ebook img

Statics and dynamics of elastic manifolds in media with long-range correlated disorder PDF

0.35 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Statics and dynamics of elastic manifolds in media with long-range correlated disorder

Statics and dynamics of elastic manifolds in media with long-range correlated disorder Andrei A. Fedorenko, Pierre Le Doussal, and Kay Jo¨rg Wiese CNRS-LaboratoiredePhysiqueThe´oriquedel’EcoleNormaleSupe´rieure,24rueLhomond,75231Paris,France (Dated:January20,2007) We study the statics and dynamics of an elastic manifold in a disordered medium with quenched defects 7 correlatedas∼ r−a forlargeseparationr. Wederivethefunctionalrenormalization-groupequationstoone- 0 looporder,whichallowustodescribetheuniversalpropertiesofthesysteminequilibriumandatthedepinning 0 transition. Usingadoubleε = 4−dandδ = 4−aexpansion, wecomputethefixedpointscharacterizing 2 differentuniversalityclassesandanalyzetheirregionsofstability. Thelong-rangedisorder-correlatorremains n analyticbutgeneratesshort-rangedisorderwhosecorrelatorexhibitstheusualcusp. Thecriticalexponentsand a universalamplitudesarecomputedtofirstorderinεandδatthefixedpoints. Atdepinning,avelocity-versus- J forceexponentβlargerthanunitycanoccur.Wediscusspossiblerealizationsusingextendeddefects. 0 2 I. INTRODUCTION determinedatthedepinningtransitionareingeneraldifferent ] fromtheexponentandamplitudesmeasuredinequilibrium. n n Elastic objects in random media are the simplest example Twomethodsweredevelopedtostudythestaticsofanelas- - ofadisorderedsystemexhibitingmetastability,glassybehav- ticmanifoldinadisorderedmedium.OneofthemistheGaus- s i ior,anddimensionalreduction,whicharedifficultiespresent sian variational approximation (GVA) performed in replica d in a broader class of disordered systems [1, 2, 3]. They can space, which can be applied to both classes of elastic man- . t be used to model a remarkable set of experimental systems. ifolds, i.e., to interfaces [10] without overhangsand to peri- a Domainwallsinmagnetsbehaveaselasticinterfacesandcan odicsystems[9,11]. Withinthisapproach,whichisbelieved m experienceeitherrandombonddisorder(RB)asinferromag- to be exact in the mean-field limit, i.e., when the manifold - d nets with nonmagnetic impurities, or random field disorder lives in a space of infinite dimensions, metastability is de- n (RF) as in disordered antiferromagnets in an external mag- scribed by breaking of replica symmetry, which allows one o neticfield[4]. Theinterfacebetweentwoimmiscibleliquids to computethe static correlationfunctionsand to obtaindif- c in a porous medium exhibits the same behavior and under- ferent thermodynamic properties. Another method that can [ goes a depinning transition as the pressure difference is in- be appliedto dynamicsas well as to statics is the functional 2 creased [5]. Charge-density waves (CDW) in solids show a renormalizationgroup(FRG)[12]. Simplescalingarguments v similar conduction threshold [6]. Another example of peri- show that large-scale properties of elastic systems are gov- 4 odic systems are vortex lines in superconductors which can erned by disorder for d < d = 4 and that perturbation uc 3 form differentglass phases in the presenceof weak disorder theory in the disorder breaks down on scales larger than the 2 [7, 8, 9]. In all these systems, the interplay between elastic so-called Larkinscale [13]. To overcomethis difficulty, one 9 forces that tend to keep the system ordered, i.e., flat or pe- performsarenormalization-groupanalysis. Itwasshownthat 0 6 riodic,andquencheddisorder,whichpromotesdeformations inthiscase onehasto renormalizethewholedisordercorre- 0 of the local structure, formsa complicatedenergylandscape lator that becomesa nonanalyticfunctionbeyondthe Larkin / withnumerousmetastablestates. Thisresultsinglassyprop- scale [12, 14, 15, 16]. The appearance of a non-analyticity t a ertiesandanontrivialresponseofthesystemtoexternalper- in the formof a cusp atthe originis related to metastability, m turbations. In particular, the interface becomes rough with andnicelyaccountsforthegenerationofathresholdforceat - displacementsgrowingwiththedistancexas thedepinningtransition. ItwasrecentlyshownthattheFRG d can unambiguouslybe extendedto higher loop order so that n C(x) x2ζ, (1) theunderliningnonanalyticfieldtheoryisprobablyrenormal- o ∼ c izable to all orders[17, 18, 19]. Althoughthe two methods, whereζistheroughnessexponent.Elasticperiodicstructures : GVA and FRG, are verydifferent, they providea fairly con- v in the presence of disorder lose their strict translational or- sistent picture of the statics, and recently a relation between i X derandformquasi-long-rangeordercharacterizedbya slow them was found [20]. There is also good agreement with growthofdisplacements, r results of numerical simulations, not only for critical expo- a nents[21,22,23]butalsoforthewholerenormalizeddisorder C(x)= ln x, (2) Ad | | correlator[24]. However, many questions remain open. Al- thoughthedynamicsinthevicinityofthedepinningtransition wheretheamplitude isuniversalinthesimplestcase. At d A andatzero temperatureis wellunderstood,there isno satis- zero temperature, a driving force f exceeding the threshold factorytheoryforfinitetemperature,andinparticularforthe valuef isrequiredtosettheelasticmanifoldintosteadymo- c tion with a velocityv thatvanishesas v (f f )β at the thermalroundingofthedepinningtransition[25].Itisalsore- c ∼ − markablethattheexponentβ inexperimentsondepinningis transition point. The correlationlength divergesclose to the transition f = f as ξ (f f )−ν and the characteris- usuallylargerthan1,whileFRGandnumericalsimulationsof c c tictimeasτ ξz,where∼z ist−hedynamiccriticalexponent. elasticsystemswithweakdisordergivevaluessmallerthan1. ∼ Notethattheroughnessexponentandtheuniversalamplitudes Most studies of elastic manifoldsin a disordered medium 2 treatuncorrelatedpointlikedisorder. Realsystems, however, modelwithLRcorrelateddefects[42]. Thisiscloselyrelated often contain extendeddefects in the form of linear disloca- tothebehaviorofnematicliquidcrystalsenclosedinasingle tions,planargrainboundaries,three-dimensionalcavities,etc. pore of aerosil gel, which was recently studied in Ref. [43], It is known that such extended defects, or pointlike defects usingtheapproximationinwhichtheporehullisconsidered withsufficientlylong-rangecorrelations,canchangethebulk a disconnected fractal. Finally, studies of the Kardar-Parisi- criticalbehavior[26,27,28,29,30,31,32]. Fluxlinesinsu- Zhang (KPZ) equation with power-law correlations in time perconductorsarethemostprominentexample. Thepinning [44] bear connections to the case d = 1 considered here. ofthefluxlinesbydisorderpreventsthedissipationofenergy However, the perturbativemethod used there cannotaddress anddeterminesthecriticalcurrentJ ,whichisofgreatimpor- directly the zero-temperature (strong KPZ coupling) phase, c tanceforapplications.Itwasfoundthatextendeddefectspro- contrarytoourpresentstudy. duced,forinstance,byheavy-ionirradiation,canincreaseJ Inthe presentpaper,we study thestatics anddynamicsof c byseveralordersofmagnitude[33].Systemswithanisotropic elasticmanifoldsinthepresenceof(power-law)LRcorrelated orientationof extended defectscan be describedby a model disorderusingtheFRGapproachtoone-looporder.Thepaper in which all defectsare stronglycorrelatedin ε dimensions isorganizedasfollows. SectionIIintroducesthemodel. Pos- d and randomly distributed over the remaining d ε dimen- siblephysicalrealizationsareconsideredinSec. III. Section d − sions. Thecaseε = 0isassociatedwithuncorrelatedpoint- IV describes the dynamical formalism and perturbation the- d like defects, while extended columnar or planar defects are ory.InSec. V,werenormalizethetheoryandderivetheFRG related to the cases ε = 1 and 2, respectively. The bulk- equations to one-loop order. In Sec. VI, we study random d critical behaviorin the presence of this type of disorderwas bond, in Sec. VII, random field, and in Sec. VIII, periodic studiedinRefs.[26,27,28,29]usingaperturbativeRGanal- disorder. In Sec. IX we discuss fully isotropicextendedde- ysisinconjunctionwithadoubleexpansioninε=4 dand fects. Inthefinalsection,wesummarizetheobtainedresults − ε . Thepinningoffluxlinesbycolumnardisorderwasstud- andourconclusions. d ied in Ref. [34], where it was shown that the system forms a Bose glass phase with flux lines strongly localized on the columnar defects, resulting in a zero dc linear resistivity. It II. THEMODEL wasarguedrecentlythatthetopologicallyorderedglassphase (Bragg glass) formed by flux lines can be destroyed in the We consider a d-dimensional elastic manifold embedded vicinityofasingleplanardefect[35]. Ithasbeenshownthat in a D-dimensionalspace with quencheddisorder. The con- thesmalldispersioninorientationofcolumnardefectsformsa figuration of the manifold is described by an N-component newthermodynamicphasecalled“splayedglass”[36].Inthis displacement field denoted below u(x), or equivalently u , x phase, the entanglement of flux lines enhances significantly where x denotes the d-dimensional internal coordinate of the transportof superconductors[37]. Competition between the manifold. For example, a domain wall corresponds to varioustypes of disorder, pointand columnar, has also been d = D 1 and N = 1, a CDW to d = D and N = 1, − studied,atequilibrium[38,39]andinthemovingphases[40]. andafluxlatticetod = D andN = 2. Inwhatfollows,we focusforsimplicityonthecaseN =1andelasticobjectswith In the case of an isotropicdistribution of disorder, power- short-rangeelasticity. ExtensionstoN > 1andLRelasticity lawcorrelationsarethesimplestexamplewiththepossibility arestraightforwardforthestatics. Theenergyofthemanifold for a scaling behavior with new fixed points (FPs) and new inthepresenceofdisorderisdefinedbytheHamiltonian critical exponents. The bulk-critical behavior of systems in which defects are correlated according to a power law r−a c = ddx [ u(x)]2+V x,u(x) , (3) forlargeseparationr was studiedin Refs. [30, 31, 32]. The H 2 ∇ power-lawcorrelationofdefectsind-dimensionalspacewith Z h (cid:0) (cid:1)i exponenta= d ε canbeascribedtorandomlydistributed wherec istheelasticity andV is arandompotential. Inthis d extendeddefects−ofinternaldimensionε withrandomorien- paper,westudythemodelwherethesecondcumulantofthe d tation.Forexample,a=dcorrespondstouncorrelatedpoint- randompotentialhastheform like defects, a = d 1 (a = d 2) describesinfinite lines (planes) of defects w−ith random−orientation. In general, one V(x,u)V(x′,u′) = R1(u−u′)δd(x−x′) wouldprobablynotexpectapurepower-lawdecayofcorrela- +R2(u u′)g(x x′). (4) − − tions.However,ifthecorrelationsofdefectsarisefromdiffer- The first part corresponds to pointlike disorder with short- ent sources with a broad distribution of characteristic length range(SR)correlationsininternalspace.Thesecondpartcor- scales, one