Solutions Manual for Statistical and Adaptive Signal Processing This page is intentionally left blank. ii Preface This solutions manual provides solutions to the problems contained in the first edition of our book STATISTICAL AND ADAPTIVE SIGNAL PROCESSING. Thesolutions havebeenpreparedandwrittenbyDavidMardenandourselves. We have attempted to provide very detailed solutions to the problems with notation consistent with that used in the book. Where applicable, we have also given a printout ofMatlabcodeandfiguresfortheproblemsolution. Despite our efforts, however, you may find that some of the solutions may be less detailed and refined than others. Inevitably through the use of this solutions man- ual, omissions and errors will be discovered. Our goal is to continually improve upon thismanual usingyour comments. Periodically, wewillissue changes tothe solutionsmanualandnewproblemstoyouuponrequest. Inthisrespect,wewould appreciate any feedback including improved solutions, suggestions for new prob- lems,corrections whichcanbesenttoProf. [email protected] orat Prof. VinayK.Ingle DepartmentofElectricalandComputerEngineering Northeastern University 360HuntingtonAvenue Boston,MA02115 Thankyou. DimitrisG.Manolakis VinayK.Ingle Stephen K.Kogon iii This page is intentionally left blank. iv Chapter2 Discrete-Time Signals and Systems 2.1 Samplingfrequency F = 100sam/sec s (a) Continuous-time signal x (t) = 2cos(40πt +π/3)hasfrequency of20Hz. Hence c (cid:1) (cid:2) 40πn x(n) = x (t)| = 2cos +π/3 c t=n/Fs 100 whichimpliesthatω = 40π = 2π. 0 100 5 (b) Steady-state response yc,ss(t): Giventhath(n) = 0.8nu(n),thefrequency response functionis 1 H(ejω) = 1−0.8e−jω Sinceω = 2π/5,thesystemresponse atω is 0 0 1 H(ejω) = = 0.9343e−j0.2517π 1−0.8e−j2π/5 Hence y (n)= 2(0.9343)cos(2πn/5+π/3−0.2517π),or ss yc,ss(t) = 1.8686cos(40πt +0.585π) (c) Any x (t) that has the same digital frequency ω after sampling and the same phase shift as above will c 0 havethesamesteadystateresponse. Since F = 100sam/sec,thetwootherfrequenciesare120and220 s Hz. 2.2 Thediscrete-time signalis x(n) = A cos(ω n)w (n) 0 R wherew (n)isan N-point rectangular window. R (a) TheDTFTofx(n)isdeterminedas X(ejω) = F[A cos(ω n)w (n)] (cid:3) 0 R (cid:4) (cid:3) (cid:4) = (A/2)F ejω0w (n) +(A/2)F e−jω0w (n) (1) R R UsingtheDTFTofw (n)as R (cid:5)N−1 sin(ωN/2) F[w (n)]= e−jωn = e−jω(N−1)/2 (2) R sin(ω/2) n=0 and the fact that complex exponential causes a translation in the frequency domain (1) can be written afterafairamountofalgebraandtrigonometry as X(ejω) = X (ejω)+ j X (ejω) R I 1 2 StatisticalandAdaptiveSignalProcessing-SolutionManual 32−point DTFT (Real) 32−point DTFT (Imaginary) 20 15 15 10 5 10 0 5 −5 0 −10 −5 −15 −4 −2 0 2 4 −4 −2 0 2 4 Figure2.2bc: RealandImaginaryDTFTandDFTPlots(ω = π/4) 0 where A sin[(ω−ω )N/2] X (ejω) = cos[(ω−ω )(N −1)/2] 0 R 2 0 sin[(ω−ω )/2] 0 A sin{[ω−(2π −ω )]N/2} + cos[(ω+ω )(N −1)/2] 0 (3) 2 0 