ebook img

Statics - Formulas and Problems: Engineering Mechanics 1 PDF

240 Pages·2017·3.75 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Statics - Formulas and Problems: Engineering Mechanics 1

Dietmar Gross · Wolfgang Ehlers Peter Wriggers · Jörg Schröder Ralf Müller Statics – Formulas and Problems Engineering Mechanics 1 123 – Statics Formulas and Problems Dietmar Gross Wolfgang Ehlers (cid:129) ö Peter Wriggers Jörg Schr der (cid:129) ü Ralf M ller – Statics Formulas and Problems Engineering Mechanics 1 123 Dietmar Gross Jörg Schröder Division of Solid Mechanics Institute of Mechanics TU Darmstadt Universität Duisburg-Essen Darmstadt Essen Germany Germany WolfgangEhlers Ralf Müller Institute of Applied Mechanics Institute of Applied Mechanics Universität Stuttgart TU Kaiserslautern Stuttgart Kaiserslautern Germany Germany PeterWriggers Institute of Continuum Mechanics LeibnizUniversität Hannover Hannover Germany ISBN978-3-662-53853-1 ISBN978-3-662-53854-8 (eBook) DOI 10.1007/978-3-662-53854-8 LibraryofCongressControlNumber:2016956635 ©Springer-VerlagGmbHGermany2017 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whether thewholeorpartofthematerialisconcerned,specificallytherightsoftranslation, reprinting,reuseofillustrations,recitation,broadcasting,reproductiononmicrofilms orinanyotherphysicalway,andtransmissionorinformationstorageandretrieval, electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks, etc.inthispublicationdoesnotimply,evenintheabsenceofaspecificstatement, thatsuchnamesareexemptfromtherelevantprotectivelawsandregulationsand thereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressorimplied,withrespecttothematerialcontainedhereinorforanyerrorsor omissionsthatmayhavebeenmade. Printedonacid-freepaper ThisSpringerimprintispublishedbySpringerNature TheregisteredcompanyisSpringer-VerlagGmbHGermany Theregisteredcompanyaddressis:HeidelbergerPlatz3,14197Berlin,Germany Preface Thiscollectionofproblemsresultsfromthedemandofstudentsforsup- plementaryproblemsandsupportinthepreparationforexaminations. With the present collection “Engineering Mechanics 1 - Formulas and Problems, Statics” we provide more additional exercise material. The subject“Statics”iscommonlytaughtinthebasiccourseofEngineering Mechanics classes at universities. The problems analyzed within these courses use equilibrium condi- tions and the principle of virtual work to analyze static problems and to compute reaction forces and stress resultants. These concepts are the basic of many structural analyses of components used in civil and mechanical engineering. Wewouldliketomakethereaderawarethatpurereadingandtrying tocomprehendthepresentedsolutionswillnotprovideadeeperunder- standing of mechanics. Neither does it improve the problem solving skills. Usingthiscollection wisely,onehastotrytosolvetheproblems independently.The proposed solution should only be considered when experiencing major problems in solving an exercise. Obviously this collection cannot substitute a full-scale textbook. If notfamiliarwiththeformulae,explanations,ortechnicaltermstherea- der has to consider his or her course material or additional textbooks on mechanics of materials. An incomplete list is provided on page IX. Darmstadt, Stuttgart, Hannover, D.Gross Essen and Kaiserslautern, Summer2016 W.Ehlers P.Wriggers J.Schr¨oder R.M¨uller Table of Contents Bibliography,Nomenclature.................................... IX 1 Equilibrium ......................................................... 1 2 CenterofGravity,CenterofMass,Centroids............... 29 3 SupportReactions................................................ 45 4 Trusses............................................................... 65 5 Beams,Frames,Arches.......................................... 97 6 Cables................................................................ 157 7 WorkandPotentialEnergy..................................... 169 8 StaticandKineticFriction...................................... 193 9 MomentsofInertia............................................... 217 Literature Textbooks Gross,D.,Hauger,W.,Schr¨oder,J.,Wall,W.,Rajapakse,N.,Enginee- ring Mechanics 1: Statics, 2nd edition, Springer 2013 Hibbeler, R.C., Engineering Mechanics, Statics, Prentice Hall, 2012 Beer,F.,Johnston,E.R.,Mazurek,D.,VectorMechanicsforEngineers: Statics, 11th edition, McGraw-Hill Education 2015 Beer, F., Johnston, E.R., Eisenberg, E., Cornwell, P., Mazurek, D., Vector Mechanics for Engineers: Statics and Dynamics, 11th edition, McGraw-Hill Education 2015 CollectionofProblems Hibbeler, R.C., Engineering Mechanics, Statics, Prentice Hall, 2012 Schaum’sOutlinesofEngineeringMechanics:Statics,6thEdition,McGraw- Hill Education 2010 Beer,F.,Johnston,E.R.,Mazurek,D.,VectorMechanicsforEngineers: Statics, 11th edition, McGraw-Hill Education 2015 Notation For thesolutions of the problems we used the following symbols: ↑: Short notation for sum of all forces in direction of the arrow equal to zero. (cid:2) A: Short notation for sum of all moments with respect to reference point A (with predetermined direction of rotation) equal to zero. (cid:2) Short notation for from this follows that. 1 Chapter 1 Equilibrium 2 Equilibrium Forces with a common point of application in a plane Asystemofforceswithacommonpoint of application can be replaced by a staticallyequivalentforce (cid:2) F i R= Fi. The system is in equilibrium,if y (cid:2) Fi =0 x F1 or in cartesian components (cid:2) (cid:2) F =0, F =0. ix iy Fiy F Here we used the notation i y αi Fi =Fixex+Fiyey, Fix F =F cosα , ix i i x F =F sinα , iy i i (cid:3) |F |=F = F2 +F2 . i i ix iy Inagraphical solution,theequilibriumconditionisexpressedbyaclo- sed force polygon. lines of action force polygon fi F 1 F i f1 Forces with a common point of application in space (cid:4) (cid:4) Equilibriumexists,iftheresultantR= Fi vanishes,i.e.if Fi =0 or in cartesian components (cid:2) (cid:2) (cid:2) F =0, F =0, F =0. ix iy iz Equilibrium 3 Here, thefollowing notation is used z Fi =Fixex+Fiyey+Fizez , F =F cosα , ix i i Fiz Fi Fiy =Ficosβi , γi Fiz =Ficosγi, αi βi Fiy cos2αi+cos2βi+cos2γi =1, (cid:3) Fix y |F |=F = F2 +F2 +F2 . i i ix iy iz x General systems of forces in a plane Ageneralsystemofforcesc(cid:4)anbere- placed by a resultant R= Fi and A a resulting moment MR(A) with re- y spect to an arbitrary reference point F Fi 1 A. Equilibrium exists, if x (cid:2) (cid:2) (cid:2) F =0, F =0, M(A) =0. ix iy i Insteadofusingthetwoforceconditions,twoalternativemomentcon- ditions with different reference points (e.g. B and C) may be applied. Here thepoints A,B and C must not lie on a straight line. Graphicalsolutionsfortheresultantforceareobtainedwiththehelp of the link polygon and theforce polygon. link polygon in layout diagram force polygon F 1 S1 r f1 f4 F2 S2 Pol s1 s2f2 s3f3 s4 s5 R SS34 II F 3 S5 F 4

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.