Online electronic version May not be emailed or posted ANYWHERE May not be copied, or printed without express written permission of the authors. Introduction to S TATICS and D YNAMICS Filename:Saskyalaunch3517 Andy Ruina and Rudra Pratap OxfordUniversityPress(Preprint) MostrecentmodificationsonJanuary20,2015. Reference Tables: The front and back tables concisely summarize much of the text material. Summary of Mechanics 0) Thelawsofmechanicsapplytoanycollectionofmaterialor‘body.’ Thisbodycouldbetheoverallsystemofstudy oranypartofit. Intheequationsbelow,theforcesandmomentsarethosethatshowonafreebodydiagram. Interacting bodiescauseequalandoppositeforcesandmomentsoneachother. I) LinearMomentumBalance(LMB)/ForceBalance EquationofMotion Fi L The total force on a body is equal (I) to its rate of change of linear momentum. Impulse-momentum t2 (integratingintime) Fi·dt L Netimpulseisequaltothechangein (Ia) t1 momentum. Conservationofmomentum L=0 When there is no net force the linear (Ib) (if Fi 0) L=L2 L1 0 momentum does not change. Statics Fi 0 If the inertial terms are zero the (Ic) (ifLisnegligible) net force on system is zero. II) AngularMomentumBalance(AMB)/MomentBalance Equationofmotion M H The sum of moments is equal to the (II) C C rateofchangeofangularmomentum. Impulse-momentum(angular) t2 M dt H The net angular impulse is equal to (IIa) (integratingintime) C C t1 the change in angular momentum. Conservationofangularmomentum H 0 C If there is no net moment about point (IIb) (if M 0) H H H 0 C C C2 C1 C then the angular momentum about point C does not change. Statics M 0 If the inertial terms are zero then the (IIc) (ifH isnegligible) C C total moment on the system is zero. III) PowerBalance(1stlawofthermodynamics) Equationofmotion Q P E E E Heat flow plus mechanical power (III) K P int into a system is equal to its change E in energy (kinetic + potential + internal). t2 t2 forfinitetime Qdt Pdt E Thenetenergyflowgoinginisequal (IIIa) t1 t1 tothenetchangeinenergy. ConservationofEnergy E 0 If no energyflows into a system, (IIIb) (ifQ P 0) E E E 0 2 1 then its energydoesnotchange. Statics Q P E E If there is no change of kinetic energy (IIIc) (ifE isnegligible) P int K then the change of potential and internal energy is due to mechanical work and heat flow. PureMechanics (ifheatflowanddissipation P E E In a system well modeled as purely (IIId) K P arenegligible) mechanical the change of kinetic and potential energy is due to mechanical work on the system. Filename:Summaryofmechanics Some definitions (Alsoseetheindexandbacktables) *r or *x Position e.g.,*r *r is the position of a point i i (cid:17) i=O relativetotheorigin,O. d*r *v Velocity e.g.,*v *v is the velocity of a point i (cid:17) dt i (cid:17) i=O relativetoO,measuredinanon-rotatingref- erenceframe. d*v d2*r *a Acceleration e.g.,*a *a istheaccelerationofapointi (cid:17) dt D dt2 i (cid:17) i=O relativetoO,measuredinaNewtonianframe. * F Force e.g.,theforceonAfromBisF . AfromB * * * M or M M MomentorTorque e.g., the moment of a collection of forces CD =C aboutpointC. *! Angularvelocity Ameasureofrotationalvelocityofarigidob- ject.*! =angularvelocityofrigidobjectB. B *(cid:11) *! Angularacceleration Ameasureofrotationalaccelerationofarigid (cid:17) P object. m*v discrete * i i L Linearmomentum Ameasureofasystem’snettranslationalrate (cid:17) 8 P*vdm continuous (weightedbymass). < m R*v D :tot cm m*a discrete * i i LP Rate of change of linear momen- The aspect of motion that balances the net (cid:17) 8 P*adm continuous tum forceonasystem. < m R*a D :tot cm *r m*v discrete H* i=C(cid:2) i i AngularmomentumaboutpointC Ameasureoftherotationalrateofasystem =C (cid:17) 8< P*r=C (cid:2)*vdm continuous about