ebook img

State of the Art in Neural Networks and Their Applications: Volume 1 PDF

310 Pages·2021·15.58 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview State of the Art in Neural Networks and Their Applications: Volume 1

State of the Art in Neural Networks and Their Applications State of the Art in Neural Networks and Their Applications Volume 1 Edited by Ayman S. El-Baz University of Louisville, Louisville, Kentucky, United States; University of Louisville at AlAlamein International University (UofL-AIU), New Alamein City, Egypt Jasjit S. Suri AtheroPoint LLC, Roseville, CA, United States AcademicPressisanimprintofElsevier 125LondonWall,LondonEC2Y5AS,UnitedKingdom 525BStreet,Suite1650,SanDiego,CA92101,UnitedStates 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom Copyright©2021ElsevierInc.Allrightsreserved. Chapter1:Copyright©2021HerMajestytheQueeninRightofCanada,asrepresentedbythe NationalResearchCouncil.PublishedbyElsevierInc.AllRightsReserved. Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans, electronicormechanical,includingphotocopying,recording,oranyinformationstorageandretrieval system,withoutpermissioninwritingfromthepublisher.Detailsonhowtoseekpermission, furtherinformationaboutthePublisher’spermissionspoliciesandourarrangementswith organizationssuchastheCopyrightClearanceCenterandtheCopyrightLicensingAgency,canbe foundatourwebsite:www.elsevier.com/permissions. Thisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythe Publisher(otherthanasmaybenotedherein). Notices Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperience broadenourunderstanding,changesinresearchmethods,professionalpractices,ormedical treatmentmaybecomenecessary. Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluating andusinganyinformation,methods,compounds,orexperimentsdescribedherein.Inusingsuch informationormethodstheyshouldbemindfuloftheirownsafetyandthesafetyofothers,including partiesforwhomtheyhaveaprofessionalresponsibility. Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors, assumeanyliabilityforanyinjuryand/ordamagetopersonsorpropertyasamatterofproducts liability,negligenceorotherwise,orfromanyuseoroperationofanymethods,products,instructions, orideascontainedinthematerialherein. BritishLibraryCataloguing-in-PublicationData AcataloguerecordforthisbookisavailablefromtheBritishLibrary LibraryofCongressCataloging-in-PublicationData AcatalogrecordforthisbookisavailablefromtheLibraryofCongress ISBN:978-0-12-819740-0 ForInformationonallAcademicPresspublications visitourwebsiteathttps://www.elsevier.com/books-and-journals Publisher:MaraConner AcquisitionsEditor:ChrisKatsaropoulos EditorialProjectManager:EmilyThomson ProductionProjectManager:SojanP.Pazhayattil CoverDesigner:MilesHitchen TypesetbyMPSLimited,Chennai,India With love and affection to my mother and father, whose loving spirit sustains me still —Ayman S. El-Baz To my late loving parents, immediate family, and children —Jasjit S. Suri Contents List ofContributors.................................................................................................xv Biographies.............................................................................................................xxi Acknowledgments...............................................................................................xxiii CHAPTER 1 Computer-aided detection of abnormality in mammography using deep object detectors................1 Pengcheng Xi,GhazalRouhafzay, Haitao Guan, Chang Shu, Louis Borgeat and Rafik Goubran 1.1 Introduction....................................................................................1 1.2 Literaturereview............................................................................2 1.3 Methodology...................................................................................3 1.3.1 Architecturesofdeep convolutional neural networks anddeep object detectors....................................4 1.3.2 Abnormality detection withfaster R-convolutional neuralnetworks...................................................................6 1.3.3 Abnormality detection withYOLO....................................7 1.4 Experimental results.......................................................................9 1.4.1 Data preparation..................................................................9 1.4.2 Abnormality detection withfaster R-convolutional neuralnetworks.................................................................10 1.4.3 Abnormality detection withYOLO..................................10 1.4.4 Results comparison...........................................................13 1.5 Discussions...................................................................................13 1.6 Conclusion....................................................................................15 References....................................................................................16 CHAPTER 2 Detection of retinal abnormalities in fundus image using CNN deep learning networks................19 Mohamed Akil, Yaroub Elloumi andRostom Kachouri 2.1 Introduction..................................................................................19 2.2 Earlierscreeningand diagnosis ofocular diseaseswith CNN deep learning networks.......................................................25 2.2.1 Glaucoma..........................................................................25 2.2.2 Age-related macular degeneration....................................31 2.2.3 Diabetic retinopathy..........................................................36 2.2.4 Cataract.............................................................................42 vii viii Contents 2.3 Deep learning(cid:1)based smartphone for detectionof retinalabnormalities.....................................................................46 2.3.1 Smartphone-captured fundus image evaluation...............46 2.3.2 Deep learning(cid:1)based method ofocular pathology detection fromsmartphone-captured fundus image.........47 2.4 Discussion.....................................................................................49 2.5 Conclusion....................................................................................52 References....................................................................................53 CHAPTER 3 A survey of deep learning-based methods for cryo-electron tomography data analysis...................63 Xiangrui Zeng, Xiaoyan Yang, Zhenyu Wangand Min Xu 3.1 Introduction..................................................................................63 3.2 Deep learning-based methods......................................................64 