sin{[ω−(2π −ω )]/2} 0 and A sin[(ω−ω )N/2] X (ejω) = − sin[(ω−ω )(N −1)/2] 0 R 2 0 sin[(ω−ω )/2] 0 A sin{[ω−(2π −ω )]N/2} − sin[(ω+ω )(N −1)/2] 0 (4) 2 0 sin{[ω−(2π −ω )]/2} 0 (b) N = 32andω = π/4.TheDTFTplotsareshowninFigure2.2bc. 0 (c) TheDFTsamplesareshowninFigure2.2bc. (d) N = 32andω = 1.1π/4. TheplotsareshowninFigure2.2d. 0 Theaddedspectrumforthesecondcaseabove(ω = 1.1π/4)isaresultoftheperiodicextensionofthe 0 DFT.Fora32-point sequence, theendofeachextension doesnotlineupwiththebeginning ofthenext extension. Thisresultsinsharpedgesintheperiodicextension, andaddedfrequencies inthespectrum. 2.3 Thesequence isx(n) = cos(πn/4),0 ≤ n ≤15. (a) The16-point DFTisshowninthetop-left plotofFigure2.3. (b) The32-point DFTisshowninthetop-right plotofFigure2.3. (c) The64-point DFTisshowninthebottom plotofFigure2.3. (d) Thezeropaddingresultsinalowerfrequencysamplinginterval. HencetherearemoretermsintheDFT representation. TheshapeoftheDTFTcontinues tofillinas N increases from16to64. 2.4 x(n) = {1,2,3,4,3,2,1};h(n) = {−1,0,1} StatisticalandAdaptiveSignalProcessing-SolutionManual 3 32−point DTFT (Real) 32−point DTFT (Imaginary) 20 15 15 10 5 10 0 5 −5 0 −10 −5 −15 −4 −2 0 2 4 −4 −2 0 2 4 Figure2.2d: RealandImaginaryDTFTPlots(ω = 1.1π/4) 0 16−point DFT 32−point DFT 7 7 6 6 5 5 4 4 3 3 2 2 1 1 0 0 0 π/ 4 π/ 2 3π /4 π 5π /4 3π /2 7π /4 0 π/ 4 π/ 2 3π /4 π 5π /4 3π /2 7π /4 64−point DFT 8 6 4 2 0 0 π/ 4 π/ 2 3π /4 π 5π /4 3π /2 7π /4 Figure2.3: The16,32,and64-point DFTsof x(n) = cos(πn/4) 4 StatisticalandAdaptiveSignalProcessing-SolutionManual (a) Convolution usingmatrix-vector multiplication approach. y = Xh −1 1 0 0 −2 2 1 0 −2 3 2 1 −2 4 3 2 −1 0 = 3 4 3 0 2 2 3 4 1 2 1 2 3 2 0 1 2 1 0 0 1 (b) TheMatlabfunction convtoep function [y]=convtoep(x,h) % Convolution using Toeplitz Arrays % y = convtoep(x,h) nx = length(x); x = reshape(x,nx,1); nh = length(h); h = reshape(h,nh,1); X = toeplitz([x; zeros(nh-1,1)],[x(1) zeros(1,nh-1)]); y = X*h; (c) Verification: 2.5 x(n) = 0.9nu(n) (a) Analytical evaluation ofx(n)∗x(n) : (cid:5)∞ y(n) = x(n)∗x(n) = x(k)x(n −k) k=−∞ (cid:5)∞ = (0.9)ku(k)(0.9)n−ku(n−k) k=−∞ (cid:5)∞ = (0.9)k(0.9)n−ku(n−k) k=0 y(n) = (n+1)(0.9)n Thissequence isshownintheleftmostplotinFigure2.5. (b) Convolutionusingtheconvfunction: Thesequencex(n)istruncatedto51samples. Thisconvolutionis doneusing n = 0:50; x =(0.9).^n; y = conv(x,x); Thissequence isinthecenterplotininFigure2.5. (c) Convolution using the filter function: To use this function, we have to represent one of the x(n) by coefficients inanequivalent difference equation. Thisdifference equation isgivenby x(n) = δ(n)+0.9x(n −1) whichmeansthatthefiltercoefficientsareb = 1,a = [1,-0.9]. Thusthisconvolution isdoneusing y = filter(1,[1,-0.9],x); Thissequence isintherightmostplotinFigure2.5. StatisticalandAdaptiveSignalProcessing-SolutionManual 5 (d) The three plots appear to be identical. However, the conv function gives the largest