a point C (weighted by mass and dis- tancefromC). R : *r m*a discrete H*P=C (cid:17) 8< P*r=iC=C(cid:2)(cid:2)*admi i continuous RtuamteaobfocuhtapnogientoCfangularmomen- TtohrequaesopnecatsoyfstmemotiaobnouthtaatpboainlatnCc.es the net R : 1 m v2 discrete E 2 i i Kineticenergy Ascalarmeasureofnetsystemmotion. K (cid:17) 8 1Pv2dm continuous < 2 R : E (heat-liketerms) Internalenergy The non-kinetic non-potential part of a sys- int D tem’stotalenergy. P F**v M* *! Powerofforcesandtorques The mechanical energy flow into a system. (cid:17) i(cid:1) i C i(cid:1) i Also,P W,rateofwork. P P (cid:17) P Icm Icm Icm xx xy xz (cid:140)Icm(cid:141) 2 Icm Icm Icm 3 Moment of inertia matrix about Ameasureofthemassdistributioninarigid (cid:17) xy yy yz centerofmass(cm) object. 66 Ixczm Iyczm Izczm 77 6 7 4 5 iv Chapter0. (cid:13)c Rudra Pratap and Andy Ruina, 1994-2014. All rights reserved. No part of this book may be reproduced, stored in a retrievalsystem,ortransmitted,inanyformorbyanymeans,electronic,mechanical,photocopying,orotherwise,without priorwrittenpermissionoftheauthors. Thisbookisapre-releaseversionofabookinprogressforOxfordUniversityPress. Acknowledgements. Thefollowingareamongstthosewhohavehelpedwiththisbookaseditors,artists,texprogrammers, advisors,criticsorsuggestersandcreatorsofcontent: WilliamAdams,AlexaBarnes,PranavBhounsule,JosephBurns,Hye Yeon Choe, Jason Cortell, Gabor Domokos, Max Donelan, Thu Dong, Gail Fish, Mike Fox, John Gibson, Robert Ghrist, Vivek Gupta, Saptarsi Haldar, Dave Heimstra, Theresa Howley, Herbert Hui, Dirk Martin (Mark) Luchtenburg, Michael Marder,ElainaMcCartney,SaskyavanNouhuys,HorstNowacki,JimPapadopoulos,KalpanaPratap,DaneQuinn,Richard Rand, C.V. Radakrishnan, Nidhi Rathi, Phoebus Rosakis, Les Schaffer, Ishan Sharma, David Shipman, Jill Startzell, Brett Tallman,TianTang,KimTurnerandBillZobrist.Ouron-againoff-againeditorPeterGordonhasbeensupportivethroughout. Manyotherfriends,colleagues,relatives,students,andanonymousreviewershavealsomadehelpfulsuggestions. WecertifyArthurOgawa,IvanDobrianov,andStephenHicksasTeXgeniuses. MikeColemanworkedextensivelyonthetext,wrotemanyoftheexamplesandhomeworkproblemsandmademanyfigures. DavidHo,R.Manjula,AbhayandMiekeRuinadreworimprovedmostofthedrawings. Creditforsomeofthehomework problems retrieved from Cornell archives is due to various Theoretical and Applied Mechanics faculty. Harry Soodak and MartinTierstenprovidedsomeproblemsfromtheirincompletebook. SoftwarewehaveusedtopreparethisbookincludesTEXshop(forLATEX)withmanycustomfeaturesimplementedbyStephen Hicks,AdobeIllustrator,GraphicsConverterandMATLAB. IntroductiontoStaticsandDynamics,(cid:13)c AndyRuinaandRudraPratap1994-2014. IntroductiontoStaticsandDynamics,(cid:13)c AndyRuinaandRudraPratap1994-2014. 1 2 Chapter0. Brief Contents Fronttables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i BriefContents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 DetailedContents . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Preface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Tothestudent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Part I: Basics for Mechanics 26 1 Whatismechanics? . . . . . . . . . . . . . . . . . . . . . . . . . 26 2 Vectors: position,forceandmoment . . . . . . . . . . . . . . . . 42 3 FBDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 Part II: Statics 190 4 Staticsofoneobject. . . . . . . . . . . . . . . . . . . . . . . . . 190 5 Trussesandframes . . . . . . . . . . . . . . . . . . . . . . . . . 264 6 Transmissionsandmechanisms. . . . . . . . . . . . . . . . . . . 330 7 Tension,shearandbendingmoment . . . . . . . . . . . . . . . . 