3.2.1 Detection and segmentation..............................................64 3.2.2 Classification.....................................................................66 3.2.3 Others................................................................................68 3.3 Conclusion....................................................................................69 References....................................................................................70 CHAPTER 4 Detection, segmentation, and numbering of teeth in dental panoramic images with mask regions with convolutional neural network features.........................................................73 AyseBetulOktay and Anıl Gurses 4.1 Introduction..................................................................................73 4.2 Related work................................................................................75 4.3 Fe´de´ration Dentaire Internationale tooth numbering system...........................................................................................78 4.4 The method...................................................................................78 4.4.1 Implementation details......................................................80 4.5 Experimental analysis..................................................................81 4.5.1 Dataset...............................................................................81 4.5.2 Evaluation.........................................................................83 4.5.3 Results...............................................................................84 4.6 Discussion and conclusions..........................................................86 References....................................................................................87 Contents ix CHAPTER 5 Accurate identification of renal transplant rejection: convolutional neural networks and diffusion MRI...............................................................91 Mohamed Shehata, Hisham Abdeltawab, Mohammed Ghazal, Ashraf Khalil,Shams Shaker, Ahmed Shalaby, Ali Mahmoud, Mohamed Abou El-Ghar, Amy C. Dwyer, MoumenEl-Melegy, Ashraf M.Bakr, Jasjit S. Suriand Ayman S. El-Baz 5.1 Introduction..................................................................................91 5.2 Methods........................................................................................93 5.2.1 Kidneysegmentation........................................................94 5.2.2 Feature extraction..............................................................95 5.2.3 Renal transplant classification using deep convolutional neuralnetwork...........................................96 5.3 Experimental results.....................................................................97 5.4 Conclusion..................................................................................100 Acknowledgments.....................................................................102 References..................................................................................102 CHAPTER 6 Applications of the ESPNet architecture in medical imaging.......................................................117 SachinMehta, NicholasNuechterlein, Ezgi Mercan, Beibin Li,Shima Nofallah, WenjunWu,XimingLu, AnatCaspi, Mohammad Rastegari, Joann Elmore, Hannaneh Hajishirzi andLindaShapiro 6.1 Introduction................................................................................117 6.2 Background.................................................................................118 6.2.1 Standard convolution......................................................118 6.2.2 Dilated convolution.........................................................118 6.3 The ESPNet architecture............................................................119 6.3.1 Efficient spatialpyramidunit.........................................119 6.3.2 Segmentation architecture...............................................120 6.4 Experimental results...................................................................122 6.4.1 Breastbiopsy whole slide image dataset........................123 6.4.2 Brain tumor segmentation...............................................127 6.4.3 Other applications...........................................................129 6.5 Conclusion..................................................................................130 Acknowledgment.......................................................................130 References..................................................................................130 x Contents CHAPTER 7 Achievements of neural network in skin lesions classification ...............................................133 NaziaHameed, Antesar Shabut, Fozia Hameed, Silvia Cirstea and Alamgir Hossain 7.1 Introduction................................................................................133 7.2 Literature review........................................................................137 7.3 Background.................................................................................139 7.4 Dataset........................................................................................141 7.5 Methodology...............................................................................142 7.6 Results and discussion................................................................143 7.7 Conclusion..................................................................................148 References..................................................................................148 CHAPTER 8 A computer-aided diagnosis system for breast cancer molecular subtype prediction in mammographic images.............................................153 VivekKumar Singh, Hatem A. Rashwan, Mohamed Abdel-Nasser, Farhan Akram,RamiHaffar, NidhiPandey, MeritxellArenas, SantiagoRomaniand Domenec Puig 8.1 Introduction................................................................................153 8.2 Background.................................................................................155 8.2.1 Breast cancer detection...................................................155 8.2.2 Breast tumor segmentation.............................................156 8.2.3 Shape classification.........................................................158 8.3 Datasets.......................................................................................159 8.4 Methodology...............................................................................160 8.4.1 Modified Faster R-CNN for breast tumor