can expect that the resulting correlations will respondstolong-range(LR)disorderininternalspaceandthe over several decades be approximatedby an effective power functiong(x) x−a atlargexwitha>0. Forconvenience, law [30]. If the correlation function of disorder can be ex- wenormalizei∼tsothatitsFouriertransformisg(q)= q a−d pressedasafinitesumofpower-lawcontributions icir−ai, atsmallqwithunitamplitude.Aprioriweareinterested|in| the onecanexpectthatthescaling behaviorisdominatedbythe P case a < d, wherethe correlationsdecaysufficiently slowly termwiththesmallesta [30]. Power-lawcorrelationswitha nonintegervaluea=d i df canbefoundinsystemscontain- ininternalspace. Wedenoteeverywherebelow q = (2dπdq)d ingdefectswithfractal−dimensiond [41]. Forexample,the and = ddx. Theshort-scaleuvcutoffisimpliedatq Λ behaviorof4HeinaerogelsisarguedftobedescribedbyanXY andthxesizeofthesystemisL. R R ∼ R R 3 One couldstartwith model(4), setting R = 0; however, 1 as we show below, a nonzero R is generated under coarse 1 graining. NotethatthefunctionsR (u)canthemselvesapri- i oribeSR,LR,orperiodicinthedirectionofthedisplacement fieldu. ForSR disorderin internalspaceonly,i.e., R = 0, 2 thesecasesareusuallyreferredtoasrandombond(RB),ran- domfield[R (u) u atlargeu](RF),andrandomperiodic 1 ∼| | (RP)universalityclasses. Belowwediscusshowtheseclasses extendtothecaseofLRinternaldisorder(R nonzero). 2 The model (3) and (4) could easily be studied using presently available numerical algorithms for directed mani- folds, in its statics (e.g., exact ground-state determinations) anditsdynamics(e.g.,criticalconfigurationatdepinning),by FIG.1:(Coloronline)Lineardefectsrandomlyandisotropicallydis- directly implementing a random potential correlated as de- tributedonparallelplaneswithrandomdistancesbetweenthem.This scribed by Eq. (4). It is also interesting to examine which geometrymimicsdistribution(6). typeofcorrelationsinarandommediumcannaturallyleadto Eq. (4) and how such disorder could be realized from, e.g., distributionsofextendeddefects,sincesomeofthemmaybe Although we mostly discuss extended defects, other experimentallyfeasible. sources of long-range correlations are possible, such as de- fects where each single one creates a long-ranged disorder potential, or a substrate matrix itself quenched at a critical III. REALIZATIONSANDUNIVERSALITYCLASSES point. A. Defectpotential B. Couplingtothemanifold Letus first recallhow long-rangecorrelationscan arise in Wenowexaminehowthelong-rangecorrelateddefectpo- thepotentialcreatedbydefects. Tothispurpose,callv(r)the tential couples to the elastic manifold and what type of LR defectpotential,inthesimplestcasetakentobeproportional model results. A general formulation of this coupling (see, to defect density. Consider for simplicity a large number of e.g.,[3])hastheform weakdefectlineswithauniformandisotropicdistributionin a space of dimension D. These create an almost Gaussian randompotentialv(r)with V(x,u)= dD−dzv(x,z)ρ(x,z,u), (7) Z v2 v(r)v(r′) LR forr (5) where the defect potential lives in the D-dimensional space ∼ r r′ a →∞ parametrizedby(x,u)andx Rd istheinternalcoordinate | − | ∈ ofthemanifold. ρ(x,z,u)isthemanifolddensity. Eachtype and a = D 1. To derive this, consider defects of finite − ofcouplingtothedisordercorrespondstoadifferentfunction radius a . The probability that point r′ is contained in the d ρ(x,z,u),andwenowindicatethemaincases. defectgoingthroughr is (a /r r′ )D−1,i.e., inversely d ∼ | − | proportional to the sphere of radius r r′ . This is easily | − | generalized to isotropic distributions of extended defects of 1. Elasticinterfacesinrandombonddisorder internaldimensionε ,witha=D ε .Notethatbyextended d d − defects we mean defects that are perfectly correlated along Letusfirstdiscusselasticinterfacesintheso-calledrandom their internal dimension. Generalizations where defects are bond(RB)case,wherethecouplingbetweendisorderandin- themselves(anisotropic)fractalscanalsobeconsidered. terfaceoccursonlyinthevicinityoftheinterfaceas,e.g.,for Animportantcaseisauniformdistributionofextendedde- domain walls in magnets with random bond disorder. This fectsinD-dimensionalspace,butisotropiconlywithinalin- earsubspaceofdimensionD′. Forinstance,onecanirradiate correspondstothechoice amaterialinthebulkwhilesimultaneouslyrotatingitalongan ρ(x,z,u) δ(z u), (8) axis. Thisproducesa distributionoflineardefects(εd = 1), ∼ − isotropic within the plane (D′ = 2), and normal to the axis hencetheadditionalvariablezintroducedinEq.(7)isidenti- (seeFig.1).Moregenerally,thisyieldsadefectpotentialwith caltou,thedisplacementfield(withingeneralD d=N ). secondcumulant, Inthatcase, − v(r,z)v(r′,z)=g(r r′)f(z z′), (6) V (x,u) v(x,u). (9) − − RB g(r) r−a , ∼ ∼ Consider now a uniform distribution of defects in the D- whilef(z)isshort-ranged(herer RD′,z RD−D′,a = dimensionalplanebutisotropicallydistributedwithinthe(av- D′ ε ). ∈ ∈ erageddirection)oftheinternalspaceofthe manifold. This d − 4 isgivenbyEq. (6)abovewithD′ =d, thatsubspace.TherandompotentialexperiencedbytheCDW isgivenby V (x,u)V (0,0)=g(x)R (u), (10) RB RB 2 V(x,φ)=h (x)cosφ(x)+h (x)sinφ(x), (13) 1 2 whichismodel(4)withaSRfunctionR (u)and,infullgen- 2 with Gaussian distributed h (x) = v(x)cos(2k x ) and erality, a = d ε . Thephysicalrealizationin termsof ex- 1 F ⊥ d − h (x) = v(x)sin(2k x ). Onlargescalesk x 1, and tendeddefectsisthusaninterface(d=2)inD =3withline 2 F ⊥ F ⊥ ≫ theircumulantcanbeapproximatedby[fromEq. (6)] defects all orthogonal to the u directions, isotropically dis- tributedwithinthe(average)planeoftheinterface,anda=1. 