ebook img

State-of-the-Art, and Perspectives of, Silver/Plasma Polymer Antibacterial Nanocomposites PDF

17 Pages·2017·3.23 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview State-of-the-Art, and Perspectives of, Silver/Plasma Polymer Antibacterial Nanocomposites

antibiotics Review State-of-the-Art, and Perspectives of, Silver/Plasma Polymer Antibacterial Nanocomposites JirˇíKratochvíl ID,AnnaKuzminovaandOndrˇejKylián* ID DepartmentofMacromolecular,FacultyofMathematicsandPhysics,PhysicsCharlesUniversity, Prague18000,CzechRepublic;[email protected](J.K.);[email protected](A.K.) * Correspondence:[email protected];Tel.:+420-951-552-258 (cid:1)(cid:2)(cid:3)(cid:1)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:1) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7) Received:14July2018;Accepted:10August2018;Published:17August2018 Abstract: Urgent need for innovative and effective antibacterial coatings in different fields seems to have triggered the development of numerous strategies for the production of such materials. Asshowninthisshortoverview,plasmabasedtechniquesarouseconsiderableattention that is connected with the possibility to use these techniques for the production of advanced antibacterial Ag/plasma polymer coatings with tailor-made functional properties. In addition, theplasma-baseddepositionisbelievedtobewell-suitedfortheproductionofnovelmulti-functional orstimuli-responsiveantibacterialfilms. Keywords: non-equilibriumplasma;silver;antibacterialcoatings;plasmapolymers;nanocomposites 1. Introduction Asshowninnumerousrecentreviews,road-maps,and“white”papers[1–7],non-equilibrium plasmasmaybesuccessfullyusedinvariousfields,suchasfromtheautomotiveoraerospaceindustry towaste andpollutioncontrol, orfrom theproduction ofadvancedfunctional biomaterials tothe designofsmarttextiles. Thetremendousboomthatplasma-basedtechnologiesexperiencedinthelast fewdecadesismainlygivenbytheiruniquefeatures. Thesecomprisearelativelylow-temperature natureoftheprocessesthatemployplasma,allowingprocessingofheat-sensitivematerials,including polymers, to treat or coat virtually any material without compromising the bulk properties of treated objects or high versatility in terms of materials that may be deposited by plasma-based techniques(e.g.,metals,metal-oxides,plasmapolymers).Incontrasttotechniquesthatutilizechemical synthesis,plasmaprocessesaredrywithnoorlimiteduseofsolventsorpotentiallyharmfulchemical substances, making them, in many cases, a highly valuable “green” alternative to “wet” chemical methods. Enormous advancement in the use of plasma technologies was also enabled by recent progressinplasmascienceandtechnology,especiallyinthecaseofatmosphericpressuredischarges, aswellasbyclosecollaborationsofplasmaphysicistswithchemists,biologists,andmedicaldoctors. Thisbroadenedtherangeofpossibleapplicationsofnon-equilibriumplasmasthatnowadaysinclude sterilization/decontaminationofsurfaces[8–13],plasmamedicine[14–17],agriculture[18–22],orasit willbediscussedinthisreview,theproductionofantibacterialcoatings[23–25]. In order to highlight the state-of-the-art plasma-based strategies for the deposition of silver-containing antibacterial coatings, the article is organized as follows: In Section 2, different approachesthatmaybeusedforthesuppressionofbacteriaadhesionorbiofilmsformationwillbe brieflysummarized,withemphasisgiventoAg-containingnanocomposites. Differentplasma-based strategiesthatweredevelopedfortheproductionofAg/plasmapolymernanocompositeswillbe presentedinSection3.Finally,Section4willcoverthechallengesandfutureperspectivesoftheplasma depositionofantibacterialcoatings. Antibiotics2018,7,78;doi:10.3390/antibiotics7030078 www.mdpi.com/journal/antibiotics Antibiotics2018,7,78 2of17 2. AntibacterialCoatings Preventing the bacterial colonization of surfaces is a key requirement to limit the spread of infections. Although this is important in various fields (e.g., the textile industry, food packaging production,orspacemissions[26–30]),mostoftheattentionisdevotedtosurfacesusedinmedicine andhealthcareservices. Here,thepresenceofbacteriaonmedicalinstruments,tools,accessoriesetc. mayhavecatastrophicconsequences.Althoughmanyofthefactorsleadingtobacterialinfectioncanbe easilyavoidedbyappropriatehygieneproceduresinthehospitals,itisimpossibletocompletelyavoid bacterialinfections. Forexample,thisistrueinthecaseofmedicalimplants. Itiswellknownthat planktonicbacteriapresentinbodyfluidsmayadheretotheimplantsurfaceinvivo,multiply,andstart toformcomplexandhighlyresistantcommunities,suchasbiofilms,wherebacteriacansurvivefor extendedperiodsoftime. Thebiofilmsmaythenactaspersistentreservoirsforpathogenswhichmay triggerinfections. This,inturn,oftennecessitatesre-operationandreplacementoftheinfectedimplant thatnotonlyincreasescosts,butrepresentsseriousrisk—especiallyforelderlypatients. Apromising strategyforreducingtheoccurrenceofsuchundesirableeventsistoavoidtheinitialattachmentof bacteriatotheimplant’ssurface. Generally,thiscanbedonebyfollowingtwostrategies[31]. Thefirstoneisbasedoncoatingimplantswithnon-foulingthinfilms,i.e. filmsthatarecapable ofresistingproteinadsorptionorbacteriaadhesion. Thetypicalexamplesofsuchmaterialsarepoly (ethyleneglycol)(PEG)derivativesorzwitterionicpolymers,thathaveprovedtobeabletoreduceor inhibit bio-fouling [32–36]. However, it has to be stressed that in most of the invivo experiments, surfacesledonlytothedelayofbiofilmformationandrestrictedlonger-termstabilityandperformance. Furthermore,non-foulingcoatingsarepronetodamageduringtheirhandling. The second way in which to combat biofilm formation is by the production of surfaces that actively kill bacteria. This may be achieved either by contact-killing, or by release-based strategies. The contact-killing of adhered bacteria is achieved either by antimicrobial compounds covalentlyanchoringtothematerialsurface. Examplesincludequaternaryammoniumcompounds, cationicpeptides,orenzymes[23,37,38],orthedesignofbiomimeticnanostructuredcoatingswith high-aspect-ratiosurfacetopographiesthatexhibitbiocidalefficacy[39,40]. Inthecaseofrelease-based coatings, antibacterial action is connected with the gradual leaching of antibacterial agents from the coatings into the surrounding media. The antimicrobial agents may either be organic or inorganic [23,31,41]. Regardless of the antibacterial agent used, its local delivery at a specific site ensuresahighlocaldosewithoutexceedingthesystemictoxicity. Becauseofthis,varioustechniques fortheproductionofsuchantibacterialcoatingsweredeveloped,includingplasma-basedonesthat utilizedorganicantibiotics[42,43]. However,despitethesuccessoftheseapproaches,silver-basedmaterialshavebeenreceiving increasingattentionsincethe1960s. Thiswascausedbyongoingreportsonthedevelopmentofthe resistanceofcertainbacteriatocommonlyusedantibiotics(e.g.,[44–50]). Eventhoughthisisalsothe