ebook img

State-of-the-art Report on the Progress of Nuclear Fuel Cycle Chemistry PDF

304 Pages·2018·18.71 MB·English
by  coll.
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview State-of-the-art Report on the Progress of Nuclear Fuel Cycle Chemistry

Nuclear Science 2018 S tate-of-the-Art Report on the Progress of Nuclear Fuel Cycle Chemistry Nuclear Science State-of-the-Art Report on the Progress of Nuclear Fuel Cycle Chemistry © OECD 2018 NEA No. 7267 NUCLEAR ENERGY AGENCY ORGANISATION FOR ECONOMIC CO-OPERATION AND DEVELOPMENT ORGANISATION FOR ECONOMIC CO-OPERATION AND DEVELOPMENT The OECD is a unique forum where the governments of 35 democracies work together to address the economic, social and environmental challenges of globalisation. The OECD is also at the forefront of efforts to understand and to help governments respond to new developments and concerns, such as corporate governance, the information economy and the challenges of an ageing population. The Organisation provides a setting where governments can compare policy experiences, seek answers to common problems, identify good practice and work to co-ordinate domestic and international policies. The OECD member countries are: Australia, Austria, Belgium, Canada, Chile, the Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Israel, Italy, Japan, Korea, Latvia, Luxembourg, Mexico, Netherlands, New Zealand, Norway, Poland, Portugal, Slovak Republic, Slovenia, Spain, Sweden, Switzerland, Turkey, the United Kingdom and the United States. The European Commission takes part in the work of the OECD. OECD Publishing disseminates widely the results of the Organisation’s statistics gathering and research on economic, social and environmental issues, as well as the conventions, guidelines and standards agreed by its members. This work is published on the responsibility of the Secretary-General of the OECD. NUCLEAR ENERGY AGENCY The OECD Nuclear Energy Agency (NEA) was established on 1 February 1958. Current NEA membership consists of 33 countries: Argentina, Australia, Austria, Belgium, Canada, the Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Japan, Korea, Luxembourg, Mexico, the Netherlands, Norway, Poland, Portugal, Romania, Russia, the Slovak Republic, Slovenia, Spain, Sweden, Switzerland, Turkey, the United Kingdom and the United States. The European Commission also takes part in the work of the Agency. The mission of the NEA is: –to assist its member countries in maintaining and further developing, through international co- operation, the scientific, technological and legal bases required for a safe, environmentally sound and economical use of nuclear energy for peaceful purposes; –to provide authoritative assessments and to forge common understandings on key issues as input to government decisions on nuclear energy policy and to broader OECD analyses in areas such as energy and the sustainable development of low-carbon economies. Specific areas of competence of the NEA include the safety and regulation of nuclear activities, radioactive waste management, radiological protection, nuclear science, economic and technical analyses of the nuclear fuel cycle, nuclear law and liability, and public information. The NEA Data Bank provides nuclear data and computer program services for participating countries. This document, as well as any data and map included herein, are without prejudice to the status of or sovereignty over any territory, to the delimitation of international frontiers and boundaries and to the name of any territory, city or area. Corrigenda to OECD publications may be found online at: www.oecd.org/publishing/corrigenda. © OECD 2018 You can copy, download or print OECD content for your own use, and you can include excerpts from OECD publications, databases and multimedia products in your own documents, presentations, blogs, websites and teaching materials, provided that suitable acknowledgement of the OECD as source and copyright owner is given. All requests for public or commercial use and translation rights should be submitted to [email protected]. Requests for permission to photocopy portions of this material for public or commercial use shall be addressed directly to the Copyright Clearance Center (CCC) at [email protected] or the Centre français d'exploitation du droit de copie (CFC) [email protected]. FOREWORD Foreword Under the guidance of the Nuclear Energy Agency (NEA) Nuclear Science Committee (NSC), and the mandate of the NEA Working Party on Scientific Issues of the Fuel Cycle (WPFC), the Expert Group on Fuel Recycling Chemistry (EGFRC) was established to perform technical assessments of separation processes relevant to recycling technologies for spent nuclear fuel and assessments of separation processes in applications related to the current and future nuclear fuel cycles. The expert group was also mandated to provide recommendations for collaborative international efforts towards the development of further separation processes. This report presents a comprehensive state of the art on current developments in various separation technologies. It was written in the form of an international review of the different separation processes developed – or under development – in separation chemistry within a number of NEA member countries (France, Japan, Korea, Russia, the United Kingdom and the United States, as well as the European Union). Acknowledgements The NEA Secretariat would like to extend its sincere gratitude to the members of the EGFRC for their contributions to this report, as well as for the valuable time and effort dedicated to this field of work. Special thanks go to P. Baron (France), Chair of the expert group. Thanks are also extended to E. Collins (United States) for his review and helpful suggestions. 