1 1v2 ThisisillustratedinFig. 1. h (x)h (0)= v2 δ δd(x)+ LRδ δ(x ), (14) i j 2 SR ij 2 xa ij ⊥ Another physical realization consists of extended defects k withfiniterandomlengthssuchthatthedistributionoflengths where we have omitted all rapidly fluctuating contributions. has a power-law tail for large lengths. For instance, needles Equations(13)and(14)givethepotentialcorrelatorinaform ofvariablelengthsalignedalongonedirectioncouldactona thatcanbegeneralizedto directed polymer d = 1 as power-law correlated disorder in internalspace. V(x,u)V(x′,u′)=R (u u′)δd(x x′) An interesting, though qualitatively different, case occurs 1 − − whentheextendeddefectsaredistributedisotropicallyinthe +R2(u−u′)g(xk−x′k)δd⊥(x⊥−x′⊥), (15) whole(x,u)space.ThiswillbediscussedinSec. IX. Finally, note that we considerweak Gaussian disorder. It is possible withd⊥ =1andbarefunctionsRi(φ)= 12vi2cos(φ),u≡φ. thatatstrongdisorderanotherphase existswherethe line or Thus periodic systems are described by periodic functions manifoldgetslocalizedalongthestrongestextendeddefect. Ri(u). Hered⊥ isthedimensionofthetransversesubspace. NotethattheHamiltonian = ddx[1( φ)2+V(x,φ)] HXY 2 ∇ withV(x,φ)givenbyEq.(13)andaGaussiandistributionof R 2. Elasticinterfacesinrandomfielddisorder fieldshi(x)hj(x′) g(x x′)describestheXY modelwith ∼ − long-rangecorrelatedrandomfields. Therefore,thelattercan be mapped onto periodic manifolds with correlator (15) and Randomfield(RF)disorderisdescribedbythefunction d = 0, i.e., tomodel(4) withperiodicfunctionsR (u). In ⊥ i thenextsection,wewillshowhowtheFRGpictureofmodel ρ(x,z,u) Θ(u z), (11) ∼ − (15) can be obtainedfrom the FRG results for model(4). It where Θ(z) is the Heaviside step function. This means that isworthwhiletonotethatinthecaseofperiodicsystems,the the changein energywhen the interfacemovesbetween two integration in Fourier space is supposed to be over the first configurationsis proportionalto the sum ofall defectpoten- Brillouin zone. Note also that we have neglected the cou- tialsinthevolume(inRD)spannedbythischange. Thedis- pling of disorder to the long wavelength part of the density cussionofthegeometryofdefectsneededtoproduceLRdis- ρ0 ddxv(x) u(x)asitisusuallyirrelevantneartheupper − ∇ criticaldimension. Indeed,inthereplicatedHamiltonian(see orderininternalspaceisidenticaltothelastsection.Substitu- R below), this coupling generates additionally to the SR term tionofEq.(11)intoEq.(7)yieldstheRFdisordercorrelator, whichcanbeapproximatedbyEq.(4)withR (u) ufor 1/T ddxσ1 ua(x) ub(x)theLRterm i − ∇ ∇ ∼ − largeu. 1 R ddxddx′σ g(x x′)δd⊥(x x′ ) u (x) u (x′). −T 2 k− k ⊥− ⊥ ∇ a ∇ b Z 3. Periodicsystems Forsmalldisorderinthevicinityoftheuppercriticaldimen- sion,bothofthemrenormalizetozeroaccordingto Asanexampleofperiodicsystems,weconsiderincommen- surate single-QCDWs. In thatcase D = d, hencethe func- dℓσ1 = (2 d 2ζ)σ1+..., (16) − − tionρ(x,z,u) = ρ(x,u) in Eq. (7). Theelectrondensityof d σ = (2 a d 2ζ)σ +... (17) ℓ 2 ⊥ 2 CDWs neglectingeffectscausedbyan appliedstrain hasthe − − − form[3,6] IV. DYNAMICALFORMALISM ρ(x,φ) ρ +ρ cos 2k [x u(x)] , (12) 0 1 F ⊥ ∼ { − } Theoverdampeddynamicsoftheelasticmanifoldinadis- wherethedisplacementu(x)ofthemaximumofthedensity orderedmediumcanbedescribedbytheequationofmotion is related to the standardphase field via φ(x) = 2k u(x), F − wherekF istheFermiwavevector. Thed-dimensionalspace η∂tuxt =c 2uxt+F(x,uxt)+fxt, (18) is split intox = (x ,x ), with x denotingthe modulation ∇ k ⊥ ⊥ directionoftheCDWandk theFermiwavevector. where η is the friction coefficient. In the presence of F We again consider the situation of extended defects all an applied force f, the center-of-mass velocity is v = aligned with the direction x and isotropically distributed in L−d ∂ u . The pinning force reads F = ∂ V(x,u), k x t xt − u R 5 andthus,forcorrelator(4),thesecondcumulantoftheforce isgivenby F(x,u)F(x′,u′) = ∆ (u u′)δd(x x′) 1 − − +∆ (u u′)g(x x′), (19) 2 − − with ∆ = R′′(u) in thebaremodel. Inthe following,we willalwiays−useig(q)= q a−dandg(x)= eiqxg(q). | | q Themostimportantquantityofinterestistheroughnessex- R ponentζ measuredin equilibriumorat the depinningtransi- FIG.2: Diagrammatic rules: a, propogator; b, SRdisorder vertex; tionf =fcdefinedby c, LR disorder vertex; d and e, one-loop diagrams generating the criticalforceatthedepinningandgivingcorrectiontothemobility C(x x′)= ux ux′ 2 x x′ 2ζ. (20) andelasticity. − | − | ∼| − | Thevelocityvanishesatthedepinningtransitionasv f f β,whilethecorrelationlengthdivergesatthetrans∼itio|na−s elasticity. Thequadraticpartoftheaction(21)yieldsthefree c ξ | f f −ν. Onecanalsointroducethedynamiccritical responsefunction c ∼ | − | exponentz,whichrelatesspatialandtemporalcorrelationsvia t xz. uqtiuˆ−q0 0 =Rqt = Θ(t)e−(cq2+m2)t/η, (23) ∼ h i η Let us briefly sketch how one can construct the perturba- tiontheoryin disorder. We adoptthedynamicformalism. It whichcanbeusedtogeneratetheperturbationtheoryindis- alsoallowsustoobtainthestaticsequations(tooneloopand order.Thetheoryhastwodisorderinteractionvertices∆ (u) 1 N = 1thesecaneasilybededuced,ascanbecheckedusing and ∆ (u). At each vertex ∆ (u) there is one conservation 2 i replica).Insteadofadirectsolutionoftheequationofmotion ruleformomentumandtwo forfrequencywhile eachvertex (18) with consequent averaging over different initial