caseforsilver,wherereportsexistwhichindicatetheoccurrenceofsilver-resistantbacteria[51,52], thedevelopmentofbacterialresistancetowardsAgishighlyimprobableduetothemultiplepossible pathwaysthatmayleadtobacterialdamagebysilvernanoparticles(NPs). Theexactmechanismofthe antibacterialactionofAgNPsisstillnotfullyunderstood,andisafrequenttopicofdiscussionand controversy. AgNPsmayeitherinducetheformationofreactiveoxygenspecies(ROS)ormayrelease inaqueousmedia,suchashighlybioactivesilverions. TheROSandAg+ionsproducedsubsequently interactwithDNAorthethiolgroupsofmoleculespresentinthecytoplasm,cellmembrane,andinner membraneofmitochondria,thatmayresultinchangesinpermeability,disturbanceofrespiration, leakageofintracellularcontent, inhibitionofproteinsynthesisandfunction, andcellapoptosisor necrosis[52–55]. Naturally,thesilverNPsandreleasedsilverionsmayinteractnotonlywithbacteria,butalso withtissuecells. Fortunately, thehealthrisksassociatedwithsystemicabsorptionofAg+ ionsare ratherlow[56]. Nevertheless, inordertoavoidanyundesirableside-effectsconnectedwithsilver Antibiotics2018,7,78 3of17 release, itsdosagehastobecarefullycontrolledandregulated, whichisoneofthekeychallenges connectedwiththeapplicationofsilver-basedantibacterialnanocomposites. 3. AntibacterialAg/PlasmaPolymerNanocomposites Numerousstudieshavebeendevotedtothefunctionalizationofsurfaces(mostlypolymericones) byantibacterialnanosilver(e.g.,[57–62]). However, alimitationoftheproposedmethodswasthe pooradAhnetisbiiootincs o20f18s,i 7lv, xe rtosubstrates,whichoftenledtothewashing-outofAgNPsfromt3h oef s17u bstrate, which came with unacceptable pollution of the environment. Although it was demonstrated by 3. Antibacterial Ag/Plasma Polymer Nanocomposites differentgroupsthatthiseffectmaybesubstantiallysuppressedbyplasmaactivation/functionalization Numerous studies have been devoted to the functionalization of surfaces (mostly polymeric ofsubstratematerialspriortothesilverdeposition(e.g.,[63–68]),inmanycasesthestabilityofAg ones) by antibacterial nanosilver (e.g., [57–62]). However, a limitation of the proposed methods was layersstillremainedquestionable. Becauseofthis,alternativestrategiesbasedontheembeddingof the poor adhesion of silver to substrates, which often led to the washing-out of Ag NPs from the AgNPssuinbsttoraates, uwpphiochrt incagmme awtriitxh wuenraeccseuptgagblees tepdol.luFtrioonm otfh ethsee peonivnirtosnomfevnite. wA,lpthloausgmha ipt owlyams ersare considedreemdotonsbtreathedig hbyly dpifrfoemrenist ingrgoumpast rtihxatm thaitse reifaflesc,t i.me.aym baec rsoumbsotalenctiuallalyr ssuoplipdrsestsheadt bayre pclraesamtae dwhen anorganacitcivvaatipoonu/frunocrtiporneacliuzarstioorn poaf sssuebsstthrartoeu mgahtearipallsa spmrioar[ 6to9 –th7e4 ]s.ilIvnerc odnetproassittitoon c(oe.ngv., e[n63ti–o6n8]a)l, pino lymers, many cases the stability of Ag layers still remained questionable. Because of this, alternative strategies plasmapolymershavearandomandirregularstructurewithhigherdegreesofcrosslinking,anda based on the embedding of Ag NPs into a supporting matrix were suggested. From these points of branchedstructure. Despitetheircomplexstructure,plasmapolymersoffercertainadvantages-they view, plasma polymers are considered to be highly promising matrix materials, i.e. macromolecular canbedsoelpidos stihteatd airne ctrheeatfeodr wmheonf cano nofrogramnica lv,appionu-rh oorl eprferceuerstohri npafisslems sthoronugahn ya spulabsmstar a[t6e9–m74a]t. eIrni alwith well-concotrnotrlalestd ttoh ciocknvneenstsioensaal tpaolnyamneorsm, petlaresmsac aploel.yFmuerrtsh hearvme oar era,nthdeoimr panrodp ierrretgieuslatrh sattruccatnurbe ewtiuthn edbya widerahniggeheor fdoepgreereast ioof ncarolscsolinnkdiintgio, nansd( ea. gb.r,aanpchpeldie dstrpuoctwureer., Dpersepciuter sthoeri/r wcoomrkplienxg sgtrausctmuriex, tpulraesm,par essure) polymers offer certain advantages- they can be deposited in the form of conformal, pin-hole free thin spanfromsofttohardpolymers,frombio-foulingtonon-fouling,orfromfilmsthatarestable,swelling, films on any substrate material with well-controlled thicknesses at a nanometre scale. Furthermore, ordissolvableinaqueousmedia. Theuseofplasmapolymersthusmaynotonlyimprovethefixation their properties that can be tuned by a wide range of operational conditions (e.g., applied power, onAgNPsandavoidtheirreleasetosurroundingmedia,but,duetothehighflexibilityofplasma precursor/working gas mixture, pressure) span from soft to hard polymers, from bio-fouling to non- polymefrosuilnintge, romr sfroomft hfilemirs pthhayt sairceo s-tcahbelem, siwcaelllainngd, obri od-iassdohlveasbilvee inp raoqpueeorutise ms,eadlisao. Ttahiel ourset hoef iprlaasnmtiab acterial orbio-fpooullyimngerps ethrufos rmmaay nncoet .oInnlyt ihmepfroolvleo wthein fgixattwioon soun bAsge cNtiPosn asn,dd aivffoeidre tnhteiar prepleraosaec thoe ssurtrhoautnwdienrge tested, withthemaeidmia,o bfupt, rdoudeu toc itnhge hAiggh/ fplelxaisbmilitay poof plylamsmera npoalnyomceorms inp otesrimtess o,fw thiellirb pehsyusimcom-chaermiziecadl. and bio- adhesive properties, also tailor their antibacterial or bio-fouling performance. In the following two 3.1. LayseurebdseNctaionnosc, odmifpfeorseintet sapproaches that were tested, with the aim of producing Ag/plasma polymer nanocomposites, will be summarized. Sandwich or multi-layer structures (see Figure 1) represent the first family of antibacterial Ag/pla3s.m1. aLapyeorleyd mNaenroncoamnpoosciotems posites. SuchcoatingstypicallyconsistofAgNPsovercoatedwitha thintoplayeSarnodfwpilcahs mor ampuoltliy-lmayeerr (sttyrpucictuarlelys (fsreoem Fisgeuvree r1a)l nreapnreosmenett ethres tfoirstte nfasmoiflyn oafn oanmtiebtaecrtesr)iathl atfixes AgNPsAogn/palassmubas ptroalytemmer antaenroiacolmanpdosaitcetss. Sauscah dcoifaftuinsgiso ntypbiacrarlliye rcofonsrislet aocf hAign gNAPsg o+vieorcnosa.teAdg wNithP sa maybe thin top layer of plasma polymer (typically from several nanometers to tens of nanometers) that fixes depositedonasubstrateeitherbyimmersionintoacolloidalsolutionofAgNPsfollowedbydrying, Ag NPs on a substrate material and acts as a diffusion barrier for leaching Ag+ ions. Ag NPs may be salt reduction, or physical methods, such as evaporation, magnetron sputtering, or the use of gas deposited on a substrate either by immersion into a colloidal solution of Ag NPs followed by drying, aggregationsources(GAS)ofsilverNPs(seeFigure2). ThephysicalmethodsofAgNPsdeposition salt reduction, or physical methods, such as evaporation, magnetron sputtering, or the use of gas arehighalgygraedgavtaionnt asoguerocuess ,(GaAsSth) eoyf sliilvmerit NthPse (pseoes Fsiigbulereu 2n).c Tohnet rpohlylseidcaal gmgertheogdast ioofn Aogf NAPgs dNepPossoitnions urfaces, ensureahrieg hhigphulyr iatdyvoanftsaiglevoeurs,N asP tsh,eayn lidmmit tahye pboesseiablsei luynccoonmtrbolilnede dagwgrietghatoiothn eorf Alogw N-Ppsr eosns suurrefadceesp, osition techniqeunessuures ehdighfo prupriltays omf asilpvoerl yNmPes,r amnda tmriaxy dbeep eoassiiltyio cnom. Ibninoerdd werittho oftahceirl iltoawte-ptrhesesuardeh deespioosnitioofnA gNPs techniques used for plasma polymer matrix deposition. In order to facilitate the adhesion of Ag NPs ontoasubstrateadditionalbottomlayer(oftenplasmapolymerfilm)isusedasaninterfacebetween onto a substrate additional bottom layer (often plasma polymer film) is used as an interface between thesubstrateandAgNPs. the substrate and Ag NPs. Figure 1. Common structure of (a) sandwich and (b) multi-layered Ag-based nanocomposites. Figure1.Commonstructureof(a)sandwichand(b)multi-layeredAg-basednanocomposites. Antibiotics2018,7,78 4of17 Antibiotics 2018, 7, x 4 of 17 FFiigguurree 22.. SSchchememataitci crerpeprerseesnetnattaiotino nofo pfopsossibslieb lestrsattreagteiegsi efsorf ocroactoinatgi nsgubssutbrasttersa tewsitwh iAthg ANgPsN. P(as). (Iam)Immemrseirosnio inntion tao caoclloolildoiadl aslosloultuiotino nofo AfAg gNNPsP,s f,oflollolwoweded bbyy ddryryiningg (e(e.g.g.,. ,[[6633,6,677,7,755]])).. ((bb)) SSaalltt rreedduuccttiioonn.. SSuubbssttrraatteess aarree ccoommmmoonnllyy eexxppoosseeddt too ssiillvveerr nniittrraattees soolluuttiioonn.. AAggNNOO33 iiss,, iinn tthhee sseeccoonndd sstteepp,, rreedduucceedd bbyy aann aapppprroopprriiaattee rreedduucciinngg aaggeenntt ((ee..gg..,, ssooddiiuumm cciittrraattee,, ssooddiiuumm bboorroohhyyddrriiddee,, oorr eevveenn HH22 ppllaassmmaa)) [[7766––7799]].. ((cc)) DDiirreecctt ccuurrrreenntt ((DDCC)) mmaaggnneettrroonn ssppuutttteerriinngg.. IInn tthhiiss llooww--pprreessssuurree vvaaccuuuumm--bbaasseedd ppllaassmmaa ddeeppoossiittiioonn tteecchhnniiqquuee,, aa ssiillvveerr ttaarrggeett mmoouunntetedd onontot oa aDDC Cmamgangentreotnro ins sisubsujebctjeecdt etod at ofluaxfl oufx hoigfhhlyig ehnlyeregneetircg ieotnics ipornosdpurcoeddu icne tdhein pltahsempal absumlka. Tbuhliks .leTadhsis tole tahdes etmoitshseioenm oifs ssiilovnero aftsoimlvse rthaatto cmonsdthenatsec oonnd ae snusbesotrnatae sluocbastterdat einl otchaet eddeipnosthiteiodne pchoasmitiboenr.c hDaempebnerd.inDge poenn tdhien gdoepnotshiteiodne pcoosnidtiiotinoncos n(dmitaigonnestr(mona gcnuerrtreonnt, cpurrersesnutr,ep, rdeespsuosriet,iodne ptiomseit,i oentc.t)i mvaer,ioeutcs. )sivlvaerrio nuasnsoislvtreurcntuarneos satrrue cftourrmeseda rtehafot rrmanegde tfhraotmr ainndgeivfidroumal isnedpiavriadtueadl sneapnaoriastleadndnsa ntoo iisnlatenrdcsontoneinctteerdc oAngn encettewdoArkgsn (eet.wg.o, r[k5s9,(8e0.g–.8,7[5].9 (,8d0) –D87e]p.o(sdi)tiDonep oofs Aitigo nNoPfsA bgy NmPesanbys omf eaa ngsaso faagggraesgaagtgiorneg saotiuornces oeuqruciepepqeudi pwpietdh wa istihlvaesri ltvaergretat.r gGeat.s Gagasgraegggarteigoant isoonusroceusr cbeassbeads eodn omnamgnaegtnroentr osnpuspttuerttinergi nwgewree rientirnotdroudcuedce bdyb yHHabaebrelarlnadn dete tala. l.[8[888] ]aanndd ssiinnccee tthheenn wweerree ssuucccceessssffuullllyy aapppplliieedd ffoorr tthhee ffaabbrriiccaattiioonn ooff ddiiffffeerreenntt kkiinnddss ooff nnaannooppaarrttiicclleess ((ffoorr mmoorree iinnffoorrmmaattiioonn,, rreeaaddeerrss sshhoouulldd rreeffeerr ttoo tthhee iinnssttaannccee ttoo mmoonnooggrraapphhyy [[8899]] oorr rreecceenntt rreevvieieww aarrtitcicleless [9[900––9933])].). IInn ccoonnttrraasstt ttoo ssppuutttteerr deposition,silvernanoparticlesarealreadyformedinavolumeoftheaggregationchamberasaresult deposition, silver nanoparticles are already formed in a volume of the aggregation chamber as a result ofgas-phasenucleationofsputteredatoms,whichisfollowedbythecoagulationorcoalescenceof of gas-phase nucleation of sputtered atoms, which is followed by the coagulation or coalescence of growingnanoparticles.Asshownbyourgroup,thefactthatNPsareformedinthegas-phasemeans growing nanoparticles. As shown by our group, the fact that NPs are formed in the gas-phase means theirpropertiesarenotdependentonthesubstratematerial,whichmakesitpossibletoindependently their properties are not dependent on the substrate material, which makes it possible to controlthesizeandnumberofdepositedNPs[94,95]. independently control the size and number of deposited NPs [94,95]. IInn mmoosstt ccaasseess,, llooww pprreessssuurree ddeeppoossitiitoionn sysystsetemms s(p(plalsamsma-ae-nehnahnacnecde dchcehmemicaicla vlavpaopro dredpeopsoitsioitnio onr omramgangentreotnro snpsupttuetrtienrgin, gs,eese FeiFgiugruer 3ea3,ab,)b w)wereer esesleelcetcetded fofor rththee ddeeppoossitiitoionn oof ftthhee bbaassee aanndd ttoopp llaayyeerrss.. TThhee cchhooiiccee ooff oovveerrccooaatt mmaateterriaial laanndd itist sthtihcikcnkensess sstrsotrnognlyg liynfilnufleunecnedce tdhet haentaibnaticbtaercitaelr iaacltiaocnti oonf thofe trheesurletisnuglt icnogatcinogatsi.n Fgos.r iFnostranincset,a nthcee ,Ktiheel gKrioeulpg,r oinu pt,heinir tdheetiarildeedt asitlueddys tuusdinygu Asign gNAPsg tNhaPts wthearet wsaenrdewsaicnhdewd iicnh ebdetwineebne twRFe esnpuRtFtersepdu tptoelryetdetrpaoflluyotreotreathflyuloernoee t(hPyTleFnEe) (aPnTdF Ea) laaynedr aof laeyitehrero fpleaistmhear- pslpausmttear-esdp uPttTeFreEd, pPlTaFsEm,ap-lpaosmlyam-peorilzyemde hriezxeadmheethxaymldeisthilyolxdainsielo (xpapneH(MppDHSMOD), SoOr )S,ioOrxS ifOilmxfis lmprseppraerpedar ebdy bpylapslmasam paoplyomlyemriezraitziaotnio onf oHfMHMDSDOS Owwithit hadamdmixiexde doxoyxgygenen, ,pprorovveedd ththaatt tthhee rreelleeaassee ooff ssiillvveerr iioonnss aanndd aallssoo ththeea natnibtiabcatcetreiarilaelf fiecffaiccyacoyf porfo pdruocdeudcceoda tcinogastinstgros nsgtlryondgelpye nddeepdenodnetdh eoonv ethrceo aotvmeractoearita lm[9a6te,9r7ia]l, a[9n6d,9th7]e, haingdh etshteA hgi+ghreelseta Asega+n rdelbeaacstee raina-dk ibllaicntgerriaat-eksilwlienrge roabtseesr vweedrefo orbSsiOerxvfiedlm fso.rS SimiOilxa frilcmons.c lSuismioilnasr wcoenrecludsriaownns wbyerKe udzramwinno bvya Ketuzaml.i[n9o8]v,aw eht oal.u [s9e8d], mwuhloti u-lsaeyde rmsutrlutic-ltauyreers swtriuthctualrteesr nwaittihn galltaeyrnearstinogf plapyHeMrs DoSfO poprHSiMODxaSnOd Aorg NSiPOsx parenpda rAedg bNyPthse pPrEe-pCaVrDeda nbdy GtAheS sPyEst-eCmV.DB eattnedr aGntAibSa cstyersitaelmbe. hBaevtitoerr oafnatinbaScitOerxi-alilk beehmaavtiroixr owf aasna SsicOrixb-leidket omtahtreixd iwffaesr eanstcrwibeetdta btoil itthye odfifpfperHenMt DwSeOttaabnildityS ioOf xp—pwHhMeDreSaOs papnHd MSiODxS—Owishehryedasro ppphHobMicDaSnOd isth huysdaroctpshaosbiac baanrdr itehrufso racwtsa atesr ap beanrertierar tfioorn winattoert hpeendeetrpatthioonf itnhteo ctohaet dinegpst,hS oiOf txhfie lcmoastainregsh, ySdiOrox pfihlmilisc aarned hmydorroepwhialtice rapnder mmoeraeb lwe.atTehr ipsewrmaseacobnlefi. rTmhiesd wbays Bcolannfcirhmaredd ebtya Bl.la[9n9c]hwarhdo est tauld. [i9ed9] wwahtoe rstpuednieetdr awtiaotneri npteonpetprHatiMonD iSnOtoa pnpdHSMiODxStOhi nanfidl mSisObx ythmine afinlmsos fbnye muteraonns roeffl neectuotmroent rrye.fHlecotwomeveetrr,yr.e Hceonwtreevseurl,t sreocfeKnty rlieasnuletts aolf. [K1y00li]asnh eotw ael.d [1th0a0t] esvheonwfeodr hthigaht leyvheny dforor phhigohbilcy Ch:yFdtroopphlaoybeircs (Cw:Fa tetorpc olnatyaecrtsa n(wglaetseor fcporneptaacrte dancgoaletsin gosf uppretpoa1r6e5d◦ )c,oaasttirnognsg uapn titboa c1t6er5i°a)l, cah asrtarcotnegr oafntthibeaccoteartiinagl schmaaryacstteirll obfe tohbes ecrovaetdinwgsh menaoyn slytilal tbhei nobCs:Ferlvaeyde rw(1h0ennm o)nilsyu as etdh.inS uCc:hF alaryeesur l(t1s0u gngme)s tiss tuhsaetdc.o aStuincgh wae trteasbuillitt ysuisgngoetsttsh ethoantl ycpoaartainmge twere,tatnabdiltihtayt tihs enmoto rtphheo loonglyy opfathraemcoeatetirn, gasn—de stpheacti atlhlye tmheorpprehsoelnocgeyo offc rtehvei cceosaatinndgds—efeecstpseicniathlley otvheer cporaetselanyceer owf hcircehvmicaesk eaAndg NdePfsecatcsc einss itbhlee obvyewrcaoteart— lahyaesr twohbiechc omnasikdee Aregd NasPws aecllc.eIsnsibalded bityi own,attehre—rehlaesa steo obfe acnotnibsiadcetererida laAs gw+erlle. sIpno andsidbilteiofno,r tahnet irbealecateseri aolf antibacterial Ag+ responsible for antibacterial action of produced coatings was found to be strongly linked with the number of silver NPs in the coatings, as well as with the thickness of the top barrier Antibiotics2018,7,78 5of17 aAcnttiiboinoticosf 2p01r8o, d7,u xc edcoatingswasfoundtobestronglylinkedwiththenumberofsilverNPsi5n otf h1e7 coatings,aswellaswiththethicknessofthetopbarrierlayer. Thisallowsforthefabricationofthe claoyaetirn. gTshwis iathlloewiths efrora tbhuer fsat-brreilceaatsioeno fosf itlhvee rcoioantisn,gosr wasitlho weitbhuetr tae mbuprosrta-rlleylesatsaeb loef lseialvcehri niognosf, Aorg a+ siloonws. but temporally stable leaching of Ag+ ions. Although the low-pressure deposition systems were traditionally used for the production of Although the low-pressure deposition systems were traditionally used for the production of plasmapolymerovercoats,thepossibilitytoalsouseatmosphericpressuredepositionsystemswas plasma polymer overcoats, the possibility to also use atmospheric pressure deposition systems was suggestedbyDengetal.[101,102]. Theseauthorsusedanatmosphericpressureplasmajetoperated suggested by Deng et al. [101,102]. These authors used an atmospheric pressure plasma jet operated inamixtureofN /O /tetramethyldisiloxane(TMDSO)toproduceabarrierlayerdepositedontopof 2 2 PinE Ta mfaibxrtiucrsec ooaf tNed2/Ow2i/tthetAragmNethPysl.dIitsiwloxaasndee (mTMonDstSrOat)e dtot hparotdthuecea nat ibbaarcrtieerr ialalyeefrfe dctepoofssiutecdh ponre tpoapr eodf PET fabrics coated with Ag NPs. It was demonstrated that the antibacterial effect of such prepared fabrics on P. aeruginosa, S. aureus, C. albicans and E. coli may be varied by the thickness of the top fabrics on P. aeruginosa, S. aureus, C. albicans and E. coli may be varied by the thickness of the top layer. layer. Furthermore,thetoplayerwasconfirmedtoenhancethestabilityofantibacterialeffect,andno Furthermore, the top layer was confirmed to enhance the stability of antibacterial effect, and no variationofantibacterialactionwasobservedafter10washingcycles[101]. variation of antibacterial action was observed after 10 washing cycles [101]. FFiigguurree 33.. SSchcheemmaatitci crerperperseesnetnattaiotino nofo pfopssoisbslieb plelapslmasam-baa-sbeads estdrasttergaiteesg fieosr tfhoer othveerocovaetricnoga toifn Aggo Nf APsg. N(aP) sP.l(aas)mPala-semnhaa-nencehda nccheedmcihceaml ivcaaplovra pdoerpdoespitoiosnit io(PnE(-PCEV-CDV).D I)n. Itnhtihs ismmetehtohdo,d ,oorgrgaannicic vvaappoouurrss oorr pprreeccuurrssoorrss aarree iinnttrroodduucceedd iinnttoo tthhee ppllaassmmaa,, wwhheerree tthheeyy aarree aaccttiivvaatteedd aanndd ffrraaggmmeenntteedd.. FFoorrmmeedd rraaddiiccaallss tthhaatt ccoonnddeennsseeo onna as usbusbtrsatrtaetseu sbusebqseuqeunetlnytluyn duenrdgeorgfroe efrreaed ircaadlicchaal inchgarionw gtrhopwotlhy mpoerlyizmateiroinza(ftoiornm (oforer dmeotareil sd,eptlaeialsse, prelefearseto rtehfeerm too ntohger ampohnieosg[r6a9p,7h1ie,7s2 ][6o9r,7r1ev,7i2e]w osr[ 2r,e2v4i,e7w4]s) .[(2b,2)4R,7F4m]).a g(bn)e tRroFn mspaugtnteertrinogn ospfuatpteorliynmg eorfi ca tpaorglyemt.eInrict htaisrgcaest.e I,ns ttahritsi ncgasme,a sttearritailnigs msuaptperliiaedl isin suthpepfloierdm ino fthaes ofolirdm-s toaft ea psoolliydm-setaritce tpaorlgyemttehraict itsaargtteatc htheadt oins toatatamchaegdn eotnroton .aA mtoamgsn,emtroolne.c uAlteosm,asn, dmmoolelceuculelsa,r afrnadg mmeonltescusplaurt tferraegdmfreonmts tshpeupttoelryemd efrroicmta trhgee tpcoolynmseeqruice ntatlrygepta crotincispeaqtueeinntlpyl apsamrtaicpipoalytem ienr ipslaatsiomna, apsoilnymtheeriPsEat-iCoVnD, a.sI ninc tohnet rPaEst- tCoVsDpu. tItner icnogntorfamste ttoa llsipcutatrtegreitnsg,p oofl ymmeetrasllaicre tnarogtectosn, dpuocltyimvee,rms eaarnei nngott hcaotnRdFupctoiwvee,r mhaesantoinbge athpaptl iRedF. Mpoawgnere throans tsop ubtet earpinpgliewda. sMemagpnleotyreodn fsopruthtteerpinrogd wucatsio enmopflaoyweidd eforra nthgee pofropdlauscmtiaonp oolfy am werisd,ein rcalnugdein ogf Cpl:aHs,mCa: Hp:oNly:Om,eorrs,C i:nFcolundeisn(ge .Cg.:,H[1, 0C3:–H1:0N9]:O).,( co)rA Ctm:F oosnpehse r(eic.gp.,r e[s1s0u3r–e10p9la])s.m (ca) jAettsm.Tohspesheersiycs tpermesssuarree bpalasesmdoa njePtsE.- CThVeDsep sryoscteesms,sb uatret hbeagseadse oouns PoEr-lCiqVuDid pprroecceusrss,o brsuta rtehein gtraosdeuocuesd otro ltihqeuipdl apsrmeacuigrsnoirtesd aaret aintmtroodspuhceerdic tpo rtehsesu prela.sDmifaf eirgennittecdon afitg autrmatoiospnhseorfica tpmroesspsuhreer.i cDpirfefesrseunret pcolansfmigaujreattsiownesr eofd eamtmoonssptrhaetreidc tporebsesusureit apblalesmfoar jtehtes dweeproes diteiomnoonfstvraartieodu tsop blaes smuaitapbolley mfoer rthfielm dsep(eo.gsi.t,i[o1n1 0o–f 1v1a8r]i)o.us plasma polymer films (e.g., [110–118]). 3.2. DirectEmbedmentofAgNPsintoPlasmaPolymerMatrix 3.2. Direct Embedment of Ag NPs into Plasma Polymer Matrix As shown in the previous section, layered silver-containing structures are highly effective at killinAgsb sahcotewrina .in Hthoew perveevri,otuhse sdecetpioonsi,t iloaynerperdo cseidlvuerre-cionnvtoailnviensgm sturluticptuleresst eapres, hwighhilcyh eifsf,ecftriovme aat tkeicllhinngo lobgaicctaelripao. iHntoowfevvieerw, ,thael imdeitpionsgitfiaocnt opr.roCceodnuserqe uiennvtolylv,easl temrnualttiipvlee asptpeprosa, cwhehsicfho risA, gf-rboamse da nteacnhoncoolmogpicoasli tpeopinrot douf cvtiioewn,w ae rliemdietivnegl ofpacetdo,r.i nCwonhsiecqhuAengtlnya, naoltpearnrtaitcilvees aapreprinocaochrpeso rfaotre dAgd-ibreacsteldy innatnootchoemgprooswitein pgropdlauscmtioanp woelyrem deervmelaotpreixd., inO wnehiocfh tAhge nfiarnstopaattretmiclpetss artoe winacrodrptohrisateddir decirtieocntlyw inertoe rthepe ogrrtoewdibnyg Fpalavsimaae tpaoll.y[m11e9r] manadtriSxa. rOdneell aofe tthael .fi[r1s2t 0a]t.teTmhpetsse taouwtharodr sthpirse dpiarreecdtiocno nwfoerrem raelpcooratetdin bgys wFaitvhias eiltv aelr. [N11P9s] aenmdb Seadrddeedllain eta alp. o[l1y2e0th].y Tlehneeseo xaiudeth-loikrse p(PreEpOar-leidk ec)omnfaotrrmixa,l ucosiantgingPsE w-CiVthD silfvroemr NRPFs gemlowbedddisecdh ainrg ae spofelydetwhyitlhenAe ro,xaidned-ldikieet h(PylEgOly-cloikl-ed)i mmeathtryilx-e, tuhseirn(gD PEEG-MCVED)w friothms iRmFu gltloanwe oduisscshpaurgtteesr ifnedg fwroitmh tAhre, AangdR Fdieetlheycltgrolydceoli-ndimanetahsyyl-metmheer tr(DicEpGaMraEll)e lw-piltaht esicmonufiltgaunreaotuiosn s(psueteteFriignugr efr4oam). tDhue eAtog tRhFe reeleaccttroordaes iynm amn aestryym,nmeegtaritciv peaDraCllesle-plfl-abtiea csodnefvigeulorapteidono (nseteh Feisgmurael l4ear)A. Dgueel etoct trhoed ree,awcthoirc ahsylemdmtoettrhye, bnoemgabtiavred mDeCn steolff-tbhieasA dgetvaerlgoeptebdy ohnig thhley semnearlgleert iAcgio enlsecintrdoudcei,n wghsiilcvhe rlesdp utott ethrien bgo.mEmbaitrtdedmAengt aotfo tmhes Ag target by highly energetic ions inducing silver sputtering. Emitted Ag atoms impinged upon the plasma polymer surface, which grew simultaneously by plasma polymerization. Ag atoms, due to their limited diffusion in a cross-linked matrix, subsequently formed stable metal nanoparticles through an aggregation process. The properties of the resulting nanocomposites (Ag filling factor, Antibiotics2018,7,78 6of17 impingedupontheplasmapolymersurface,whichgrewsimultaneouslybyplasmapolymerization. Agatoms,duetotheirlimiteddiffusioninacross-linkedmatrix,subsequentlyformedstablemetal Antibiotics 2018, 7, x 6 of 17 nanoparticlesthroughanaggregationprocess. Thepropertiesoftheresultingnanocomposites(Ag fillingfactor,sizeofAgNPs,andPEO-likecharacterofthematrix)werecontrolledbyoperational size of Ag NPs, and PEO-like character of the matrix) were controlled by operational parameters parameters (power, pressure, and Ar flow). Based on the disk diffusion test that was performed (power, pressure, and Ar flow). Based on the disk diffusion test that was performed with S. with S. epidermidis, it was reported that the inhibition area correlated with the Ag content in the epidermidis, it was reported that the inhibition area correlated with the Ag content in the coatings. coatings. SimilarapproachesusingsimultaneousplasmapolymerizationandAgsputteringwassince Similar approaches using simultaneous plasma polymerization and Ag sputtering was since then thenemployedbyotherresearchgroups,whichutilizeddifferentprecursors/workinggasmixtures. employed by other research groups, which utilized different precursors/working gas mixtures. PreparednanocompositesweretestedtowardsbothGramm-negativeandGramm-positivebacteria Prepared nanocomposites were tested towards both Gramm-negative and Gramm-positive bacteria (for a summary of results, please refer to Table 1). Furthermore, it was found that Ag/HMDSO (for a summary of results, please refer to Table 1). Furthermore, it was found that Ag/HMDSO nanocompositeswithproperly-tunedsilvercontentmaynotonlykillbacteria,butalsodrastically nanocomposites with properly-tuned silver content may not only kill bacteria, but also drastically reducemicrobialadhesion[121,122]. reduce microbial adhesion [121,122]. Figure 4. Different approaches for the production of Ag/plasma polymer nanocomposites: (a) Figure 4. Different approaches for the production of Ag/plasma polymer nanocomposites: Simultaneous sputtering and plasma polymerization, (b) deposition from two independent magnetrons, (a) Simultaneous sputtering and plasma polymerization, (b) deposition from two independent and (c) a combination of a gas aggregation source and plasma polymerization. magnetrons,and(c)acombinationofagasaggregationsourceandplasmapolymerization. The great advantage of simultaneous sputtering and plasma polymerization is that it is a single- The great advantage of simultaneous sputtering and plasma polymerization is that it is a step process. However, as the sputtering and plasma polymerization are fully coupled, it is not single-stepprocess. However,asthesputteringandplasmapolymerizationarefullycoupled,itis possible to independently tailor the size of Ag NPs and their amount in the films and matrix not possible to independently tailor the size of Ag NPs and their amount in the films and matrix properties. In order to overcome this limitation, another procedure that is based on co-sputtering properties. In order to overcome this limitation, another procedure that is based on co-sputtering from two independent magnetron sources may be used (see Figure 4b). The volume fraction of silver fromtwoindependentmagnetronsourcesmaybeused(seeFigure4b). Thevolumefractionofsilver in a matrix material is, in this case, controlled by the power applied to the individual magnetrons. inamatrixmaterialis,inthiscase,controlledbythepowerappliedtotheindividualmagnetrons. This approach, which is also applicable for the production of inorganic Ag containing antibacterial Thisapproach,whichisalsoapplicablefortheproductionofinorganicAgcontainingantibacterial nanocomposites (e.g., Ag/silica [123], Ag/hydroxyapatite [124], or Ag/TiO2 [125]), was used for the nanocomposites (e.g., Ag/silica [123], Ag/hydroxyapatite [124], or Ag/TiO [125]), was used for fabrication of Ag/C:F antibacterial films by Zaporojtchenko et al. [126]. It 2was reported that the thefabricationofAg/C:FantibacterialfilmsbyZaporojtchenkoetal.[126]. Itwasreportedthatthe nanocomposites produced steadily supplied silver ions for a long period of time (reported values nanocomposites produced steadily supplied silver ions for a long period of time (reported values were for 300 days) and exhibited antibacterial effects towards S. epidermidis, S. aureus, and P. werefor300days)andexhibitedantibacterialeffectstowardsS.epidermidis,S.aureus,andP.aeruginosa. aeruginosa. Moreover, an addition of a small amount of Au (1%) was found to substantially increase Moreover,anadditionofasmallamountofAu(1%)wasfoundtosubstantiallyincreasetherelease the release rate of silver ions (by one order of magnitude) [126]. This effect is explained by the rate of silver ions (by one order of magnitude) [126]. This effect is explained by the formation of formation of galvanically-coupled Ag and Au NPs, because in the galvanic pair, silver is more active than gold, and the presence of gold enhances Ag+ ion formation. Antibiotics2018,7,78 7of17 galvanically-coupledAgandAuNPs,becauseinthegalvanicpair,silverismoreactivethangold, andthepresenceofgoldenhancesAg+ionformation. Table1.OverviewofthereportedantibacterialeffectofAg/plasmapolymernanocomposites. WorkingGas DepositionMethod Precursor Bacteria Result Reference Target Simultaneoussputtering Agtarget StaphylococcusEpidermidis Inhibitionzone6mm [120] andplasmapolymerization Ar/DEGME Simultaneoussputtering Agtarget Pseudomonasaeruginosa, Bacterialgrowthdownto0% [127] andplasmapolymerization Ar/NH3/C2H4 Staphylococcusaureus Agtarget Simultaneoussputtering Pseudomonasaeruginosa, andplasmapolymerization Ar/NH3/C2H4 Staphylococcusaureus >7logreduction [128] Ar/CO2/C2H4 Simultaneoussputtering Agtarget Escherichiacoli, E.Coli>6logreduction [129] andplasmapolymerization Ar/HMDSO Staphylococcusaureus S.aureus>1log Simultaneoussputtering Agtarget Saccharomycescerevisiae 1.9logreduction [130] andplasmapolymerization Ar/HMDSO MRSA, MRSE,VRE, Inhibitionzone20–22mmforall Simultaneoussputtering Agtarget Escherichiacoli testedbacteria. [131] andplasmapolymerization polyaniline Pseudomonasaeruginosa, >6logreductionforE.Coliand Proteusmirabilis, MRSA Klebsiellapneumoniae Simultaneoussputtering Agtarget Staphylococcusaureus 99%ofbacteriakilled [132] andplasmapolymerization C2H2 Staphylococcusepidermidis, Staphylococcusaureus, Enterococcusfaecalis, AgandPTFE Co-sputtering Pseudomonasaeruginosa, 7logreductionforS.aureus [126] targets Escherichiacoli, Klebsiellapneumoniae, Candidaalbicans GASsystemcombinedwith AgGAS Escherichiacoli Almost3logreduction [133] plasmapolymerization Ar/n-hexane AnotherstrategythatmakesitpossibletocompletelydecouplethedepositionofAgNPsandthe plasmapolymermatrixisbasedontheuseofgasaggregationsources[134,135]. Thisapproachwas recentlyusedbyVaidulychetal.[133]forthedepositionofAg/a-C:Hnanocomposites. Inorderto producehardcoatings,thesubstrateswereplacedonaRFelectrode,usedfora-C:Hmatrixdeposition, perpendicularlytothedirectionofabeamofAgNPsproducedbytheGASsystem(Figure4c). Asit was shown in a previous study focusing on Cu/a-C:H nanocomposites [136], the volume fraction ofmetallicNPsina-C:Hmatrixandconnectedantibacterialefficiencymaybetunedeitherbythe current applied onto the DC magnetron in the gas aggregation source, or by changing the duty cycle of RF power used for the matrix deposition. Furthermore, it was reported that antibacterial actionofAg/a-C:Hcoatingsmaybeenhancedbythepartialetchingofnanocompositesbyplasma treatmentperformedinthesamedepositionchamberresultinginpartialremovalofacarbonaceous layerfromtheoutermostsurfaceofproducednanocomposites,thusmakingAgNPsmoreaccessible forwater[133]. Acompletelydifferentone-stepprocessapplicableforthedepositionofAg/plasmapolymer antibacterialfilmswasproposedbyZimmermanetal.[137],Beieretal.[138],andGerullisetal.[139]. Theseauthorsusedanatmosphericpressureplasmachemicalvapordepositiontechnique,inwhicha HMDSOprecursorwasintroducedintotheatmosphericpressureplasma,togetherwithsilvernitrate byamodifiedjetnozzle(Figure5a). Astrongantibacterialeffectofnanocompositesproducedinthis wayonE.coliwasshownevenafter10,000washingcycles[138]. Atmosphericpressuredepositionwas finallyalsotestedbyDengetal.[140],wheretheydirectlyintroducedAgNPs(100nmsize)instead ofsilvernitrateintothefeedgas(N withadmixingofO andTMDSO)(Figure5b). Accordingto 2 2 thereportedresults,preparedcoatingsexhibitedstrongantibacterialeffectsagainstGramm-negative Antibiotics 2018, 7, x 8 of 17 Antibiotics2018,7,78 8of17 nm size) instead of silver nitrate into the feed gas (N2 with admixing of O2 and TMDSO) (Figure 5b). Antibiotics 2018, 7, x 8 of 17 According to the reported results, prepared coatings exhibited strong antibacterial effects against Gramm-negative E. coli, and a modest effect on Gram-positive S. aureus. A similar approach was E.colin,man sdizea) minostdeeasdt oeff fseilcvteor nniGtraratem in-ptoo tshitei vfeeedS .gaausr (eNu2s .wAiths iamdimlaixrianpg porfo Oa2c hanwd aTsMrDecSeOn)t l(yFiegmurpe l5oby)e. dby recently employed by Ligouri et al. [141] for the production of plasma-polymerized polyacrylic acid LigouArciceotradli.n[g1 4to1 ]thfoer rtehpeorpterodd ruescutilotsn, porfepplaarsemd ac-opaotilnygms eerxihziebditepdo lsytarcornygl icanatciibdacwteirthiale meffbeectdsd aegdaiAnsgt NPs. with embedded Ag NPs. Disk diffusion tests with E. coli confirmed the antibacterial efficacy of DiskGdirfafmusmio-nnetgeasttisvew Eit. hcoEli., caonlidc ao nmfiordmeestd etfhfeecta nonti bGarcatmer-ipaolseitfifivcea Scy. aoufrefuasb. rAic astiemdilcaor aatpinprgosa.ch was fabricated coatings. recently employed by Ligouri et al. [141] for the production of plasma-polymerized polyacrylic acid with embedded Ag NPs. Disk diffusion tests with E. coli confirmed the antibacterial efficacy of fabricated coatings. Figure 5. Schematic representation of atmospheric pressure plasma systems for the deposition of Figure 5. Schematic representation ofatmospheric pressureplasma systemsfor the depositionof Ag/plasma polymer nanocomposites. (a) Plasma jet with injection of silver nitrate solution, and (b) Ag/plasmapolymernanocomposites.(a)Plasmajetwithinjectionofsilvernitrate solution,and(b) plasma jet fed with suspension of Ag NPs. plasmFaigjuetref e5d. Swchitehmsautsicp erenpsrieosnenotfatAiogn NofP sa.tmospheric pressure plasma systems for the deposition of Ag/plasma polymer nanocomposites. (a) Plasma jet with injection of silver nitrate solution, and (b) 4. Perspectives and Challenges 4. Perspecptliavsmesa ajent fdedC whiathl lseunspgeenssion of Ag NPs. Plasma-based techniques have been shown to present itself as an interesting option for the Pp4r.l aoPdsemurscapti-eobcnat iosvefe dasn attniebdcah cCntheirqailaullee Ansgghe-bsa avseedb ceoeantinsghso. wInn adtdoitpiorne,s pelnatsmitas-eblafsaeds daenpoinsitteiorens tteicnhgnoolpogtiioesn afroe r the produwcetlilo-snuiotefda nfotrib thace tperroiadluActgio-nb aosf endovceola atnintigbsa.ctIenriaadl cdoiatitoinng,sp wlaitshm ean-hbaansceedd dfuenpcotisointiaolintyt.e Tchhins orelofegrise sare Plasma-based techniques have been shown to present itself as an interesting option for the not only to the possibility to produce coatings with a multi-approach character that may combine the well-spuroitdeudcftioornt ohfe apntriobdacutcetriioaln Aogf-bnaosveedl caonattiinbgasc.t eInr iaadldciotiaotnin, pglsaswmitah-beansehda ndcepedosfiutionnc ttieocnhanloitloy.giTehs iasrer efers antibacterial action of Ag NPs with the non-fouling nature of a polymeric matrix (e.g., PEO-like notownleyll-tsouitthede fpoor sthsieb pilriotydutcotiopnro odf unocveecl oaanttiibnagcstewriaitl hcoaatminugsl twi-iathp penrohaanchcedch fuarnacctitoenratlhitya.t Tmhiasy recfoerms bine plasma polymers, Figure 6a), silver/plasma polymer nanocomposites with covalently immobilized theanntoitb oancltye rtoia tlhaec ptioosnsiboiflitAy gtoN pProsdwucieth cothateinngos nw-iftohu al imngulnti-aatpuprreooafcha cphoarlyacmteerr tihcamt mataryi xco(me.bgi.n,eP tEhOe -like bactericidal substances (Figure 6b), or surface nanotopography (Figure 6c), but also coatings with (i) plasmanatpiboalcytemriearl sa,cFtiiognu roef 6Aag) ,NsiPlvs ewr/itph lathsem naopno-floyumlinegr nnaatnuorceo omf pa opsoitlyemsweriitch mcaotvriaxl e(ne.tgl.y, PimEOm-loikbeil ized a temporally non-monotonous release of silver ions, (ii) so-called multi-release coatings that employ bacteprilcaisdmaal spuoblysmtaenrcse, sFi(gFuigreu r6ea)6, bs)i,lvoerr/spularfsamcae pnoalnyomtoerp onganraopcohmyp(oFsigituesr ew6icth), cbouvtalaelnsotlyc oimatminogbsilwizeitdh (i)a two or more antibacterial agents, or even (iii) thin films with Ag+ release induced by an external bactericidal substances (Figure 6b), or surface nanotopography (Figure 6c), but also coatings with (i) tempsotrimalulyli,n io.en.,- mcooatninogtos nthoauts wreerlee assuegogefsstieldv etro ifoancisli,t(aitie) spore-cvaelnletidonm ouf lbtai-crteelreiaals eincfeocattioinngss (eth.ga.,t [e3m1])p. lo ytwo a temporally non-monotonous release of silver ions, (ii) so-called multi-release coatings that employ ormoreantibacterialagents,oreven(iii)thinfilmswithAg+releaseinducedbyanexternalstimuli, two or more antibacterial agents, or even (iii) thin films with Ag+ release induced by an external i.e.,coatingsthatweresuggestedtofacilitatepreventionofbacterialinfections(e.g.,[31]). stimuli, i.e., coatings that were suggested to facilitate prevention of bacterial infections (e.g., [31]). Figure6.Ag-basedmulti-functionalcoatingswith(a)non-foulingcharacter,(b)Ag/plasmapolymer nanocompositeswithcovalentlyimmobilizedantibacterialagents, or(c)ananostructuredplasma polymertoplayer. Antibiotics 2018, 7, x 9 of 17 Antibiotics 2018, 7, x 9 of 17 Figure 6. Ag-based multi-functional coatings with (a) non-fouling character, (b) Ag/plasma polymer Antibiontiacnso20c1o8m,7p,o7s8ites with covalently immobilized antibacterial agents, or (c) a nanostructured plasma9 of17 Figure 6. Ag-based multi-functional coatings with (a) non-fouling character, (b) Ag/plasma polymer polymer top layer. nanocomposites with covalently immobilized antibacterial agents, or (c) a nanostructured plasma poRlyemgearr dtoipn glacyoear.t i ngswithnon-monotonouskineticsinthereleaseofsilverions,twoapproaches Regarding coatings with non-monotonous kinetics in the release of silver ions, two approaches areunderinvestigation. ThefirstoneisbasedonthepossibilitytotuneAg+releasebythethicknessof are under investigation. The first one is based on the possibility to tune Ag+ release by the thickness Regarding coatings with non-monotonous kinetics in the release of silver ions, two approaches thebarriertoplayer(Figure7). Inthiscase,differentpartsofAgNPscontainingfilmsmaybecoated of the barrier top layer (Figure 7). In this case, different parts of Ag NPs containing films may be are under investigation. The first one is based on the possibility to tune Ag+ release by the thickness by plasma polymer films with different thicknesses. Zones with thin top layers will ensure burst coated by plasma polymer films with different thicknesses. Zones with thin top layers will ensure of the barrier top layer (Figure 7). In this case, different parts of Ag NPs containing films may be release,whereaszonescoatedwiththickerfilmswillbecharacterizedbythedelayedandprolonged burst release, whereas zones coated with thicker films will be characterized by the delayed and colaetaecdh ibnyg polfaasmsma aplloelryammeoru fniltmosf Awgit+h. Tdhifefesraemnte tihsiecxkpneecstseeds.t oZboeneasc hwieivthe dthbiyn tthoeps leacyoenrds awpipllr oeancshurthe at prolonged leaching of a smaller amount of Ag+. The same is expected to be achieved by the second burst release, whereas zones coated with thicker films will be characterized by the delayed and isbasedonmulti-layercoatings,orthecoatingswithadepthgradientinthenumberofembedded approach that is based on multi-layer coatings, or the coatings with a depth gradient in the number prolonged leaching of a smaller amount of Ag+. The same is expected to be achieved by the second NPs. Suchmaterialsshouldfulfilltherequirementoflong-lasting(severalmonthsof)antibacterial of embedded NPs. Such materials should fulfill the requirement of long-lasting (several months of) approach that is based on multi-layer coatings, or the coatings with a depth gradient in the number actionneededtopreventinfectionsonimplants. antibacterial action needed to prevent infections on implants. of embedded NPs. Such materials should fulfill the requirement of long-lasting (several months of) antibacterial action needed to prevent infections on implants. FFiigguurree 77.. SScchheemmee ooff AAgg//ppllaassmmaa ppoollyymmeerr ccooaattiinngg wwiitthh nnoonn--mmoonnoottoonnoouuss kkiinneettiiccss ooff rreelleeaa ssee ooff ssiillvveerr iioonnss.. Figure 7. Scheme of Ag/plasma polymer coating with non-monotonous kinetics of release of silver ions. In the case of multi-release coatings, different antibacterial agents (e.g., silver and copper NPs Inthecaseofmulti-releasecoatings,differentantibacterialagents(e.g.,silverandcopperNPsor or Ag NPs and antibiotics) with different release kinetics and/or bactericidal effects can be combined. In the case of multi-release coatings, different antibacterial agents (e.g., silver and copper NPs AgNPsandantibiotics)withdifferentreleasekineticsand/orbactericidaleffectscanbecombined. Such coatings should significantly reduce the induction of bacterial resistance and guarantee synergic or Ag NPs and antibiotics) with different release kinetics and/or bactericidal effects can be combined. Suchcoatingsshouldsignificantlyreducetheinductionofbacterialresistanceandguaranteesynergic antibacterial action, thus enhancing antibacterial efficiency. Possible structures under consideration Such coatings should significantly reduce the induction of bacterial resistance and guarantee synergic antibacterialaction,thusenhancingantibacterialefficiency. Possiblestructuresunderconsideration include silver-containing plasma polymer films impregnated with antibiotics (Figure 8a), antibacterial action, thus enhancing antibacterial efficiency. Possible structures under consideration includesilver-containingplasmapolymerfilmsimpregnatedwithantibiotics(Figure8a),sandwiched sandwiched structures with different metallic NPs with antibacterial character (Figure 8b), or multi- include silver-containing plasma polymer films impregnated with antibiotics (Figure 8a), structureswithdifferentmetallicNPswithantibacterialcharacter(Figure8b),ormulti-layeredcoatings layered coatings prepared by a step-by-step deposition, in which individual layers will be loaded sandwiched structures with different metallic NPs with antibacterial character (Figure 8b), or multi- prepared by a step-by-step deposition, in which individual layers will be loaded with different with different antibacterial agents (Figure 8c). layered coatings prepared by a step-by-step deposition, in which individual layers will be loaded antibacterialagents(Figure8c). with different antibacterial agents (Figure 8c). Figure 8. Different architectures suggested for multi-release coatings. Figure 8. Different architectures suggested for multi-release coatings. Plasma-based deposition techniques may also be utilized for producing coatings with stimuli- Figure8.Differentarchitecturessuggestedformulti-releasecoatings. responsive behavior. These materials benefit from the ability of some materials to undergo volume Plasma-based deposition techniques may also be utilized for producing coatings with stimuli- or structural changes when exposed to a particular trigger. This property may be utilized for responPsilvaes mbeah-baavsioedr. Tdheepsoes mitiaotneritaelcs hbneinqeufeits frmomay thael saobilbitey uoft isliozmede mfoartepriraolsd utoc iunngdecrogaoti nvoglsumweit h controlling the release of antibacterial agents, including silver ions, from the coatings “on demand”. ors tsitmruucltiu-rreaslp cohnasnivgeesb ewhhavenio re.xTphoesseed mtoa tear ipalasrtbiceunleafirt tfrriogmgetrh. eTahbisil iptyroopfesrotmy emmaya tebrei aulstitloizuedn dfeorrg o The first example of Ag/plasma polymer nanocomposites with this ability was reported by Kulaga et covnotrluolmlinego rthsetr rueclteuarsael ocfh aanngtiebsacwtehreinal eaxgpeonstesd, itnoclaupdainrtgic suillvarert riiogngse,r f.rTohmis thpero cpoearttiyngms a“yonbe duetmiliaznedd”f. or al. [142]. These authors coated polypropylene surgical mesh with a layer of plasma-polymerized Thceo nfitrrsot lelixnagmtphlee roefl eAagse/polfasamntaib paocltyemriaelr angaennotcso,minpclousditiensg wsiiltvhe trhiios nasb,ilfirtoym wtahse rceopaotritnegds b“yo nKudleamgaa netd ”. maleic anhydride (MA), impregnated with silver NPs and coated by a barrier layer (plasma al.T [h1e42fi]r.s tTehxeasme apulethoofrAs gc/oaptleadsm paolpyoplryompeyrlennaen soucorgmicpaol smiteesshw withithth ais laabyielirt yofw palsarsempao-rpteodlybmyeKriuzeladg a polymerized MA) that blocked the spontaneous release of silver from the coatings. Tailored release maelteiacl .a[1n4h2y]d.rTidhee s(eMaAu)t,h oimrspcroeagtnedatepdo lywpirtohp ysillevneer suNrPgsic aalnmd eschoawteidth abyla yae rboafrrpielars mlaay-epro l(ypmlaesrmizae d of silver ions was then achieved by mechanical stimulation of the coatings that led to the formation pomlyamleiecraiznehdyd MridAe)( MthAat) ,bilmocpkreedg ntahtee dspwointhtasnielvoeursN rePlseaasned ocfo saitlevderb yfroamba trhriee rcolaaytienrg(sp.l aTsamiloarpeodl yrmeleeariszee d of cracks in the barrier layer. Moreover, plasma polymerization may also be used for the production ofM siAlv)erth iaotnbs lwocakse tdhethne ascphoienvteadn eboyu msreeclheaasneicoafl ssitlivmeurlfartoimont hofe tchoea ctionagtsin.gTsa itlhoaret dlerde lteoa tsheeo ffosrimlvaetrioionn s of other types of stimuli-responsive plasma polymers where changes in the temperature or pH acts ofw craasckthse inn athche ibeavrerdiebr ylamyeerc. hManoriceaolvsetri,m pulalasmtioan pooflytmheerciozaattiinogns mthaayt alelsdo tboe tuhseefdo rfomra tthioe nproofdcuracctikosni n as a trigger. For instance, Pan et al. [143], Spridon et al. [144], Chen et al. [145], and Moreno-Couranjou oft ohtehbera rtryipeersl aoyf esrt.imMuolir-eroevspero,npsliavsem palapsmolay mpoelryizmaetirosn wmhearye aclhsoanbgeesu isne dthfeo rtetmhepeprraotduurec toior npHof aoctths er ast ay ptreisggoefrs.t Fimoru ilni-srteasnpcoen, sPivaen petl aaslm. [a14p3o],l ySmpreirdsown heet rael.c [h1a4n4g],e Cshinenth eet atel.m [1p4e5r]a,t aunred oMroprHenaoc-tCsoasuraatnrjiogug er. Antibiotics2018,7,78 10of17 Forinstance,Panetal.[143],Spridonetal.[144],Chenetal.[145],andMoreno-Couranjouetal.[146] synthetizedthermo-responsiveplasma-polymerizedpoly(N-isopropylacrylamide)orN-vinylcaprolactam films. Muzammil et al. [147] reported on the pH-responsive coatings prepared by the plasma co-polymerizationofacrylicacidandoctafluorocyclobutane. Althoughnoneofthealreadydeveloped stimuli-responsiveplasmapolymerswereusedforthefabricationofAg-containingnanocomposites, thisoptionstillshowsagreatdealofpromise. Finally,ithastobementionedthatdespitethesubstantialandundisputableprogressinthefield ofantibacterialAg/plasmapolymercoatingsandthelargeamountofsuggestedandtestedapproaches that were briefly summarized in this review, to date the use of such materials still remains very limited. Thisispartlyduetothelackofclinicalstudies,aswellasthenotyetstandardizedmethods applied for evaluating the antibacterial effects of produced coatings. The latter relates both to the choiceofbacteriaorproceduresusedforthequantificationofantibacterialeffectsthatmakesitalmost impossibletocompareresultsreachedbydifferentgroups. Becauseofthis,thereisacleardemandto propose/developstandardized,reliable,andhighthroughputvalidationmethodologiesfortesting producedantibacterialcoatings,whichappliesnotonlytothecoatingsproducedbyplasma-based methods but to other methods as well. In addition, all the experiments focused on determining the antibacterial effects of produced Ag/plasma polymer coatings were performed invitro. It is well-knownthatunderthemorerelevantinvivoconditionstheperformanceofproducedcoatings maybelargelyaltered,e.g.,bythepossibleaccumulationofdeadbacteriaorproteinsonsurfacesof producedcoatings. Furthermore,otherissuesrelatetofactorswhichareoftenoverlooked,suchas wearresistance,long-termstability,theabilityofAg/plasmapolymernanocompositestowithstand common sterilization procedures, or, in the case of implanted materials, to integrate well with a hosttissue. However,theuseofplasma-basedtechniques—mostlikelyincombinationwithother approaches—stillpresentsitselfasavividandauspiciousoptionfortheproductionofhighlyeffective antibacterialcoatings. 5. Conclusions Therehasbeenenormousprogressinsilver/plasmapolymernanocompositeantibacterialcoatings inthelasttwodecades. Asshowninthispaper,numerousstrategieshavealreadybeentestedorare underconsiderationfortheeffectiveproductionofsuchmaterials. However,despitepromisingresults, thefieldofAg/plasmapolymerantibacterialcoatingsstillfacesmanychallenges,meaningthatbetter understandingandcontrolofbactericideactivityofthepreparedcoatings,aswellasthedevelopment ofnewmanufacturingprocedures,areneeded. Author Contributions: Writing-Original Draft Preparation, A.K., J.K.; Writing-Review & Editing, O.K.; Visualization,J.K. Funding: ThisresearchwasfundedbyGrantAgencyofCzechRepublicgrantnumberGACˇR16-14024Sand grantGAUK1394217fromGrantAgencyofCharlesUniversity. ConflictsofInterest:Theauthorsdeclarenoconflictofinterest. References 1. Poncin-Epaillard,F.;Legeay,G.Surfaceengineeringofbiomaterialswithplasmatechniques.J.Biomater.Sci. Polym.Ed.2003,14,1005–1028.[CrossRef][PubMed] 2. Siow,K.S.;Britcher,L.;Kumar,S.;Griesser,H.J.PlasmaMethodsfortheGenerationofChemicallyReactive SurfacesforBiomoleculeImmobilizationandCellColonization—AReview. PlasmaProcess. Polym. 2006, 3,392–418.[CrossRef] 3. Pappas,D.Statusandpotentialofatmosphericplasmaprocessingofmaterials.J.Vac.Sci.Technol.AVacuum SurfacesFilm.2011,29.[CrossRef] 4. Bruggeman, P.J.; Kushner, M.J.; Locke, B.R.; Gardeniers, J.G.E.; Graham, W.G.; Graves, D.B.; Hofman-Caris, R.C.H.M.; Maric, D.; Reid, J.P.; Ceriani, E.; et al. Plasma–liquid interactions: a review androadmap.PlasmaSourcesSci.Technol.2016,25.[CrossRef]

Description:
Antibacterial Ag/Plasma Polymer Nanocomposites Pan, Y.V.; Wesley, R.A.; Luginbuhl, R.; Denton, D.D.; Ratner, B.D. Plasma polymerized.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.