384 8 Hydrostatics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 408 Part III: Dynamics 426 9 Dynamicsin1D . . . . . . . . . . . . . . . . . . . . . . . . . . . 426 10 Vibrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 506 11 Particlesinspace . . . . . . . . . . . . . . . . . . . . . . . . . . 552 12 Manyparticlesinspace . . . . . . . . . . . . . . . . . . . . . . . 600 13 Straightlinemotion . . . . . . . . . . . . . . . . . . . . . . . . . 626 14 Circularmotionofaparticle . . . . . . . . . . . . . . . . . . . . 666 15 Circularmotionofarigidobject . . . . . . . . . . . . . . . . . . 698 16 Planarmotionofanobject . . . . . . . . . . . . . . . . . . . . . 778 17 Time-varyingbasisvectors . . . . . . . . . . . . . . . . . . . . . 864 18 Constrainedparticlesandrigidobjects . . . . . . . . . . . . . . . 934 Appendices 1004 A Unitsanddimensions . . . . . . . . . . . . . . . . . . . . . . . .1004 B Friction: perspectivesonfrictionlaws . . . . . . . . . . . . . . .1016 C ThesimplestODEsandtheirsolutions . . . . . . . . . . . . . . .1026 D TheoremsforSystems . . . . . . . . . . . . . . . . . . . . . . .1030 Answerstosomehomeworkproblems . . . . . . . . . . . . . . . . .1040 Backtables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1049 IntroductiontoStaticsandDynamics,(cid:13)c AndyRuinaandRudraPratap1994-2014. Detailed Contents Fronttables i Summaryofmechanics . . . . . . . . . . . . . . . . . . . i Somebasicdefinitions . . . . . . . . . . . . . . . . . . . . ii BriefContents 2 DetailedContents 3 Preface 12 General issues about content, level, organization, style and motivation. Studyadvicestartsonpage ??. Tothestudent 16 Howtostudy. Theuseofcomputers. 0.1 Anoteoncomputation . . . . . . . . . . . . . . . . . . . . . 21 Box: Informalcomputercommands . . . . . . . . . . . . . 24 Part I: Basics for Mechanics 26 1 Whatismechanics? 26 Mechanicscanpredictforcesandmotionsbyusingthethreepillarsofthe subject: I. models of physical behavior, II. geometry, and III. the basic mechanicsbalancelaws. Thelawsofmechanicsareinformallysumma- rized in this introductory chapter. The extreme accuracy of Newtonian mechanicsisemphasized,despiterelativityandquantummechanicssup- posedly having ‘overthrown’ seventeenth-century physics. Various uses oftheword‘model’aredescribed. 1.1 Thethreepillars . . . . . . . . . . . . . . . . . . . . . . . . 27 1.2 Mechanicsiswrong,whystudyit? . . . . . . . . . . . . . . 33 1.3 Thehierarchyofmodels . . . . . . . . . . . . . . . . . . . . 35 2 Vectors: position,forceandmoment 42 The key vectors for statics, namely relative position, force, and mo- ment, are used to develop vector skills. Notational clarity is empha- sized because good vector calculation demands distinguishing vectors fromscalars. Vectoradditionismotivatedbytheneedtoaddforcesand relativepositions. Dotproductsaremotivatedasthetoolwhichreduces vectorequationstoscalarequations.Andcrossproductsaremotivatedas IntroductiontoStaticsandDynamics,(cid:13)c AndyRuinaandRudraPratap1994-2014. 3 4 Chapter0.DetailedContents DetailedContents theformulawhichcorrectlycalculatestheheuristicallymotivatedquan- titiesofmomentandmomentaboutanaxis. 2.1 Notationandaddition . . . . . . . . . . . . . . . . . . . . . 44 Box2.1Thescalarsinmechanics . . . . . . . . . . . . . . 45 Box2.2TheVectorsinMechanics . . . . . . . . . . . . . 46 2.2 Thedotproductoftwovectors . . . . . . . . . . . . . . . . 62 Box2.3Basicfeaturesofthevectordotproduct. . . . . . . 62 Box2.4abcos(cid:18) a b a b a b . . . . . . . 67 x x y y z z ) C C 2.3 Vectorcrossproduct . . . . . . . . . . . . . . . . . . . . . . 71 Box2.5Usesofthecrossproduct . . . . . . . . . . . . . . 72 Box2.6Crossproductasamatrixmultiply . . . . . . . . . 78 Box2.7Thecrossproduct: fromgeometrytocomponents . 