condi- ∆ (u)carriesadditionalmomentumdependence.Inwhatfol- 2 tions and disorder configurations, we employ the formalism lows, wegeneralizethesplitteddiagrammaticmethoddevel- of generating functional. Introducing the response field uˆ oped in Ref. [18], shown in Fig. 2. As is the case for the xt wederivetheeffectiveaction,whichreads modelwithSRdisorder,ourmodelexhibitsthe so-calleddi- mension reduction, both in the statics and in the dynamics. S = iuˆ (η∂ c 2+m2)u iuˆ f The naive perturbation theory obtained taking the functions xt t xt xt xt − ∇ − ∆ (u)analyticatu = 0leadstothesameresultasthatcom- Zxt Zxt i 1 putedfromtheGaussiantheorysetting∆i(u)=∆i(0). Inthe −2Zxtt′ iuˆxtiuˆxt′∆1(uxt−uxt′) limitm→0,thetwo-pointfunctionthenreadstoallorders: −21Zxx′tt′ iuˆxtiuˆx′t′g(x−x′)∆2(uxt−ux′t′),(21) uqtu−qt′ = ∆c21q(04) + c2∆q42+(0d−)a. (24) where we have added a small mass m, which plays the role The first term in Eq. (24) dominates in the limit q 0 for → ofanIRcutoff. Tostudythecriticaldomain,onehastotake a d, and LR disorder is irrelevant in this case, while the ≥ thelimitm 0. TheaverageoftheobservableA[u ]over last term dominates for a < d. Equation (24) results in xt dynamictraj→ectorieswithdifferentinitialconditionsandover ζ =(4 d)/2fora dandζ =(4 a)/2fora<d,which − ≥ − differentdisorderconfigurationscanbewrittenasfollows: areknowntobeincorrect. Thephysicalreasonforthisisthe existenceofalargenumberofmetastablestates. Therough- nessexponentcanbeestimatedusingFloryargumentssetting A[u ] = [u] [uˆ]A[u ]e−S[u,uˆ]. (22) h xt i D D xt u xζ. Thenthegradienttermscalesas 2ux xζ−2. The Z pin∼ningforceforSRdisorderscalesasF(x∇,u )∼ x−(d+ζ)/2 x Furthermore, the response to the external perturbation fxt, andforLRdisorderasF(x,ux) x−(a+ζ)/2. T∼herefore,in which is local in time and in space, can be computed using the regime where the behavior is∼governed by SR disorder, hA[uxt]iuˆxti = δfδxthA[uxt]i. Notethatcausalityisfulfilled, the Flory estimate gives for RF disorder the Imry-Ma value andhereweadopttheItoconvention,whichresultsingetting ζF = (4 d)/3 while for LR RF disorder we get ζF = SR − LR ridofallclosedloopscomposedofresponsefunctions. (4 a)/3. Asimilarargumentconstructedfromthepotential − In the absence of LR correlated disorder action, Eq. (21) correlatorsR (u)yieldstheFloryestimatesζF =(4 d)/5 exhibitsthe so-calledstatisticaltiltsymmetry(STS),i.e., the and ζF = (i4 a)/5, respectively, for theScRase of r−andom LR − invarianceofthedisordertermsunderthetiltu u +h bonddisorder. To obtaincorrectionsto the Flory values, the xt xt x → withanarbitraryfunctionh .TheSTSgivestheexactidentity FRG developedin Refs. [12, 14, 15, 16, 17, 18] willbe em- x =1/cq2fortheresponsefunction = u iuˆ , ployed. The solution is nontrivial because the renormalized tRqt Rqt h qt −q0i whichimpliesthattheelasticityisuncorrectedbydisorderto disorderbecomesnonanalyticabovetheLarkinscale,andone R allorders. LRcorrelateddisorderdestroystheSTSofaction hastodealwithanonanalyticfieldtheory.Herewegeneralize (21),andthus,inprinciple,allowsforarenormalizationofthe thisapproachtothecaseofLRcorrelateddisorder. 6 V. FUNCTIONALRENORMALIZATION a b We now consider the renormalizationof model (21). The subtleties arising for the correlator (15) will be discussed briefly at the end. We carry out perturbation theory in the baredisordercorrelators∆ (u)andthenintroducetherenor- i0 malizedcorrelators∆ (u). Wewillsuppressthesubscript”0” i to avoid an overly complicated notation. According to the c d standard renormalizationprogram, we compute the effective actiontoone-looporder. Hereweadoptthedimensionalreg- ularization of integrals and employ the minimal subtraction schemetocomputetherenormalizedquantitiesandabsorbthe polesinε=4 dandδ =4 aintomultiplicativeZfactors. FIG.3: One-loopdiagramscorrectingdisorder. Thedottedlinecor- − − When derivativesof the ∆ at u = 0 occur, in the dynamics respondstoeitherSRdisordervertex(dashedline)ortoLRdisorder i (i.e.,atthedepinningtransitionfordynamicalquantities)they vertex (wavy line). Diagrams of type a, b, and c contribute to SR aretakenatu = 0+ ascanbejustifiedexactlyforN = 1. In disorder.OnlydiagramsoftypedcorrecttheLRdisorder. thestatics, thetreatmentismoresubtle(asdiscussedintwo- loop studies [19]) but is not needed in the present one-loop study. read Letusfirstlyconsiderthefirst-ordertermsgeneratedbyex- 1 mˆ−ε pansionofe−Sindisorder.Thesetermsaregivenbydiagrams I = =K + (1), (29) 1 (q2+mˆ2)2 4 ε O dandeshowninFig.2. Westartfrom Zq qa−d mˆ−δ I = =K + (1), (30) 2 (q2+mˆ2)2 4 δ O iuˆxt∆1(uxt uxt′)iuˆxt′ Zq Zt>t′,x − where we set mˆ = m/√c and K is the area of a d- + iuˆxt∆2(uxt ux′t′)g(x x′)iuˆx′t′.(25) dimensional sphere divided by (2π)d.d To remove the poles Zt>t′,x,x′ − − in the mobility, we introduce the corresponding Z factor η =Z−1[∆ ]η,whichtoone-looporderisgivenby Expanding∆i(u)inaTaylorseriesandcontractingoneiuˆ,we R η i obtain the leadingcorrectionsto the thresholdforce, friction andelasticity. Thetermsgivingthethresholdforcetoleading Zη−1 =1−∆ˆ′1′(0+)I1−∆ˆ′2′(0+)I2. (31) orderare In the absenceof LR correlateddisorder, the elasticity re- mainsuncorrectedtoallordersduetotheSTS,whileherethe iuˆxt∆′1(0+)Rx=0,t−t′ correctionreads Zt>t′,x +Zt>t′,x,x′iuˆxt∆′2(0+)g(x−x′)Rx−x′,t−t′. (26) δc = 21d∆′2′(0)Zxtx2Rx,tg(x) 1 1 Tarheeynoanruensitvreornsgall.yTuvheditveremrgsinpgro(p∼orΛtiod−na2l+toΛ∆a−′′(20)+, a)ncdanthbues = −2d∆′2′(0)Zqg(q)∇2qcq2+m2 i K ε rewrittenascorrectionstofrictionandelasticityusingtheex- = c d∆ˆ′′(0) mˆ−δ. (32) pansion − d 2 δ We have not set the second derivative at 0+ as ∆ remains ∂ 2 uxt ux′t′ =(t t′)∂tuxt+(x x′)i uxt analyticasisdiscussedbelow. Furthermore,thecorrectionto − − − ∂x i elasticity(32)isfiniteforε,δ 0,andthuscdoesnotacquire 1 ∂2u → +(x x′) (x x′) xt + (∆t2,∆x3).