ebook img

Statistical Consequences of Fat Tails Real World Preasymptotics, Epistemology, and Applications PDF

445 Pages·2020·27.277 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Statistical Consequences of Fat Tails Real World Preasymptotics, Epistemology, and Applications

THE TECHNICAL INCERTO COLLECTION STATISTICAL CONSEQUENCES OF FAT TAILS Real World Preasymptotics, Epistemology, and Applications Nassim Nicholas Taleb ThisformatisbasedonAndréMiede’sClassicThesis,withadaptationfromArs Classica. StatisticalConsequencesofFatTails(TechnicalIncertoCollection) ⃝c NassimNicholasTaleb,2020Allrightsreserved iii 1 COAUTHORS PasqualeCirillo(Chapters13,15,and16) RaphaelDouady(Chapter14) AndreaFontanari(Chapter13) HélyetteGeman(Chapter25) DonaldGeman(Chapter25) EspenHaug(Chapter22) TheUniversaInvestmentsteam(Chapter23) 1 Papersrelieduponhereare[45,46,47,94,104,123,161,218,221,222,223,225,226,227,228,236,237,238] iv GenealogyoftheIncertoprojectwithlinkstothevariousresearchtraditions. v (contfromleftpage). CONTENTS Nontechnicalchaptersareindicatedwithastar*; Discussionchaptersareindicatedwithay; adaptationfrom published("peer-reviewed")paperswithaz. WhilechaptersareindexedbyArabicnumerals,expositoryandverybriefmini-chapters(halfwaybetweenappendices andfullchapters)useletterssuchasA,B,etc. 1 prologue(cid:3),† 1 2 glossary, definitions, and notations 5 2.1 GeneralNotationsandFrequentlyUsedSymbols 5 2.2 CatalogueRaisonnéofGeneral&Idiosyncraticconcepts 7 2.2.1 PowerLawClassP 7 2.2.2 LawofLargeNumbers(Weak) 8 2.2.3 TheCentralLimitTheorem(CLT) 8 2.2.4 LawofMediumNumbersorPreasymptotics 8 2.2.5 KappaMetric 8 2.2.6 Ellipticaldistribution 9 2.2.7 Statisticalindependence 9 2.2.8 Stable(Lévystable)Distribution 9 2.2.9 MultivariateStableDistribution 10 2.2.10 Karamatapoint 10 2.2.11 Subexponentiality 10 2.2.12 StudentTasproxy 11 2.2.13 Citationring 11 2.2.14 Rentseekinginacademia 12 2.2.15 Pseudo-empiricismorPinkerProblem 12 2.2.16 Preasymptotics 12 2.2.17 Stochasticizing 12 2.2.18 ValueatRisk,ConditionalVaR 13 2.2.19 Skininthegame 13 2.2.20 MSPlot 13 2.2.21 Maximumdomainofattraction,MDA 14 2.2.22 SubstitutionofIntegralinthepsychologyliterature 14 2.2.23 Inseparabilityofprobability(anothercommonerror) 14 2.2.24 Wittgenstein’sRuler 15 2.2.25 Blackswan 15 2.2.26 Theempiricaldistributionisnotempirical 15 2.2.27 Thehiddentail 16 vii viii Contents 2.2.28 Shadowmoment 16 2.2.29 Taildependence 17 2.2.30 Metaprobability 17 2.2.31 Dynamichedging 17 i fat tails and their effects, an introduction 19 3 a non-technical overview - the darwin college lecture (cid:3),‡ 21 3.1 OntheDifferenceBetweenThinandThickTails 21 3.2 A(MoreAdvanced)CategorizationandItsConsequences 23 3.3 TheMainConsequencesandHowTheyLinktotheBook 28 3.3.1 Forecasting 38 3.3.2 TheLawofLargeNumbers 39 3.4 EpistemologyandInferentialAsymmetry 41 3.5 Naive Empiricism: Ebola Should Not Be Compared to Falls from Ladders 46 3.6 PrimeronPowerLaws(almostwithoutmathematics) 48 3.7 WhereAretheHiddenProperties? 50 3.8 BayesianSchmayesian 54 3.9 XvsF(X),exposurestoXconfusedwithknowledgeaboutX 55 3.10 RuinandPathDependence 58 3.11 WhatToDo? 61 4 univariate fat tails, level 1, finite moments† 63 4.1 ASimpleHeuristictoCreateMildlyFatTails 63 4.1.1 AVariance-preservingheuristic 65 4.1.2 FatteningofTailsWithSkewedVariance 66 4.2 DoesStochasticVolatilityGeneratePowerLaws? 68 4.3 TheBody,TheShoulders,andTheTails 69 4.3.1 TheCrossoversandTunnelEffect. 70 4.4 FatTails,MeanDeviationandtheRisingNorms 73 4.4.1 TheCommonErrors 73 4.4.2 SomeAnalytics 74 4.4.3 EffectofFatterTailsonthe"efficiency"ofSTDvsMD 76 4.4.4 MomentsandThePowerMeanInequality 77 4.4.5 Comment:Whyweshouldretirestandarddeviation,now! 80 4.5 Visualizingtheeffectofrising poniso-norms 84 5 level 2: subexponentials and power laws 87 5.0.1 RevisitingtheRankings 87 5.0.2 Whatisaborderlineprobabilitydistribution? 89 5.0.3 LetUsInventaDistribution 90 5.1 Level3: ScalabilityandPowerLaws 91 5.1.1 ScalableandNonscalable,ADeeperViewofFatTails 91 5.1.2 GreySwans 93 5.2 SomePropertiesofPowerLaws 94 5.2.1 Sumsofvariables 94 5.2.2 Transformations 95 5.3 BellShapedvsNonBellShapedPowerLaws 96 5.4 Super-FatTails: TheLog-ParetoDistribution 97 Contents ix 5.5 Pseudo-StochasticVolatility: Aninvestigation 98 6 thick tails in higher dimensions† 101 6.1 ThickTailsinHigherDimension,FiniteMoments 102 6.2 JointFat-TailednessandEllipticalityofDistributions 104 6.3 MultivariateStudentT 106 6.3.1 EllipticalityandIndependenceunderThickTails 106 6.4 FatTailsandMutualInformation 108 6.5 FatTailsandRandomMatrices,aRapidInterlude 108 6.6 CorrelationandUndefinedVariance 109 6.7 FatTailedResidualsinLinearRegressionModels 110 a special cases of thick tails 115 a.1 MultimodalityandThickTails,ortheWarandPeaceModel 115 a.2 TransitionProbabilities: WhatCanBreakWillBreak 119 ii the law of medium numbers 121 7 limit distributions, a consolidation(cid:3),† 123 7.1 Refresher: TheWeakandStrongLLN 123 7.2 CentralLimitinAction 125 7.2.1 TheStableDistribution 125 7.2.2 TheLawofLargeNumbersfortheStableDistribution 126 7.3 SpeedofConvergenceofCLT:VisualExplorations 127 7.3.1 FastConvergence: theUniformDist. 127 7.3.2 Semi-slowconvergence: theexponential 128 7.3.3 TheslowPareto 129 7.3.4 Thehalf-cubicParetoanditsbasinofconvergence 131 7.4 CumulantsandConvergence 131 7.5 TechnicalRefresher: TraditionalVersionsofCLT 133 7.6 TheLawofLargeNumbersforHigherMoments 135 7.6.1 HigherMoments 135 7.7 MeandeviationforaStableDistributions 136 8 how much data do you need? an operational metric for fat-tailedness‡ 139 8.1 IntroductionandDefinitions 140 8.2 TheMetric 142 8.3 StableBasinofConvergenceasBenchmark 144 8.3.1 EquivalenceforStabledistributions 145 8.3.2 Practicalsignificanceforsamplesufficiency 145 8.4 TechnicalConsequences 147 8.4.1 SomeOdditiesWithAsymmetricDistributions 147 8.4.2 RateofConvergenceofaStudentTDistributiontotheGaus- sianBasin 147 8.4.3 TheLognormalisNeitherThinNorFatTailed 148 8.4.4 CanKappaBeNegative? 148 8.5 ConclusionandConsequences 148 8.5.1 PortfolioPseudo-Stabilization 149 8.5.2 OtherAspectsofStatisticalInference 150 8.5.3 Finalcomment 150 8.6 Appendix,Derivations,andProofs 150 x Contents 8.6.1 CubicStudentT(GaussianBasin) 150 8.6.2 LognormalSums 152 8.6.3 Exponential 154 8.6.4 NegativeKappa,NegativeKurtosis 155 9 extreme values and hidden risk (cid:3),† 157 9.1 PreliminaryIntroductiontoEVT 157 9.1.1 HowAnyPowerLawTailLeadstoFréchet 159 9.1.2 GaussianCase 160 9.1.3 ThePicklands-Balkema-deHaanTheorem 162 9.2 TheInvisibleTailforaPowerLaw 163 9.2.1 ComparisonwiththeNormalDistribution 166 9.3 Appendix: TheEmpiricalDistributionisNotEmpirical 166 b the large deviation principle, in brief 169 c calibrating under paretianity 171 c.1 DistributionofthesampletailExponent 173 10 "it is what it is": diagnosing the sp500† 175 10.1 ParetianityandMoments 175 10.2 ConvergenceTests 177 10.2.1 Test1: KurtosisunderAggregation 177 10.2.2 MaximumDrawdowns 178 10.2.3 EmpiricalKappa 179 10.2.4 Test2: ExcessConditionalExpectation 180 10.2.5 Test3-Instabilityof4th moment 182 10.2.6 Test4: MSPlot 182 10.2.7 RecordsandExtrema 184 10.2.8 Asymmetryright-lefttail 187 10.3 Conclusion: Itiswhatitis 187 d the problem with econometrics 189 d.1 PerformanceofStandardParametricRiskEstimators 190 d.2 PerformanceofStandardNonParametricRiskEstimators 191 e machine learning considerations 195 e.0.1 CalibrationviaAngles 197 iii predictions, forecasting, and uncertainty 199 11 probability calibration calibration under fat tails ‡ 201 11.1 Continuousvs. DiscretePayoffs: DefinitionsandComments 202 11.1.1 AwayfromtheVerbalistic 203 11.1.2 Thereisnodefined"collapse","disaster",or"success"under fattails 206 11.2 Spuriousoverestimationoftailprobabilityinpsychology 208 11.2.1 Thintails 208 11.2.2 Fattails 209 11.2.3 Conflations 209 11.2.4 DistributionalUncertainty 212 11.3 CalibrationandMiscalibration 213 11.4 ScoringMetrics 213 11.5 ScoringMetrics 215

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.