Starshape of the superlevel sets of solutions to equations involving the fractional Laplacian in starshaped rings Sven Jarohs∗, TadeuszKulczycki†, and PaoloSalani‡ January 11, 2017 7 1 0 2 Abstract n a Inthepresentworkwestudysolutionsoftheproblem J 9 −(−D )a /2u= f(x,u) inD0\D1 u=0 inRN\D , (0.1) ] 0 P u=1 inD , 1 A h. where D1,D0 ⊂RN are open sets such thatD1 ⊂D0, a ∈(0,2), and f is a nonlinearity. Underdifferentassumptionson f weprovethat,ifD andD arestarshapedwithrespect t 0 1 a tothesamepointx¯∈D ,thenthesameoccursforeverysuperlevelsetofu. 1 m [ Keywords.fractionalLaplacian·starshapedsuperlevelsets 1 v 7 6 1 Introduction 3 2 0 Inthisworkweinvestigate fora ∈(0,2)thegeometryofsolutions utotheproblem . 1 −(−D )a /2u= f(x,u) inD \D 0 0 1 7 u=0 inRN\D , (1.1) 1 0 : u=1 inD , v 1 i X where D ,D ⊂ RN are open sets such that D ⊂ D and f is a bounded Borel function on 1 0 1 0 ar (D0\D1)×[0,1]. Moreover, (−D )a /2 isthefractional Laplacian, whichisdefinedfor f ∈La1 andx∈RN by u(x)−u(y) (−D )a /2u(x)=cN,a lei↓m0 |x−y|N+a dy, (1.2) |x−Zy|>e ∗Goethe-Universita¨tFrankfurt,Germany,[email protected]. †WroclawUniversityofScienceandTechnology,Poland,[email protected], T.KulczyckiwassupportedinpartbytheNationalScienceCentre,Poland,grantno.2015/17/B/ST1/01233 ‡DiMaI,Universita`diFirenze,Italy,paolo.salani@unifi.it 1 2 whenever the limit exists, where cN,a =2a −2p −N2a (2−a )GG ((2N−+2aa )) is a normalization constant 2 andbyLa1 wedenotethespaceofallBorelfunctions u:RN →R∪{¥ }satisfying |u(x)| dx<¥ . (1+|x|)N+a RZN Itiswell-knownthat(−D )a /2j (x)iswell-definedforanyj ∈C2(RN)andx∈RN. c Foru∈La1 wedefinethedistribution (−D )a /2ubytheformula h(−D )a /2u,j i=hu,(−D )a /2j i forj ∈C¥ (RN), c (cf. Definition 3.7in[8]). Wesaythatafunction uisasolution of(1.1),ifuiscontinuous and bounded on RN, u=0 in RN\D , u=1 in D , and −(−D )a /2u= f(x,u) as distributions in 0 1 D \D ,i.e. 0 1 h−(−D )a /2u,j i=hf(x,u),j i forj ∈C¥ (D \D ). c 0 1 Inotherwordstherestrictionof−(−D )a /2utoD \D isafunctioninL¥ (D \D )andwehave 0 1 0 1 −(−D )a /2u(x)= f(x,u(x)) fora.e. x∈D \D . (1.3) 0 1 The geometric properties of solutions to equations involving fractional Laplacians have been recently intensively studied. Theresultsconcern concavity properties ofthefirsteigenfunction [5],[4],[23],concavityproperties ofsolutionsoftheDirichletproblemfor(−D )1/2j =1[26], convexity ofsuperlevel sets forsome problems for(−D )1/2 [28], convexity properties of solu- tions of(−D )a /2u= f(u)[18],andgeneral symmetry properties (see e.g.[6,14,20,22,31])in thespiritofGidas,NiandNirenberg[17]. Here we are interested in the starshapedness of the level sets of solutions in starshaped rings. Thenletusintroduce somenotation anddefinitions. We recall that a subset A of RN is said starshaped with respect to the point x¯∈A if for every x∈Athesegment(1−s)x¯+sx,s∈[0,1],iscontained inA. Ifx¯=0(aswecanalwaysassume up to a translation), wesimply say that A is starshaped, meaning that for every x∈A wehave sx∈Afors∈[0,1],orequivalently Aisstarshaped if sA⊆A foreverys∈[0,1]. (1.4) An open set A of RN is said strictly starshaped if for every x∈A the segment sx, s∈[0,1), is contained in A. We say that an open set A is uniformly starshaped if the exterior unit normal n (x)existsateachx∈¶ Aandthereexistse >0suchthathx,n (x)i≥e foreveryx∈¶ A. ByU(ℓ),ℓ∈Rwedenotethesuperlevelsetsofafunction u: U(ℓ):={u≥ℓ}={x∈RN : u(x)≥ℓ}. In the formulation of our results we will use the following conditions on D ,D ⊂ RN and 0 1 f :(D \D )×[0,1]→R: 0 1 3 (D) D ,D ⊂RN are open sets such that 0∈D , D ⊂D , and D \D satisfies a uniform 0 1 1 1 0 0 1 exteriorconecondition. (F0) f isabounded Borelfunction on(D \D )×[0,1]. 