(27) ananomalousdimension. However,weexpectcorrectionsat i j − − 2∂xi∂xj O two-looporder. If thisis the case, one hasto introducea Z- factorthatrenormalizeselasticity:c =Z−1[∆ ]cwithZ = R c i c ThefirstterminEq.(27)givesthecorrectiontofriction, 1+ (∆2). O i In principle, due to the lack of STS, the KPZ term δη = −∆′1′(0+)ZttRx=0,t−∆′2′(0+)ZxttRx,tg(x) iλn(∇thuexetq)u2abtiroenakoifnmgothtieosny(m18m)eattrythued→ep−inunicnagntrbaensgietinoenr.atIend- = η ∆ˆ′′(0+)I +∆ˆ′′(0+)I , (28) deed, diagram e in Fig. 2, when expanding ∆(u) to second − 1 1 2 2 orderinu,usingEq.(27),gives h i wherewehaveintroduced∆ˆ (u) = ∆ (u)/c2. Theone-loop 1 i i δλ= ∆′′′(0+) x2R g(x). (33) integralsI1 and I2 divergelogarithmicallyand for ε,δ → 0 2d 2 Zxt x,t 7 Moreover,thetermwithcubicsymmetry(M = 2)andterms NotethatinthepresenceofSTS,ψ = 0,andwerecoverthe with higher-order symmetries (M > 2) λ (∂ u )2M conditions obtained at the end of Sec. III. The actual value M i i xt canbegeneratedbydiagrame, of ζ will be fixed by the disorder correlators at the FP. The P elasticityexponentψandthedynamicexponentzread 1 δλ = ∆(2M+1)(0+) R g(x) x2M. (34) M d(2M)! 2 Zxt x,t Xi i ψ = −mddmlnZc(∆˜i) 0, (42) However,aswewillshowlater,ifwestartfrombareanalytic d (cid:12) disorderdistribution, the LRdisorderremainsanalyticalong z = 2+ψ+mdmlnZ(cid:12)(cid:12)η(∆˜i) 0, (43) theFRGflowandthecorrespondingFPvalue∆∗(u)isalsoan (cid:12) 2 where subscript “0” means a derivative at co(cid:12)nstant bare pa- analyticfunction.Thusterms(33)and(34)arezero,provided (cid:12) rameters.Toone-looporderthisyields thattheyareabsentinthebeginning.Moreover,theterms(34) are irrelevant in the RG sense for M > 2 [but not the KPZ ψ = (ε2,εδ,δ2), (44) term(33);seeRef.[46]].Thisprovesthatourbaremodel(21) O isaminimalmodelforthedescriptionofelasticmanifoldsin z = 2 ∆˜∗′′(0) ∆˜∗′′(0). (45) − 1 − 2 arandommediawithLRcorrelateddisorder. The corrections to disorder are given by the diagrams Thescalingrelationsthenread[46] showninFig.3. Thecorrespondingexpressionsread 1 ν = , (46) δ1∆ˆ (u)= ∆ˆ′(u)2+[∆ˆ (u) ∆ˆ (0)]∆ˆ′′(u) I 2 ζ+ψ 1 −{ 1 1 − 1 1 } 1 − z ζ −{2∆ˆ′1(u)∆ˆ′2(u)2+[∆ˆ2(u)−∆ˆ2(0)]∆ˆ′1′(u) β =ν(z−ζ)= 2 −ζ+ψ. (47) +∆ˆ (u)∆ˆ′′(u) I [∆ˆ′(u)2+∆ˆ (u)∆ˆ′′(u)]I , (35) − 1 2 } 2− 2 2 2 3 δ1∆ˆ (u)= ∆ˆ (0)∆ˆ′′(u)I ∆ˆ (0)∆ˆ′′(u)I . (36) At zero velocity, the above calculation can be consid- 2 − 1 2 1− 2 2 2 eredasa dynamicalformulationoftheequilibriumproblem. The one-loop integrals I and I have been defined in However, one has to be careful with mapping the dynamic 1 2 Eqs.(29)and(30),whereasI isgivenby FRG equations to the static equations, because as shown in 3 Ref. [19] the bare relation ∆ = R′′(u) breaks down for i − i q2(a−d) K mˆ−2δ+ε theSRcaseattwo-looporder. Thestandardderivationofthe I = = 4 + (1). (37) 3 (q2+mˆ2)2 2δ ε O FRG equationsin the statics is based on the renormalization Zq − of the replicatedHamiltonian. We have checkedthatsimilar Letusdefinetherenormalizeddimensionlessdisorder∆Ras toothersystemswithonlySRdisorder,thestaticFRGequa- i tionsforsystemswith LRdisordercanbe obtainedfromthe mε∆R =∆ˆ (u)+δ1∆ˆ (u), (38) dynamicflow equationsto one-looporderusing the identifi- 1 1 1 cation∆˜ = R′′(u). Theyread mδ∆R =∆ˆ (u)+δ1∆ˆ (u). (39) i − i 2 2 2 ∂ R (u) = (ε 4ζ)R (u)+ζuR′(u) Theβ functionsaredefinedasthederivativeof∆R(u)with ℓ 1 − 1 1 i i 1 dreesrpteoctatttoaitnheamfixaesds pmoiantt,fiixteisdnbeacreessdairsyortdoerre∆scia(lue)t.heInfieolrd- +2[R1′′(u)+R2′′(u)]2+AR1′′(u), (48) u by mζ and write the β functions for the functions ∆˜i =: ∂ℓR2(u) = (δ−4ζ)R2(u)+ζuR2′(u)+AR2′′(u), (49) K m−2ζ∆R(umζ), 4 i whereA= [R′′(0)+R′′(0)]. − 1 2 ∂ ∆˜ (u) = (ε 2ζ)∆˜ (u)+ζu∆˜′(u) InthecaseofthemodelwithcorrelatorgivenbyEq.(15), ℓ 1 − 1 1 onehastodistinguishbetweenthetransverseandparalleldi- 1 d2 [∆˜ (u)+∆˜ (u)]2+A∆˜′′(u), (40) rections,andthereforeintroducecorrespondingelasticcoeffi- − 2du2 1 2 1 cientsc andc . Inthetransversedirection,disorderisonly ⊥ k ∂ℓ∆˜2(u) = (δ−2ζ)∆˜2(u)+ζu∆˜′2(u)+A∆˜′2′(u), (41) δ-correlatedandasaresultthetransverseelasticityisnotcor- rectedandcanbesetto1.Thepowercountingshowsthatthe whTehreeAsca=lin[∆˜g1b(e0h)a+vio∆˜r2o(f0)th]eansdys∂teℓm:=is−cmon∂t∂mro.lled by a sta- LTRhedoinsoer-dloeorpisinntaeigvreallysraerleevloagnatrfiothrmδ1ica=lly4d−ivedr⊥ge−ntaand<fo0r. ble fixed point [∆˜∗(u),∆˜∗(u)] of flow equations (40) and ε,δ 0aregivenbyEqs.(29),(30),and(37)withδ δ . 1 2 1 1 (41). To determine the critical exponents, let us start from Thus→the aboverenormalizationcan be generalizedto m→odel powercountingfollowingRef.[46]. Thequadraticpartofac- (15)ifoneformallyreplacesδ δ . 1 tion (21) is invariant under x xb, t tbz, u ubζ, Letusshowhowanonanalyt→icityofthedisorderappearsin uˆ uˆb2−z−ζ−d+ψ. Underthis→transform→ation,them→obility, theproblem. Westartfromthebareanalyticcorrelatorswith ela→sticity, and disorder scale at the Gaussian FP as c bψ, ∆˜′′(0) <0. Theflowequationfory := ∆˜′′(0) ∆˜′′(0) η ∼ b2−z+ψ, ∆˜1 ∼ b4−d−2ζ+2ψ, and ∆˜2 ∼ b4−a−2∼ζ+2ψ. R1′i′′′(0)+R2′′′′(0)>0reads − 1 − 2 ≡ Thus SR disorder becomes relevant for ζ ψ < (4 d)/2 whileLRdisorderisnaivelyrelevantforζ− ψ <(4 −a)/2. ∂ y =εy+3y2+γ(m), (50) ℓ − − 8 whereγ(m) = (ε δ)∆˜′′(0). Aswe showbelow,thefunc- Usingourfreedomto rescaleR (u), we introduceδˆ:= δ/ε, tion∆˜2(u)remains−analyt2icalongthewholeFRGflowandat Ri(u) =: εri(u) and fix r1′′(0)i =: −x and r2′′(0) = −1, thefixedpoint(FP).ThesolutionofEq.(50)foranyfunction where x is the parameter to be determined. The stationarity γ(m)boundedfrombelowblowsupatsomefinitescalem∗, conditionofEqs.(48)and(49)reads whichcanbeassociatedwiththeinverseLarkinlength. This blowupofycorrespondstothegenerationofacuspsingular- 1 4δˆ r (u)+ δˆur′(u) ity:∆˜ (u)becomesnonanalyticattheoriginandacquiresfor − 5 1 5 1 1 m < m∗ a nonzero ∆˜′1(0+). The precise estimation of the (cid:16) +(cid:17)1[r′′(u)+r′′(u)]2+(1+x)r′′(u)=0, (55) Larkinscalerequiresthesolutionofthepairofflowequations 2 1 2 1 forboth∆˜i(u). δˆ δˆ Before studying different FPs, let us note an important 5r2(u)+ 5ur2′(u)+(1+x)r2′′(u)=0. (56) propertythatisvalidunderallconditions:if∆˜ (u)(i=1,2) i is a solution of Eqs. (40) and (41), then κ2∆˜ (u/κ) is also SinceEq.(56)islinearinr2,itcanbesolvedforfixedxby i a solution. Analogously, if R (u) is a solution of Eqs. (48) and(49),thenκ4R (u/κ)isalisoasolution. We canusethis 5(1+x) δˆu2 i r (u)= exp . (57) property to fix the amplitude of the function in the nonperi- 2 δˆ −10(1+x)! odiccase,whilefortheperiodiccasethesolutionisuniqueas theperiodisfixed. FromtheTaylorexpansionofEq.(55)aroundu=0,wefind 5(1 x2) r (0) = − , VI. NONPERIODICSYSTEMS:RANDOMBOND 1 8δˆ 10 − DISORDER r′(0) = 0, (58) 1 Inthissection, we studythescalingbehaviorof anelastic wherethesecondconditionexcludesthepossibilityofasuper- interfaceinadisorderedenvironmentwithLRcorrelatedRB cusp(thefirstlinedoesnotdivergesincex=1forδ =5/4). disorder. To this aim, we have to find a stationary solution Thusforfixedδˆthesimultaneousequations(55)and(56)have (FP) of Eqs. (48) and (49) that decays exponentially fast at auniquesolutionforanyx,butonlyforaspecificxdoesthe infinity as expected for RB disorder. The SR RB FP with solutionr1(u)decayexponentiallyfastto0forlargeu.Tode- R (u)=0,whichdescribessystemswithonlySRcorrelated terminethisvalue,weemploytheshootingmethodchoosing 2 disorder,wascomputednumericallyinRefs.[12,17,18].The xasourshootingparameter.Forfixedx,weintegratenumer- correspondingroughnessexponenttoone-looporderisgiven ically Eq. (55) with r2(u) givenby Eq. (57) from0 to some byζSR =0.208298ε+ (ε2). WenowlookforaLRRBFP largeumaxwithinitialconditions(58). Thentheshootingpa- withR (u)=0. IntegraOtingEq.(49),weobtain rameterx canbefoundbysolvingnumericallythe algebraic 2 6 equation r (u ;x) = 0. Increasing u , we acquire the 1 max max ∞ ∞ desiredaccuracyforxandr (x). Wewereabletofindthenu- 1 ∂ℓ R2(u) = (δ 5ζ) R2(u). (51) mericalsolution with reasonableaccuracyonly for δˆ 1.1. Z − Z ThetypicalFPfunctionsr∗(u)andr∗(u)areshownin≥Fig.4. 0 0 1 2 Theactualvaluesofxobtainedbyshootingfordifferentδˆare Therefore,thenewLRRBFP,ifitexists,has summarizedinTableI. Let us now check the stability of SR and LR FPs. To δ ζ = + (ε2,δ2,εδ). (52) that end we linearize the FRG equations about each FP. In LRRB 5 O the vicinity of a FP, the linearized flow equationshave solu- tionsthatarepurepowerlawsinm,i.e.,scaleasm−λ witha The direct inspection of diagrams contributing to the FRG discrete spectrum of eigenvaluesλ. A stable fixed pointhas equationforR showsthatthehigherorderscanonlybelin- 2 all eigenvalues λ < 0. Substituting r r∗(u) + z (u) earinevenderivativesofR2(u). Theonlytermthatislinear i → i i into the flow equations and keeping only terms that are lin- inR (u)comesfromtherenormalizationoftheelasticityand 2 earinz (u),wederivethelinearizedflowequationsattheFP canberewrittenas2ψR (u)toallorders.Therefore,inhigher i 2 r∗(u),r∗(u) , orderswehave { 1 2 } ∞ ∞ (1 4ζ )z (u)+ζ uz′(u)+[r∗′′(u)+r∗′′(u)] − 1 1 1 1 1 2 ∂ R (u) = (δ 5ζ+2ψ) R (u), (53) [z′′(u)+z′′(u)]+(1+x)z′′(u) ℓ 2 − 2 × 1 2 1 Z0 Z0 + A0r1∗′′(u)=λz1(u), (59) athnedFaRsaGcroenssuelqtiunegnicnet,he0∞exdaucRti2d(eun)tiitsyexactlypreservedalong (δˆ +− 4(1ζ1+)zx2)(zu2′)′(+u)ζ+1uAz2′0(ru2∗)′′(u)=λz2(u), (60) R ζLRRB = δ+2ψ. (54) wanhderλewiseahlasvoeminetarosudruecdedinζu=niεtsζ1o,fAε0 .=N−o[zte1′′(t0h)at+bze2′c′(a0u)s]e, 5 9 TABLEI:Long-rangecorrelatedrandombondfixedpoint.Shooting 1.0 parameter x = −r′′(0), themaximal eigenvalue and theuniversal 1 amplitudefordifferentvaluesofδˆ. 0.8 -r1* ’’ δˆ x(δˆ) λ1 B(δˆ) 0.6 -r2* ’’ 1.1 1.931986 33.89 0.4 1.2 1.121722 −0.160 31.37 1.3 0.922046 −0.262 31.64 0.2 1.4 0.825747 −0.365 32.41 1.5a 0.766976 −0.469 33.34 0.0 0 1 2 3 4 5 6 7 8 2.0b 0.639151 −1 38.44 -0.2 3.0c 0.562357 −2.120 48.10 u ∞ 0.463619 ∞ -0.4 aRandomlinesinaplanarinterface(d=2,a=1). FIG.4: Fixedpointdescribingtheinterfaceinamediumwithlong- bcRRaannddoommlpilnaenseisninaa3d3dmmanainfoiflodld(d(d==3,3a,a==2)1.). rangecorrelatedrandombonddisorder(LRRBFP)forδˆ= 2. The SRpartr∗(u)isanonanalyticfunctionwithr∗′′(0+)6=0. TheLR 1 1 partr∗(u)isananalyticfunction.Herewereportminustheirsecond 2 derivative. of the freedom to rescale r (u), we always have the eigen- i mode z(0) with marginal eigenvalue λ = 0. As shown in i 0 Ref. [45] for SR RB FP the corresponding eigenfunction is eigenvalueλ= 1andreads − givenby z(0) = ur∗′(u) 4r∗(u),z(0) = 0, while the next eigenvalue1λ1 = −11 cor−respo1nds to2z1(1) = ζ1SRur1∗′(u) + z1(u) = −13ur1∗′(u)+ 21r1∗(u)+ 65r2∗(u), (63) (1 4ζSR)r∗(u),z(0) = 0. Here r∗,r∗ = 0 is the SR 1 RB−FP a1nd t1he Tay2lor expansion of{th1e f2unction}r1∗ can be z2(u) = −3[ur2∗′(u)+r2∗(u)]. (64) found in Ref. [45]. Thus the SR RB FP is stable in the SR disorder subspace (r = z = 0). Let us check its ForothervaluesofδˆwesolveEq.