error since both sequences aretruncated. Thefilterfunction wouldbebestsuitedforinfinitelengthsequences. y(n)=(n+1)(0.9)n Using Conv Using filter 4 4 4 3.5 3.5 3.5 3 3 3 2.5 2.5 2.5 2 2 2 1.5 1.5 1.5 1 1 1 0.5 0.5 0.5 0 0 0 0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100 Figure2.5: x(n) = (0.9)nu(n)convolved withitself 2.6 H (n)isacausalandstableall-passsystem withinput x(n)andoutput y(n). Thenwehave ap (cid:5)∞ (cid:5)∞ |y(n)|2 = |x(n)|2 n=0 n=0 Consider x(n) = x (n)+x (n) and y (n) = h(n)∗x (n) 0 1 i i Then (cid:5)∞ (cid:5)∞ |y (n)+ y (n)|2 = |x (n)+x (n)|2 0 1 0 1 n=0 n=0 (cid:5)∞ (cid:5)∞ (cid:5)∞ (cid:5)∞ (cid:5)∞ |y (n)|2+ |y (n)|2+ |y (n)y (n)| = |x (n)|2+ |x (n)|2 0 1 0 1 0 1 n=0 n=0 n=0 n=0 n=0 (cid:5)∞ (cid:5)∞ (cid:5)∞ |y (n)|2+ |y (n)y (n)| = |x (n)|2 0 0 1 0 n=0 n=0 n=0 Hence (cid:5)∞ (cid:5)∞ |y (n)|2 ≤ |x (n)|2 0 0 n=0 n=0 Definex (n)as0aboven ,then 0 0 (cid:5)n0 (cid:5)n0 |y(n)|2 ≤ |x(n)|2 n=0 n=0 2.7 Monotone phase-response property ofacausalandstablePZ-APsystem: (a) Arealfirst-ordersystem: Consider p−z−1 H(z)= , |p| < 1 1− pz−1 6 StatisticalandAdaptiveSignalProcessing-SolutionManual Then (cid:1) (cid:2) (cid:1) (cid:2) sinω sinω H(ejω) = arctan −arctan ] cosω−1/p cosω− p Clearly, H(ejω) decreases from H(ej0) = π to H(ej2π) = −π.Toshow that it decreases mono- ] ] ] tonically, consider (cid:1) (cid:1) (cid:2) (cid:1) (cid:2)(cid:2) d (cid:12) (cid:13) d sinω sinω H(ejω) = arctan −arctan dω ] dω cosω−1/p cosω− p p2 −1 = 1+ p2 −2(cosω) p which isnegative for |p| < 1. Thisproves that H(ejω)decreases monotonically from H(ej0) = π to H(ej2π) = −π. ] ] ] (b) Arealsecond-order (complex-conjugate pole-pair) system: Thesystemfunction is (cid:14) (cid:15)(cid:14) (cid:15) (r θ)−z−1 (r θ)∗ −z−1 H(z)= 1−](r θ)∗z−1 1−](r θ)z−1 , 0 <r < 1 ] ] Considertheterm (r θ)−z−1 H1(z), 1−](r θ)z−1 ] Thenanglecalculationsaresimilartothosefortherealfirst-ordercaseifwerotatethecoordinatesystem bytheangleθ,thatis, (cid:14) (cid:1) (cid:2) (cid:15) (cid:14) (cid:1) (cid:2) (cid:15) sinω sinω H (ejω) = arctan +θ − arctan +θ ] 1 cosω−1/r cosω−r (cid:1) (cid:2) (cid:1) (cid:2) sinω sinω = arctan −arctan cosω−1/r cosω−r Thusfollowingtheargumentsin(a),weconcludethat H (ejω)decreasesmonotonicallyfrom H (ej0) 1 1 to H (ej0)−π. Similarly,consider ] ] 1 ] (r θ)−z−1 H2(z) , 1−](r θ)z−1 ] Then H (ejω)decreases monotonically from H (ej0)to H (ej0)−π. Finally,since 2 2 2 ] ] ] H (ejω) = H (ejω)+ H (ejω) 1 1 2 ] ] ] weconclude that H(ejω)decreases monotonically from H(ej0)to H(ej0)−2π. ] ] ] (c) Generalizingtheaboveresultforareal,causal,andstablePZ-APsystemwith P pole-zeropairs,wecan showthat H(ejω)decreases monotonically from H(ej0)to H(ej0)−2πP. ] ] ] 2.8 Minimumgroupdelayproperty: Considerthesystems (cid:12) (cid:13)(cid:12) (cid:13) H (z) = 1−0.25z−1 1+0.5z−1 min (cid:12) (cid:13)(cid:12) (cid:13) H (z) = 0.25−z−1 0.5+z−1 max (cid:12) (cid:13)(cid:12) (cid:13) H (z) = 1−0.25z−1 0.5+z−1 mix