3 STATE-OF-THE-ART REPORT ON THE PROGRESS OF NUCLEAR FUEL CYCLE CHEMISTRY, NEA No. 7267, © OECD 2018 TABLE OF CONTENTS Table of contents List of abbreviations and acronyms ..........................................................................................13 Executive summary ......................................................................................................................19 1. Introduction ...............................................................................................................................23 2. Progress of separation technology and current achievements ........................................25 2.1. Head-end processing ..........................................................................................................25 2.2. Hydrometallurgy .................................................................................................................45 2.3. Pyrochemical processess .................................................................................................140 3. Process criteria ........................................................................................................................227 3.1. Introduction .......................................................................................................................227 3.2. Feeds to the recycling plant(s) ........................................................................................227 3.3. Products required from the recycling plant(s) ..............................................................229 3.4. Performance criteria required from the recycling plant(s) .........................................231 3.5. Constraints placed on the recycling plant(s) ................................................................231 3.6. Nonproliferation requirements for recycling components of spent nuclear fuel (SNF) ..................................................................................................233 3.7. Choice of separation process ..........................................................................................238 3.8. Conclusions .......................................................................................................................238 4. Comparison of chemical processes .....................................................................................241 4.1. Introduction .......................................................................................................................241 4.2. Head-end processes ..........................................................................................................243 4.3. Aqueous processes ...........................................................................................................248 4.4. Pyrochemical processes ...................................................................................................271 4.5. Conclusions .......................................................................................................................277 5. Perspectives for future R&D ..................................................................................................281 5.1. France .................................................................................................................................281 5.2. Japan ...................................................................................................................................282 5.3. Korea ...................................................................................................................................283 5.4. Russia ..................................................................................................................................284 5.5. United Kingdom ................................................................................................................286 5.6. United States .....................................................................................................................288 6. Conclusions ..............................................................................................................................293 List of Contributors .....................................................................................................................297 5 STATE-OF-THE-ART REPORT ON THE PROGRESS OF NUCLEAR FUEL CYCLE CHEMISTRY, NEA No. 7267, © OECD 2018 TABLE OF CONTENTS List of figures ES 1. Summary of TRLs for head-end processes ..................................................................20 ES 2. Summary of TRLs for aqueous processes ....................................................................20 2.1. Radioactivity of 4% 235U – 40 GWd/tHM, under three scenarios ...............................26 2.2. Westinghouse PWR fuel assembly ...............................................................................28 2.3. Mechanical head-end process for the spent fuel PWR ..............................................29 2.4. Oxidative decladding efficiency according to variation of rod-cut length and burn-up .....................................................................................................................31 2.5. Decladding efficiency according to variation of burn-up ..........................................31 2.6. “Mini Khrust” pilot set-up (heater, ampoule for spent nuclear fuel and cork are observed) ...................................................................................................32 2.7. View of zirconium cladding before and after treatment ...........................................33 2.8. Broken cladding ...............................................................................................................33 2.9. Voloxidised uranium dioxide nuclear fuel ..................................................................33 2.10. Typical head-end operations where zirconium recovery may be integrated ........35 2.11. Interfacing zirconium recovery from cladding with tubing manufacture .............36 2.12. Standard dry oxidation pre-treatment process with off-gas treatment .................37 2.13. A rotary voloxidiser and UO granules .......................................................................39 2+x 2.14. Off-gas treatment system for DUPIC sintering furnace in DFDF and gamma spectroscopy measurement results of the fly ash filter ............................................42 2.15. Equipment for engineering-sclae tests in PRIDE facility ...........................................42 2.16. Advanced head-end operations ....................................................................................43 2.17. Structure of DEHiBA........................................................................................................46 2.18. Aqueous and organic concentration profiles of nitric acid and uranium ..............47 2.19. Flowsheet for the Ganex 1st cycle hot test ...................................................................47 2.20. Photo of the extraction section of mixer-settlers .......................................................48 2.21. Experimental and calculated profiles of uranium and technetium concentrations in aqueous and organic phases for the three sections ..................48 2.22. Schematic flow of the NEXT process ...........................................................................50 2.23. Sellafield Thorp plant – solvent extraction flowsheet ...............................................51 2.24. COEXTM process ................................................................................................................53 2.25. Representation of the co-crystallised U(IV)-Pu(III) mixed oxalate structure ..........54 2.26. NUEX process solvent extraction flowsheet ...............................................................55 2.27. Generic flowsheet layout for Np extraction in the first cycle (HA/HS contactor) ..56 2.28. Schematic of single cycle Advanced PUREX process suitable for Gen IV fuel reprocessing .............................................................................................................58 2.29. UREX+ co-decontamination process ............................................................................59 2.30. Calculated plutonium concentration factors using the SEPHIS code ......................61 2.31. Flowsheet for VVER-1000 SNF reprocessing using the basic “simplified PUREX process’’ ...............................................................................................................64 2.32. Electron microscope image of a mixed oxide sample at different magnifications using the back-scattered electron mode ..........................................66 2.33. Image of the uranium oxide sample after denitration ..............................................66 2.34. Block schematic diagram of REPA process ..................................................................68 2.35. The dependence of U/Pu ratio in the aqueous flow of Pu leaving the washing zone on the ratio of phase flows in the zone ..............................................70 2.36. The laboratory facility for actinide melting showing 1 – a thermocouple in a glass pocket, 2 – an evaporator, 3 – a direct condenser and 4 – a solution of actinide nitrates ..........................................................................................70 2.37. Absorption spectra of melts ..........................................................................................71 6 STATE-OF-THE-ART REPORT ON THE PROGRESS OF NUCLEAR FUEL CYCLE CHEMISTRY, NEA No. 7267, © OECD 2018 TABLE OF CONTENTS 2.38. The solubility isotherms of the system UO (NO ) -HNO -H O and location 2 3 2 3 2 of the working line zone (A) of the crystallisation process of the UNH ..................73 2.39. Crystals of (U,Pu,Np)O (NO ) •6H O ...............................................................................73 2 3 2 2 2.40. Relationship between the ratio [NU]/[HNO ] in mother liquor from 3 temperature along working line