(59)numericallyusingλas 2 2 stability with respect to introduction of LR correlated disor- ashootingparameterandrequireanexponentiallyfastdecay der. From Eq. (60) it follows that the maximal eigenvalue ofz (u)forlargeu. Tocomputethe numericalsolution,we 1 λ = δˆ 5ζSR correspondstotheexponentialeigenfunc- need the initial conditions. Expanding Eq. (59) in a Taylor tiomnaxz (u)−=ex1p( ζSRu2/2r∗′′(0))withr∗′′(0)= 0.577 series,weobtain 2 − 1 | 1 | 1 − forSRRBFP.Asaconsequence,theLRcorrelateddisorder destabilizesthe SR RB FP if δˆ > 5ζSR 1.041, or equiva- z (0) = 5[x2(2δˆ+5λ)+5x(δˆ+λ)+3δˆ], (65) lently, using Eq. (52), if ζSR < ζLR1. T≈his criterion was of 1 3δˆ(5 4δˆ 5λ) − − courseexpected. z′(0) = 0. (66) 1 We now check the stability of the LR RB FP {wri1∗th(ue)i,gre2∗n(fuu)nc6=tio0n}s.gItivaelsnobhyasza(0m) a=rgiunra∗l′e(uig)enva4lru∗e(λu0)=tha0t vAapluaretifsroλm1.thIteimsashrgoiwnanlfeoigrednifvfaelrueenλtδ0ˆ=>01,.1thienlaTragbelsetIe.igTehne- canbecheckedbydirectsubstitiutionintoiEqs.−(59)iand(60). negativesignofλ1 reflectsthestabilityoftheLRRBFP.For Equation(60)allowsforananalyticalsolutionthatreads δˆ 1.1wefailedtocomputethenumericalsolutionwithrea- ≤ sonableaccuracy. However,thelargesteigenvaluecomputed 5A δˆu2 δˆu2 atLRRBFPλ1tendsto0forδˆ 1.1andtheSRRBFPbe- z2(u)= 2δˆ+05λ"5(1+x) −1#exp −10(1+x)!.(61) cdoismoredseur.nsTtahbulesfwoer δˆex>pe1ct.0t4h1atw→tihtehLreRspRecBt tFoPLRis-csotarbrelelatfeodr δˆ>1.041.Moreover,thelargesteigenvaluewithinaccessible Wearefreetofixthelengthoftheeigenvectors,forinstance, accuracyiswellapproximatedbyλ = 0.1917(ζSR ζLR), bytheconditionz′′(0)=1,whichgives 1 1 − 1 2 whichgivesλ = 0.06forδˆ=1.1. 1 − Besidestheroughnessexponent,thereisanotheruniversal 1 A = (1+x)[2δˆ+5λ]. (62) quantitythatisofinterest.Thisisthedisplacementcorrelation 0 3δˆ function,whichbehaveslike Thus to find the eigenvalue λ and the eigenfunction z1, we u u = q−(d+2ζ). (67) havetosolveEq.(59)withconditionz′′(0) = 1 A and q −q Ad 1 − − 0 requireanexponentiallyfastdecayofthesolutionatlargeu. Let us show that in contrast to systems with only SR- Theonlycase forwhichwesucceededto constructthesolu- correlateddisorder,thissystem,whosebehavioriscontrolled tionanalyticallyisδˆ= 2,whichisdepictedinFig.5. Ithas by the LR RB FP, has a universal amplitude . Indeed, d A 10 LetuslookforasolutionofEqs.(40)and(41),whichde- 0.8 caysexponentiallyfastatinfinityasexpectedforRFdisorder. -z1’’ From Eq. (41) it followsthat (hereafterwe dropthe tilde on ∆ ) i 0.4 -z2’’ ∞ ∞ ∂ ∆ (u) = (δ 3ζ) ∆ (u). (71) ℓ 2 2 0.0 − 0 1 2 3 4 5 6 7 8 Z0 Z0 -0.4 u Therefore, 0∞∆2(u)ispreservedalongtheFRGflowfixing theroughnessexponentto R -0.8 ζ = δ + (ε2,δ2,εδ), (72) LRRF 3 O FIG.5: Secondderivativeofeigenfunctions z (u)andz (u)com- which coincides with the Flory estimate. Introducing 1 2 putedattheLRRBFPforδˆ=2. ∆i(u) = εyi(u), ζ = εζ1 andfixingy1(0) = x, y2(0) = 1, we can rewrite the stationary form of Eqs. (40) and (41) as follows(ζ =δˆ/3): 1 according to Eq. (51), the integral duRtr(u) is preserved 2 along the flow and is fixed to its bare value Q, where we 1 d2 haveintroducedtheactualrenormaliRzedcorrelatorR2tr which (1−2ζ1)y1(u) + ζ1uy1′(u)− 2du2[y1(u)+y2(u)]2 is connected to R2 given by Eq. (57) by the relation Ritr = + [1+x]y′′(u)=0, (73) κ4R (u/κ)withκgivenby 1 i (δˆ 2ζ )y (u) + ζ uy′(u)+[1+x]y′′(u)=0. (74) − 1 2 1 2 2 3/10 Q1/5 δˆ Equation(74)canbesolvedanalyticallygiving κ= , (68) (2π)1/10 5(1+x)! δˆu2 whereweused duRtr(u) = Q. Thentheamplitudecanbe y2(u)=exp . (75) 2 −6(1+x)! writtentoone-looporderasfollows[19]: R Substituting the FP function (75) in Eq. (73), we obtain a 1 Ad = K [−R1tr′′(0)−R2tr′′(0)] closed differential equation for the function y1(u). Expand- 4 ingaroundu=0,wefind κ2 = (1+x)=Q2/5B(δˆ), (69) K4 y′(0) = 1 9x+3δˆ 6xδˆ, (76) 1 −3 − wherewehaveintroducedtheuniversalfunction q 1 δˆx 2 8π2 δˆ 3/5 y1′′(0) = 3 − 9x−+1, (77) B(δˆ)= (2π)1/5(1+x(δˆ))2/5 5! . (70) y2′(0) = 0, (78) δˆ y′′(0) = . (79) Valuesforx(δˆ)andforB(δˆ)fordifferentδˆareshowninTa- 2 −3(x+1) bleI. Thuswecancomputenumericallythesolutiony (u)forany 1 fixedδˆand y (0) x, howeveronlyfor specialvaluesof x 1 ≡ VII. NONPERIODICSYSTEMS:RANDOMFIELD doesthissolutiondecayexponentiallyatinfinity. Thecorre- DISORDER spondingsolutioncanbecomputedusingtheshootingmethod asdescribedabove,usingxasa shootingparameter(see Ta- We now address the problem of an elastic interface in a bleII). mediumwithLR-correlatedRFdisorder.Weexpectthatsim- A pair of typical FP functions is shown in Fig. 6. Sur- ilar to systems with uncorrelated disorder, this universality prisingly, the function y (u) obtained by shooting satisfies 1 ∞ classalsodescribesthedepinningtransition. Toseethatsys- du y (u) = 0, characteristic for RB-type correlations 0 1 temswithRBdisorderflowinthedynamicstotheRFFP,one along the u direction. In other words, the LR RF FP is in R has to include either effects of a finite velocity or consider factofmixedtype:RBfortheSRpartandRFfortheLRpart two-loopcontributions,whichgo beyondofthe scopeofthe ofthedisordercorrelator. Thiscanbeunderstoodasfollows: ∞ presentwork;butweexpectthemechanismtobethesameas Considertheflowof duy (u). Itisobtainedbyintegrat- 0 1 inRef.[18]. ing the l.h.s. of Eq. (73) from 0 to infinity, and by inserting R

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.