79 2.4 Moment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 2.5 Solvingvectorequations . . . . . . . . . . . . . . . . . . . . 97 Box2.8Therulesofvectoralgebra. . . . . . . . . . . . . 98 Box2.9Vectortrianglesandthelawsofsinesandcosines . 100 Box2.10Existence,uniqueness,andgeometry . . . . . . . 112 ProblemsforChapter2 . . . . . . . . . . . . . . . . . . . . . . . 117 3 FBDs 126 Afree-bodydiagramisasketchofthesystemtowhichyouwillapplythe lawsofmechanics. Thediagramshowsallofthenon-negligibleexternal forcesandcoupleswhichactonthesystem. Thediagramtellswhatma- terial is in the system and also what is known, and what is not known, about the forces. Mechanics reasoning depends on free-body diagrams so we give tips about how to avoid common mistakes. On a free-body diagram systems of forces are often replaced with ‘equivalent’ forces, a specialcaseofwhichisaweightforceatthecenterofgravity. 3.1 Equivalentforcesystems . . . . . . . . . . . . . . . . . . . . 129 Box3.1 meansadd . . . . . . . . . . . . . . . . . . . . 131 Box3.2Equivalentatonepoint equivalentatallpoints 132 P ) Box3.3A“wrench”canrepresentanyforcesystem . . . . 133 3.2 Centerofmassandgravity. . . . . . . . . . . . . . . . . . . 138 Box3.4Like ,thesymbol alsomeansadd . . . . . . . 139 Box3.5Eachsubsystemislikeaparticle . . . . . . . . . . 143 P R Box3.6TheCOMofatriangleisath=3 . . . . . . . . . . 147 3.3 Interactions,forces&partialFBDs . . . . . . . . . . . . . . 153 VectornotationforFBDs . . . . . . . . . . . . . . . . . . 156 Box3.7Free-bodydiagramfirst,mechanicsreasoningafter 163 Box3.8ActionandreactiononpartialFBD’s . . . . . . . 165 3.4 Contact: Sliding,friction,androlling . . . . . . . . . . . . . 168 ProblemsforChapter3 . . . . . . . . . . . . . . . . . . . . . . . 182 IntroductiontoStaticsandDynamics,(cid:13)c AndyRuinaandRudraPratap1994-2014. Chapter0.DetailedContents DetailedContents 5 Part II: Statics 190 4 Staticsofoneobject 190 One object is in equilibrium if the forces and moments balance. For a particle,forcebalancetellsall. Butforanextendedobject,momentbal- ance is also essential. There are special shortcuts for an objects that hasexactlytwoorexactlythreeforcesactingonit. Iffrictionforcesare relevant the possibility of motion needs to be taken into account. Many real-world problems are not statically determinate and thus yield either only partial solutions, or yield full solutions after you have made extra assumptions. 4.1 Staticequilibriumofaparticle . . . . . . . . . . . . . . . . . 192 Box4.1Existenceanduniqueness . . . . . . . . . . . . . 196 Box4.2Thesimplificationofdynamicstostatics . . . . . . 199 4.2 Equilibriumofoneobject . . . . . . . . . . . . . . . . . . . 206 Box4.3Two-forcebodies . . . . . . . . . . . . . . . . . . 211 Box4.4Three-forcebodies . . . . . . . . . . . . . . . . . 212 Box4.5Momentbalanceabout3pointsissufficientin2D . 213 Box4.6Howtoholdsomethinginplacestaticallydetermi- nately? . . . . . . . . . . . . . . . . . . . . . . . . . 214 4.3 Equilibriumwithfrictionalcontact . . . . . . . . . . . . . . 219 Box4.7Undrivenwheelsandtwo-forcebodies . . . . . . 223 4.4 Internalforces . . . . . . . . . . . . . . . . . . . . . . . . . 233 4.5 3Dstatics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239 Box4.8Staticallydeterminatewaystoholdanobjectin3D 245 ProblemsforChapter4 . . . . . . . . . . . . . . . . . . . . . . . 249 5 Trussesandframes 264 Hereweconsidercollectionsofpartsdesignedtoholdsomethinguporin place. Emphasisisontrusses, assembliesofstraightbarsconnectedby pinsattheirends. Trussesareanalyzedbydrawingfree-bodydiagrams of the pins (method of joints) or of bigger parts of the truss (method of sections). Frameworks, built with other than two-force bodies are also analyzed by drawing free-body diagrams of parts. Trusses and frames can be rigid or not and redundant or not, as can be determined by the equilibriumequations. 