 Maximum Likelihood Estimation ..............16 2.1.5 Histogram and Empirical Distribution .......................19 2.2 Multivariate Random Variables ...............................................22 2.2.1 Multivariate Normal Distribution and Its Conditional Distribution .............................................22 2.2.2 Covariance and Correlation........................................24 2.3 Random Simulation .................................................................24 2.3.1 Monte Carlo Simulation and Uniform Random Number .......................................................................24 2.3.2 Simulation of Probability Distributions .....................26 2.4 Metaheuristic Algorithm .........................................................27 vii viii Contents 2.4.1 Harmony Search ........................................................27 2.5 Summary and Conclusion .......................................................31 Chapter 3 Data and Format Description .............................................................33 3.1 GCM Data ...............................................................................33 3.2 Reanalysis Data .......................................................................34 3.3 RCM Data ................................................................................34 3.4 Summary and Conclusion .......................................................38 Chapter 4 Bias Correction ...................................................................................39 4.1 Why Bias Correction?..............................................................39 4.2 Occurrence Adjustment for Precipitation Data .......................39 4.3 Empirical Adjustment (Delta Method) ....................................41 4.4 Quantile Mapping ....................................................................43 4.4.1 General Quantile Mapping .........................................43 4.4.2 Nonparametric Quantile Mapping .............................46 4.4.3 Quantile Delta Mapping .............................................47 4.5 Summary and Comparison ......................................................50 Chapter 5 Regression Downscalings...................................................................53 5.1 Linear Regression Based Downscaling ...................................53 5.1.1 Simple Linear Regression ..........................................53 5.1.1.1 Significance Test .........................................55 5.1.2 Multiple Linear Regression ........................................58 5.2 Predictor Selection...................................................................70 5.2.1 Stepwise Regression ...................................................70 5.2.2 Least Absolute Shrinkage and Selection Operator ........74 5.3 Nonlinear Regression Modeling ..............................................87 5.3.1 Artificial Neural Network ..........................................87 5.4 Summary and Conclusion .......................................................92 Chapter 6 Weather Generator Downscaling .......................................................95 6.1 Mathematical Background ......................................................95 6.1.1 Autoregressive Models ...............................................95 6.1.2 Multivariate Autoregressive Model ............................95 6.1.3 Markov Chain .............................................................98 6.2 Weather Generator .................................................................100 6.2.1 Model Fitting ............................................................101 6.2.1.1 Precipitation ..............................................101 6.2.1.2 Weather Variables (T , T , SR) .............101 max min 6.2.2 Simulation of Weather Variables ..............................107 6.2.2.1 Precipitation ..............................................107 Contents ix 6.2.2.2 Weather Variables (T , T , SR) .............107 max min 6.2.3 Implementation of Downscaling ..............................109 6.3 Nonparametric Weather Generator .......................................111 6.3.1 Simulation under Current Climate ...........................112 6.3.2 Simulation under Future Climate Scenarios ............115 6.4 Summary and Conclusion .....................................................115 Chapter 7 Weather-Type Downscaling .............................................................117 7.1 Classification of Weather Types ............................................117 7.1.1 Empirical Weather Type ...........................................117 7.1.2 Objective Weather Type ...........................................117 7.2 Generation of Daily Rainfall Sequences ...............................121 7.3 Future Climate with Weather-Type Downscaling .................123 7.4 Summary and Conclusion .....................................................123 Chapter 8 Temporal Downscaling ....................................................................125 8.1 Background ............................................................................125 8.1.1 K-Nearest Neighbor Resampling ..............................125 8.2 Daily to Hourly Downscaling ................................................127 8.3 Summary and Conclusion .....................................................135 Chapter 9 Spatial Downscaling.........................................................................137 9.1 Mathematical Background ....................................................137 9.1.1 Bilinear Interpolation ...............................................137 9.1.2 Nearest Neighbor Interpolation ................................137 9.2 Bias Correction and Spatial Downscaling ............................138 9.3 Bias Correction and Constructed Analogues .......................143 9.4 Bias Correction and Stochastic Analogue .............................146 9.5 Summary and Comparison ....................................................152 References .............................................................................................................155 Index ......................................................................................................................159

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.