with k=1.6. ...............................................................74 2.41. Crystals of (a) UO (NO ) •6H O and (b) (U,Pu)O (NO ) •6H O .......................................75 2 3 2 2 2 3 2 2 2.42. Crystals (U,Pu)O (NO ) •6H O with an increased content of plutonium ..................76 2 3 2 2 2.43. SANEX-BTBP process flowsheet tested at the ITU (Germany) on a genuine “An(III)+Ln(III)” feed .........................................................................................................83 2.44. Calculated and experimental concentration profiles for 241Am ...............................84 2.45. Calculated and experimental concentration profiles for 244Cm ...............................84 2.46. The DIAMEX-SANEX/HDEHP process principle ..........................................................85 2.47. DIAMEX-SANEX/HDEHP process flowsheet tested at the CEA Marcoule on a genuine PUREX raffinate .......................................................................................86 2.48. Structural formula of DGA compounds .......................................................................87 2.49. Extraction of nitric acid with (a) polar fluorinated diluents; (b) 0.1 mol/L TODGA in polar fluorinated diluents ...........................................................................90 2.50. The dependency of (a) Am and (b) Eu distribution ratios values on nitric acid concentration. Solvent – 0.01 mol/L TODGA in diluent ..........................91 2.51. The dependency of (a) Am and (b) Eu distribution ratios on TODGA concentration in diluents with extraction from 1 mol/L HNO ................................92 3 2.52. Extraction of lanthanide ions from 1 mol/L HNO3 into solutions of 0.01 mol/L TODGA in diluents: F-3, DDFHME and Formal-2 .....................................93 2.53. Chemical Structures of TODGA, T2EHDGA and HEH[EHP] ........................................94 2.54. Distribution of Ln and Am as a function of diamide type; Aqueous phase: 3 mol/L HNO ; solvent: 0.02 mol/L CCD + 0.01 mol/L DPA in FS-13 ..........................94 3 2.55. Structures of heterocyclic amides ................................................................................95 2.56. An-Ln extraction using 0.1 mol/L dyp-7 in F-3 from 3 mol/L HNO .........................96 3 2.57. The chemical structures of (a) CMPO and (b) HDEHP ................................................97 2.58. Americium (III) distribution ratios for extraction by 0.2 mol/L CMPO + 1.4 mol/L TBP in normal paraffin hydrocarbons [36] .................................................97 2.59. The TRUEX solvent extraction flowsheet ....................................................................98 2.60. The TALSPEAK solvent extraction flowsheet..............................................................99 2.61. The Advanced TALSPEAK solvent extraction flowsheet ...........................................99 2.62. GANEX process under development at CEA (France) ..............................................101 2.63. EURO-GANEX flowsheet tested with spent fuel .......................................................102 2.64. Structure of zirconium salt of dibutylphosphoric acid (ZS of HDBP).....................104 2.65. The process flowsheet used in treating real HLW ...................................................105 2.66. Adsorbent porous silica particles coated with styrene-divinylbenzene polymer ..........................................................................................................................106 2.67. Chemical structures of extractants examined in the development of separation process by extraction chromatography in JAEA ...................................107 2.68. Chromatogram of simulated raffinate using CMPO/SiO -P adsorbent ..................107 2 2.69. Chromatogram of the simulated raffinate using TODGA/SiO -P adsorbent ........108 2 2.70. Block schematic diagram of CARBEX-process ..........................................................110 2.71. Dependency of U(VI)/Cs separation factors (SF) as a function of concentrations of U(VI) and Cs in extraction raffinates ..........................................112 2.72. Chlorinated cobalt dicarbollide, CCD, and polyethylene glycol, PEG ....................115 2.73. Extraction flowsheet for reprocessing of HLW with the use of ChCoDiC at industrial facility 35U in “Mayak” ............................................................................115 2.74. Flowsheet of the CSSEX process implemented on a highly active DIAMEX raffinate solution at the CEA Marcoule ......................................................117 2.75. Calix-crown R14 for Cs and DtBuCH18C6 for Sr .......................................................117 7 STATE-OF-THE-ART REPORT ON THE PROGRESS OF NUCLEAR FUEL CYCLE CHEMISTRY, NEA No. 7267, © OECD 2018 TABLE OF CONTENTS 2.76. Small scale adsorption tests for Cs and Sr separation with a genuine HLLW .....118 2.77. Molecular structures of the cesium and strontium extractants and the Cs-7SB modifier used in the FPEX process solvent ..................................................119 2.78. Flowsheet of the FPEX process ....................................................................................119 2.79. Structure of sodium silicotitanate (TAM5) showing the parallel channels ..........124 2.80. A section of TAM5 structure showing the Ti clusters linked with 4 tetrahedral silicates ......................................................................................................124 2.81. Structure of sodium titanate .......................................................................................125 2.82. Cubic crystal structure of potassium cobalt hexacyanoferrate (K2CoFe(CN)6) ...126 2.83. Conceptual flow diagram of separation facility at INTEC .......................................127 2.84. Structures of naturally occurring zeolites .................................................................128 2.85. Structure of Type A zeolite ..........................................................................................129 2.86. Flowsheet of 4-group partitioning process developed by JAEA ..............................130 2.87. Density and crush strength of zeolite-cement composites ....................................131 2.88. Zeolite-cement composites with increasing waste loadings .................................131 2.89. Simplified process diagram for SIXEP, Sellafield, UK ..............................................133 2.90. Simplified flow sheet of the IVO-CsTreat System ....................................................133 2.91. Low active effluent treament at the EARP, Sellafield, UK .......................................134 2.92. Three possible strategies for Am/Cm separation .....................................................136 2.93. Three-step strategy for minor actinide separation ..................................................137 2.94. Am-Cm partitioning hot test performed on surrogate solution in ATALANTE facility ........................................................................................................138 2.95. ExAm process flowsheet tested in 2010 to recover the sole Am(III) from genuine PUREX raffinate ..............................................................................................139 2.96. Chromatogram of Am and Cm separation by ion exchange using tertiary pyridine-type resin .........................................................................................140 2.97. A schematic block diagram for the treatment of contaminated uranium ...........145 2.98. Schematic process diagram for electrorefining ........................................................145 2.99. Process diagram for metal fuel cycle and for oxide fuel treatment ......................147 2.100. Pyrochemical reprocessing flow for spent oxide fuels ............................................149 2.101. Cathode basket and uranium metals reduced ..........................................................149 2.102. Engineering-scale electrorefining test .......................................................................150 2.103. Molten salt transport test ............................................................................................151 2.104. Schematic diagram of scrubbing system of waste salt and the engineering scale test equipment ..............................................................................151 2.105. Reduction potentials of some actinides and lanthanides on different cathodic materials ........................................................................................154 2.106. Process scheme for the electrorefining of metallic fuels An - actinides, FP - fission products, Al - aluminum .........................................................................155 2.107. Cyclic voltamogram of U Pu Zr Am Ln on W and Al wires ................................156 61 22 10 2 5 2.108. Principle of the exhaustive electrolysis process .......................................................157 2.109. Schematic layout of an electroreduction process developed by CRIEPI/ITU ........158 2.110. Reduced fuel particles of irradiated MOX fuel particles (43 GWd/tHM); section of cut basket .....................................................................................................159 2.111. Chemical reductive extraction diagram ....................................................................161 2.112. Cyclic Voltammetry on W electrode (SWE=0.16 cm2) in LiF-CaF -AmF ([AmF ] 2 3 3 = 1.5510-2 mol/kg) at 780°C; v=0,1V/s; Pt reference electrode; CE: graphite ..........163 2.113. Square Wave Voltammetry on W electrode (SWE=0.16 cm2) in LiF-CaF-AmF-NdF ([AmF] = 1.5510-2 mol/kg, [NdF] = 5.710-2 mol/kg) 2 3 3 3 3 at 780°C; Pt reference electrode; CE: graphite...............................................................164 2.114. Combination of nitride fuel and pyro-electrochemical process based on double-strata fuel cycle concept ...........................................................................166 8 STATE-OF-THE-ART REPORT ON THE PROGRESS OF NUCLEAR FUEL CYCLE CHEMISTRY, NEA No. 7267, © OECD 2018

Description:
The implementation of advanced nuclear systems requires that new technologies associated with the back end of the fuel cycle are developed. The separation of minor actinides from other fuel components is one of the advanced concepts being studied to help close the nuclear fuel cycle and to improve t
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.