5.1 Methodofjoints . . . . . . . . . . . . . . . . . . . . . . . . 266 5.2 Themethodofsections . . . . . . . . . . . . . . . . . . . . 283 5.3 Solvingtrussesonacomputer . . . . . . . . . . . . . . . . . 290 5.4 Framesandstructures . . . . . . . . . . . . . . . . . . . . . 301 Box5.1The‘methodofbarsandpins’fortrusses . . . . . 304 5.5 Advancedtrussconcepts: determinacy . . . . . . . . . . . . 311 Box5.2Structuralrigidityandgeometriccongruence . . . 316 Box5.3Rigidity,redundancy,linearalgebraandmaps . . 317 ProblemsforChapter5 . . . . . . . . . . . . . . . . . . . . . . . 322 6 Transmissionsandmechanisms 330 Sometimessolidpartsareassembledtocauseforceortorqueinoneplace IntroductiontoStaticsandDynamics,(cid:13)c AndyRuinaandRudraPratap1994-2014. 6 Chapter0.DetailedContents DetailedContents whenadifferentforceortorqueisappliedatanotherplace. Suchassem- blies include levers, gear boxes, presses, pliers, clippers, chain drives, and crank-drives. Besides solid parts connected by pins, a few special- purposepartsarecommonlyused, includingsprings, stringsandgears. Tricks for amplifying force are usually based on principles idealized by pulleys,levers,wedgesandtoggles. Force-analysisoftransmissionsand mechanisms is done by drawing free-body diagrams of the parts, writ- ingequilibriumequationsforthese,andsolvingtheequationsfordesired unknowns. 6.1 Springs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332 Box6.1‘Zero-length’springs . . . . . . . . . . . . . . . . 333 Box6.2Howstiffaspringisasolidrod . . . . . . . . . . 340 Box6.3Stifferbutweaker . . . . . . . . . . . . . . . . . . 340 Box6.4Apuzzlewithtwospringsandthreeropes. . . . . . 341 Box6.52Dgeometryofspringstretch . . . . . . . . . . . 344 6.2 Forceamplification . . . . . . . . . . . . . . . . . . . . . . 353 6.3 Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . 364 Box6.6Shearswithgears . . . . . . . . . . . . . . . . . . 368 ProblemsforChapter6 . . . . . . . . . . . . . . . . . . . . . . . 375 7 Tension,shearandbendingmoment 384 The‘internalforces’(tension,shearandbendingmoment)canvaryfrom point to point in long narrow objects. Here we introduce the notion of graphing this variation and noting the features of these graphs. This graphingisafavoritechoreofcivilengineers. 7.1 Arbitrarycuts . . . . . . . . . . . . . . . . . . . . . . . . . 385 7.2 Singularityfunctions . . . . . . . . . . . . . . . . . . . . . . 401 ProblemsforChapter7 . . . . . . . . . . . . . . . . . . . . . . . 406 8 Hydrostatics 408 Hydrostaticsconcernstheequivalentforceandmomentduetodistributed pressure on a surface from a still fluid. Pressure increases with depth. With constant pressure, the equivalent force has magnitude = pressure times area, acting at the centroid. For linearly-varying pressure on a rectangular plate the equivalent force is the average pressure times the area acting somewhere between 1/2 and 2/3 of the way down. The net force acting on a totally submerged object in a constant density fluid is thedisplacedfluid’sweight,actingatthecentroid. 8.1 Fluidpressure . . . . . . . . . . . . . . . . . . . . . . . . . 409 Box8.1AddingforcestoderiveArchimedes’principle . . . 412 Box8.2Pressuredependsonpositionbutnotonorientation 413 ProblemsforChapter8 . . . . . . . . . . . . . . . . . . . . . . . 422 Part III: Dynamics 426 9 Dynamicsin1D 426 ThescalarequationF Dmaintroducestheconceptsofmotionandtime derivatives to mechanics. In particular the equations of dynamics are IntroductiontoStaticsandDynamics,(cid:13)c AndyRuinaandRudraPratap1994-2014.
Description: