ebook img

Statistical Applications for the Behavioral and Social Sciences, 2nd edition PDF

922 Pages·2019·8.817 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Statistical Applications for the Behavioral and Social Sciences, 2nd edition

StatisticalApplications for the Behavioral andSocial Sciences Statistical Applications for the Behavioral and Social Sciences Second Edition K. Paul Nesselroade, Jr. Asbury University Laurence G. Grimm† University of Illinois at Chicago Thiseditionfirstpublished2019 ©2019JohnWiley&Sons,Inc. EditionHistory JohnWiley&SonsInc.(1e,1993) Allrightsreserved.Nopartofthispublicationmaybereproduced,storedinaretrievalsystem, ortransmitted,inanyformorbyanymeans,electronic,mechanical,photocopying,recording orotherwise,exceptaspermittedbylaw.Adviceonhowtoobtainpermissiontoreusematerial fromthistitleisavailableathttp://www.wiley.com/go/permissions. TherightofK.PaulNesselroade,Jr.andLaurenceG.Grimmareidentifiedastheauthorsofthe materialinthisworkhasbeenassertedinaccordancewithlaw. RegisteredOffice JohnWiley&Sons,Inc.,111RiverStreet,Hoboken,NJ07030,USA EditorialOffice 111RiverStreet,Hoboken,NJ07030,USA Fordetailsofourglobaleditorialoffices,customerservices,andmoreinformationaboutWiley productsvisitusatwww.wiley.com. Wileyalsopublishesitsbooksinavarietyofelectronicformatsandbyprint-on-demand.Some contentthatappearsinstandardprintversionsofthisbookmaynotbeavailableinotherformats. LimitofLiability/DisclaimerofWarranty Inviewofongoingresearch,equipmentmodifications,changesingovernmentalregulations,andthe constantflowofinformationrelatingtotheuseofexperimentalreagents,equipment,anddevices, thereaderisurgedtoreviewandevaluatetheinformationprovidedinthepackageinsertorinstructionsfor eachchemical,pieceofequipment,reagent,ordevicefor,amongotherthings,anychangesinthe instructionsorindicationofusageandforaddedwarningsandprecautions.Whilethepublisherand authorshaveusedtheirbesteffortsinpreparingthiswork,theymakenorepresentationsorwarrantieswith respecttotheaccuracyorcompletenessofthecontentsofthisworkandspecificallydisclaimallwarranties, includingwithoutlimitationanyimpliedwarrantiesofmerchantabilityorfitnessforaparticularpurpose. Nowarrantymaybecreatedorextendedbysalesrepresentatives,writtensalesmaterialsorpromotional statementsforthiswork.Thefactthatanorganization,website,orproductisreferredtointhisworkasa citationand/orpotentialsourceoffurtherinformationdoesnotmeanthatthepublisherandauthors endorsetheinformationorservicestheorganization,website,orproductmayprovideor recommendationsitmaymake.Thisworkissoldwiththeunderstandingthatthepublisherisnotengaged inrenderingprofessionalservices.Theadviceandstrategiescontainedhereinmaynotbesuitableforyour situation.Youshouldconsultwithaspecialistwhereappropriate.Further,readersshouldbeawarethat websiteslistedinthisworkmayhavechangedordisappearedbetweenwhenthisworkwaswrittenand whenitisread.Neitherthepublishernorauthorsshallbeliableforanylossofprofitoranyother commercialdamages,includingbutnotlimitedtospecial,incidental,consequential,orotherdamages. LibraryofCongressCataloging-in-PublicationData Names:Grimm,LaurenceG.,author.|Nesselroade,K.Paul,Jr.,author. Title:Statisticalapplicationsforthebehavioralandsocialsciences/K. PaulNesselroade,Jr.,AsburyUniversity,LaurenceG.Grimm,Universityof IllinoisatChicago. Othertitles:Statisticalapplicationsforthebehavioralsciences Description:2ndedition.|Hoboken,NJ:JohnWiley&Sons,Inc.,2019.| Includesindex.|Earliereditionpublishedin1993as: Statistical applicationsforthebehavioralsciences[by]LaurenceG.Grimm.| Identifiers:LCCN2018022259(print)|LCCN2018025247(ebook)|ISBN 9781119355380(AdobePDF)|ISBN9781119355366(ePub)|ISBN9781119355397 (hardcover) Subjects: LCSH:Socialsciences–Statisticalmethods. Classification:LCCHA29(ebook)|LCCHA29.G77352019(print)|DDC 300.1/5195–dc23 LCrecordavailableathttps://lccn.loc.gov/2018022259 Coverdesign:CourtesyofMegSanchez Coverimage:CourtesyofMaxOstrozhinskiyonUnsplash Setin10/12ptWarnockbySPiGlobal,Pondicherry,India PrintedintheUnitedStatesofAmerica 10 9 8 7 6 5 4 3 2 1 For Cheryl, Andrew, Sarah, and Lisa – each ofyou bring special meaning to life vii Contents Preface xv Acknowledgments xix AbouttheCompanionWebsite xxi Part1 Introduction 1 1 BasicConceptsinResearch 3 1.1 The Scientific Method 3 1.2 The Goals of the Researcher 5 1.3 Types of Variables 7 1.4 Controlling Extraneous Variables 10 1.5 Validity Issues 18 1.6 Causality and Correlation 23 1.7 The Role of Statistical Analysis and the Organization of the Textbook 26 Summary 27 Part2 DescriptiveStatistics 35 2 ScalesofMeasurementandDataDisplay 37 2.1 Scales of Measurement 37 2.2 Discrete Variables, Continuous Variables, and the Real Limits of Numbers 41 2.3 UsingTables to Organize Data 45 2.4 UsingGraphs to Display Data 50 2.5 The Shape of Things to Come 59 ® ® 2.6 Introduction to Microsoft Excel and SPSS 62 Summary 64 viii Contents 3 MeasuresofCentralTendency 69 3.1 Describing a Distribution of Scores 69 3.2 Parameters and Statistics 70 3.3 The Rounding Rule 70 3.4 The Mean 71 3.5 The Median 76 3.6 The Mode 81 3.7 How the Shape of Distributions Affects Measures of Central Tendency 82 3.8 When to Use the Mean, Median, and Mode 83 3.9 Experimental Research and the Mean: A Glimpse of Things to Come 85 Summary 89 ® ® UsingMicrosoft ExcelandSPSS toFindMeasuresofCentrality 90 4 MeasuresofVariability 97 4.1 The Importance of Measures of Variability 97 4.2 Range 97 4.3 Mean Deviation 100 4.4 The Variance 102 4.5 The Standard Deviation 109 4.6 Simple Transformations and Their Effect on the Mean and Variance 111 4.7 Deciding Which Measure of Variability to Use 113 Summary 116 ® ® UsingMicrosoft Excel and SPSS to Find Measures of Variability 117 5 TheNormalCurveandTransformations:PercentilesandzScores 127 5.1 Percentile Rank 127 5.2 The Normal Distributions 133 5.3 Standard Scores (zScores) 137 Summary 150 ® ® UsingMicrosoft Excel and SPSS to Find z Scores 151 Part3 InferentialStatistics:TheoreticalBasis 161 6 BasicConceptsofProbability 163 6.1 Theoretical Support forInferential Statistics 163 6.2 The Taming of Chance 165 6.3 What Is Probability? 168 Contents ix 6.4 Samplingwithand Without Replacement 170 6.5 A Priori and A Posteriori Approaches to Probability 171 6.6 The Addition Rule 171 6.7 The Multiplication Rule 175 6.8 ConditionalProbabilities 179 6.9 Bayes’ Theorem 184 Summary 188 7 HypothesisTestingandSamplingDistributions 195 7.1 Inferential Statistics 195 7.2 Hypothesis Testing 197 7.3 SamplingDistributions 203 7.4 Estimating the Features of Sampling Distributions 210 Summary 212 Part4 InferentialStatistics:zTest,tTests,andPowerAnalysis 219 8 TestingaSingleMean:TheSingle-SamplezandtTests 221 8.1 The Research Context 221 8.2 Usingthe Sampling Distribution of Means for the Single-Sample z Test 222 8.3 Type I and Type IIErrors 233 8.4 Is a Significant Finding “Significant?” 237 8.5 TheStatisticalTestfortheMeanofaPopulationWhenσIsUnknown: The t Distributions 240 8.6 Assumptionsof the Single-Sample z and t Tests 249 8.7 Interval Estimation of the Population Mean 250 8.8 How toPresent Formally the Findings from a Single-Sample t Test 252 Summary 253 ® ® UsingMicrosoft ExcelandSPSS toRunSingle-SampletTests 253 9 TestingtheDifferenceBetweenTwoMeans:TheIndependent-Samples tTest 265 9.1 The Research Context 265 9.2 The Independent-Samples t Test 268 9.3 The Appropriateness of Unidirectional Tests 283 9.4 Assumptionsof the Independent-Samples t Test 288 9.5 Interval Estimation of the Population Mean Difference 289 9.6 HowtoPresentFormallytheConclusionsforanIndependent-Samples t Test 291 x Contents Summary 291 ® ® UsingMicrosoft Excel and SPSS to Run anIndependent-Samples t Test 292 10 TestingtheDifferenceBetweenTwoMeans:TheDependent-Samples tTest 311 10.1 The Research Context 311 10.2 The SamplingDistribution for the Dependent-Samples t Test 315 10.3 The t Distribution forDependent Samples 318 10.4 Comparing the Independent- and Dependent-Samples t Tests 322 10.5 The One-Tailedt Test Revisited 323 10.6 Assumptions of the Dependent-Samples t Test 323 10.7 Interval Estimation of the Population Mean Difference 323 10.8 How to Present Formally the Conclusionsfor a Dependent-Samples t Test 327 Summary 327 ® ® UsingMicrosoft Excel and SPSS to Run aDependent-Samples t Test 328 11 PowerAnalysisandHypothesisTesting 343 11.1 Decision-Making While Hypothesis Testing 343 11.2 Why Study Power? 344 11.3 The Five Factors that Influence Power 345 11.4 Decision Criteria that Influence Power 348 11.5 UsingthePower Table 351 11.6 DeterminingEffectSize:TheAchillesHeelofthePowerAnalysis 354 11.7 Determining Sample Size fora Single-Sample Test 356 11.8 Failing to Reject the Null Hypothesis:Can a Power Analysis Help? 358 Summary 361 Part4Review ThezTest,tTests,andPowerAnalysis 365 Part5 InferentialStatistics:AnalysesofVariance 375 12 One-WayAnalysisofVariance 377 12.1 The Research Context 377 12.2 The Conceptual Basis of ANOVA: Sources of Variation 380 12.3 The Assumptionsof the One-Way ANOVA 384 12.4 Hypotheses and Error Terms forthe One-Way ANOVA 384 12.5 Computing the F Ratio ina One-Way ANOVA 388 Contents xi 12.6 TestingNull Hypotheses 396 12.7 The One-Way ANOVA Summary Table 399 12.8 An Example of anANOVA with Unequal Numbers of Participants 399 12.9 MeasuringEffect Size fora One-Way ANOVA 400 12.10 Locating the Source(s)of Significance 403 12.11 How toPresent Formally the Conclusions fora One-Way ANOVA 409 Summary 410 ® ® Using Microsoft Excel and SPSS to Run a One-Way ANOVA 411 13 Two-WayAnalysisofVariance 425 13.1 The Research Context 425 13.2 The Logic of the Two-Way ANOVA 437 13.3 Definitionaland Computational Formulas for the Two-Way ANOVA 441 13.4 Usingthe FRatios to Test NullHypotheses 451 13.5 Assumptionsof the Two-Way ANOVA 456 13.6 MeasuringEffect Sizes fora Two-Way ANOVA 456 13.7 MultipleComparisons 457 13.8 Interpreting the Factors ina Two-Way ANOVA 462 13.9 How toPresent Formally the Conclusions fora Two-Way ANOVA 463 Summary 464 ® ® UsingMicrosoft ExcelandSPSS toRunaTwo-WayANOVA 465 14 Repeated-MeasuresAnalysisofVariance 483 14.1 The Research Context 483 14.2 The Logic of the Repeated-Measures ANOVA 486 14.3 The Formulas forthe Repeated-Measures ANOVA 489 14.4 Usingthe FRatio to Test the Null Hypothesis 497 14.5 Interpreting the Findings 497 14.6 The ANOVA Summary Table 498 14.7 Assumptionsof the Repeated-Measures ANOVA 500 14.8 MeasuringEffect Size forRepeated-Measures ANOVA 500 14.9 Locating the Source(s)of Statistical Evidence 501 14.10 How toPresent Formally the Conclusions fora Repeated-Measures ANOVA 504 Summary 505 ® ® UsingMicrosoft Excel and SPSS to Run a Repeated-Measures ANOVA 506 xii Contents Part5Review AnalysesofVariance 521 Part6 InferentialStatistics:BivariateDataAnalyses 529 15 LinearCorrelation 531 15.1 The Research Context 531 15.2 The Correlation Coefficient and Scatter Diagrams 536 15.3 The Coefficient of Determination, r2 545 15.4 UsingthePearson r for Hypothesis Testing 549 15.5 Factors That Can Create Misleading Correlation Coefficients 556 15.6 How to Present Formally the Conclusionsof a Pearson r 561 Summary 562 ® ® UsingMicrosoft Excel and SPSS to Calculate Pearson r 564 16 LinearRegression 579 16.1 The Research Context 579 16.2 Overview ofRegression 580 16.3 Establishing the Regression Line 585 16.4 Putting ItAllTogether: A Worked Problem 600 16.5 The Coefficient of Determination inthe Context of Prediction 606 16.6 The Pitfalls of Linear Regression 607 16.7 How to Present Formally the Conclusionsof a Linear Regression Analysis 610 Summary 611 ® ® UsingMicrosoft Excel and SPSS to Create a Linear Regression Line 612 Part6Review LinearCorrelationandLinearRegression 625 Part7 InferentialStatistics:NonparametricTests 633 17 TheChi-SquareTest 635 17.1 The Research Context 635 17.2 The Chi-SquareTest for One-Way Designs: The Goodness-of-Fit Test 637 17.3 The Chi-SquareDistribution and Degrees of Freedom 644 17.4 Two-Way Designs: The Chi-Square Test for Independence 647 17.5 The Chi-SquareTest for a 2×2Contingency Table 653 17.6 A Measure of Effect Size forChi-SquareTests 656

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.