detection......160 8.4.2 Breast tumor segmentation using conditional generative adversarialnetwork.......................................163 8.4.3 Shapedescriptorusingconvolutionalneuralnetwork.......170 8.4.4 Breast cancer molecular subtypes correlation to the tumor shape...............................................................172 8.5 Conclusion..................................................................................173 References..................................................................................174 CHAPTER 9 Computer-aided diagnosis of renal masses............179 Fatemeh Zabihollahy,ErangaUkwatta and NicolaSchieda 9.1 Introduction................................................................................179 9.2 Segmentation ofkidneys............................................................181 Contents xi 9.2.1 Convolutional neural network........................................182 9.2.2 U-Net...............................................................................185 9.2.3 Performance evaluation ofthe algorithm.......................185 9.2.4 Deeplearning(cid:1)based methods for automated segmentation ofkidney...................................................186 9.3 Kidney tumor localization..........................................................186 9.4 Differentiation ofmalignant versus benign renal masses.........189 9.5 Future perspectives.....................................................................191 References..................................................................................192 CHAPTER 10 Early identification of acute rejection for renal allografts: a machine learning approach................197 Mohamed Shehata, Fatma Taher, Mohammed Ghazal, Shams Shaker, MohamedAbou El-Ghar, Mohamed Badawy, Ahmed Shalaby, Maryam El-Baz, Ali Mahmoud, Amy C. Dwyer, Ashraf M. Bakr, Jasjit S. Suriand Ayman S. El-Baz Acknowledgment.......................................................................197 10.1 Introduction................................................................................198 10.2 Methods......................................................................................199 10.2.1 Diffusion-weighted image markers..............................200 10.2.2 Clinical biomarkers.......................................................200 10.2.3 Integration process ofclinical with imaging biomarkers.....................................................................200 10.3 Experimental results...................................................................201 10.4 Conclusion..................................................................................205 References..................................................................................206 CHAPTER 11 Deep learning for computer-aided diagnosis in ophthalmology: a review..........................................219 JamesM. Brown and Georgios Leontidis 11.1 Introduction................................................................................219 11.1.1 Theburden ofeye disease............................................219 11.1.2 Imaging and image analysis.........................................219 11.1.3 Deeplearning: an emerging state-of-the-art.................221 11.2 Deep learning: the methods.......................................................222 11.2.1 Reference standards......................................................223 11.2.2 Preprocessing andaugmentation..................................224 11.2.3 Architectures,transfer learning,and ensembling.........225 11.2.4 Lossfunctionsand performance metrics......................226 xii Contents 11.3 Limitations ofthe state-of-the-art..............................................227 11.3.1 Trustworthiness andtransparency................................227 11.3.2 Uncertaintyestimation..................................................228 11.3.3 Explainability andinterpretability................................229 11.4 Beyondconvolutional neuralnetworks.....................................231 11.4.1 Generativeadversarial networks...................................231 11.4.2 Capsule networks..........................................................232 11.5 Conclusion..................................................................................233 References..................................................................................233 CHAPTER 12 Deep learning for ophthalmology using optical coherence tomography.............................................239 HenryA. Leopold, Amitojdeep Singh, Sourya Senguptaand Vasudevan Lakshminarayanan 12.1 Introduction................................................................................239 12.2 Optical coherence tomography..................................................239 12.2.1 Variations ofoptical coherence tomography systems..........................................................................241 12.2.2 Optical coherence tomography datasets.......................244 12.2.3 Advantages and disadvantages ofoptical coherence tomography imaging....................................245 12.3 Retinal biomarkersand diseases................................................246 12.3.1 Important retinaldiseases.............................................246 12.3.2 Biomarker use indisease analysis................................248 12.4 Traditional approaches for ophthalmicdiagnosis......................249 12.4.1 Image-processing fundamentals....................................250 12.4.2 Feature extraction fundamentals...................................250 12.4.3 Traditionalclassifiers....................................................250 12.4.4 Applications..................................................................251 12.5 Deep learningapproaches to optical coherence tomography analysis...................................................................254 12.5.1 Convolutional neuralnetwork applications..................254 12.5.2 Autoencoder applications..............................................257 12.5.3 Generativeadversarial networkapplications................259 12.6 Final thoughts.............................................................................260 Acknowledgment.......................................................................260 Conflict ofinterest.....................................................................260 References..................................................................................260 Further reading..........................................................................269

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.