0 1 a (F1) t f(tx,u)≥ f(x,u)foreveryt ≥1and(x,u)∈(D \D )×[0,1]suchthattx∈D \D ; 0 1 0 1 (F2) f isLipschitzinthesecond variablei.e. thereexistsC>0suchthatforanyx∈D \D , 0 1 u ,u ∈[0,1]wehave|f(x,u )− f(x,u )|≤C|u −u |. 1 2 1 2 1 2 (F3) f is increasing in the second variable i.e. f(x,u )≤ f(x,u ) whenever u <u for any 1 2 1 2 x∈D \D ,u ,u ∈[0,1]. 0 1 1 2 (F4) f is a bounded continuous function on (D \D )×[0,1] and f(x,0) = 0 for any x ∈ 0 1 D \D . 0 1 Thefollowingtheoremisthemainresultofourpaper. Theorem1.1. LetD ,D ⊂RN satisfy(D)and f :(D \D )×[0,1]→R. Wehave: 0 1 0 1 (i) AssumeD and D arebounded starshaped sets and f satisfies (F0),(F1), (F2),(F3). If 0 1 uisasolution of (1.1)suchthat0≤u≤1onD \D ,thenthesuperlevel setsU(ℓ)ofu 0 1 arestarshaped forℓ∈(0,1). (ii) AssumeD andD arebounded, strictly starshaped setsand f satisfies (F0),(F1),(F2). 0 1 Ifuisasolution of (1.1)suchthat0<u<1onD \D ,thenthesuperlevelsetsU(ℓ)of 0 1 uarestrictlystarshaped forℓ∈(0,1). (iii) AssumeD =RN,D isabounded starshaped set,and f satisfies (F0),(F1),(F2),(F3). 0 1 Ifuisasolution of (1.1)suchthat0≤u≤1onD \D ,thenthesuperlevelsetsU(ℓ)of 0 1 uarestarshaped forℓ∈(0,1). Notethatcondition (F1)isanalogous tocondition (21)from[30]. NotealsothatifD =B (0) 1 r for some r>0 in Theorem 1.1 (iii) and f is independent of x, then it is known that u is radial symmetric and decreasing in the radial direction (see [31, Theorem 1.10 and Corollary 1.11]). Inparticular, thesuperlevel setsofuarestarshaped. UsingTheorem1.1andN.Abatangelo’s result[1,Theorem1.5]weobtain Theorem1.2. LetD ,D ⊂RN bebounded (strictly) starshaped setssatisfying (D),D \D is 0 1 0 1 aC1,1 domain and f :(D \D )×[0,1]→Rsatisfy (F1), (F2), (F3), (F4). Thenthere exists a 0 1 uniquesolutionuof (1.1). Itsatisfies0<u<1onD \D andallsuperlevelsetsU(ℓ)ofuare 0 1 (strictly) starshaped forℓ∈(0,1). Remark1.3. If f ∈C1((D \D )×[0,1])satisfies 0 1 (F5) f ≥0in(D \D )×[0,1], 0 1 (F6) hx,(cid:209) f(x,u)i≥0forevery(x,u)∈(D \D )×[0,1], x 0 1 4 then it satisfies condition (F1). Indeed, let t ≥ 1 and (x,u) ∈ (D \D )×[0,1] be such that 0 1 tx∈D ;then 0 t t d f(tx,u)− f(x,u)= f(sx,u)ds= hx,[(cid:209) f](sx,u)i ds. x ds Z Z 1 1 Hence(F5)and(F6)imply(F1). As a consequence of Theorem 1.1 we obtain the following result for harmonic functions with respecttofractional Laplacians. Corollary1.4. LetD ,D ⊂RN bebounded(strictly)starshapedsetssatisfying(D)and f ≡0. 0 1 Thenthereexistsauniquesolutionuof (1.1). Itsatisfies0<u<1onD \D andallsuperlevel 0 1 setsU(ℓ)ofuare(strictly)starshaped forℓ∈(0,1). WhenD \D issufficientlysmoothandD ,D areuniformlystarshapedwecanstrengthenthe 0 1 0 1 assertion ofCorollary1.4. Theorem1.5. LetD ,D ⊂RN beopenboundedsets,suchthat0∈D andD ⊂D . Moreover, 0 1 1 1 0 assume D and D are uniformly starshaped, D \D is a C1,1 domain and f ≡0. Then all 0 1 0 1 superlevel setsU(ℓ)ofsolutions uof (1.1)areuniformly starshaped forℓ∈(0,1). As a consequence of Theorem 1.1 we obtain more general result for harmonic functions with respecttoSchro¨dinger operators basedonfractional Laplacians. Corollary1.6. LetD ,D ⊂RNbebounded(strictly)starshapedsetssatisfying(D)and f(x,u)= 0 1 q(x)u,qisabounded nonnegative Borelfunctionon(D \D )suchthat 0 1 q(tx)≥q(x) foranyt >1andx∈(t−1D )\D . 0 1 Thenthereexistsauniquesolutionuof (1.1). Itsatisfies0<u<1onD \D andallsuperlevel 0 1 setsU(ℓ)ofuare(strictly)starshaped forℓ∈(0,1). As another consequences of Theorem 1.1 and Theorem 1.2 we obtain the following result for Allen-Cahn-type nonlinearities. Corollary1.7. LetD ,D ⊂RN beboundedstrictlystarshapedsetssatisfying(D)and f(x,u)= 0 1 b u−g up,whereb ≥0,g ∈Rand p≥1. Wehave (i) Assume b ≥ g . If u is a solution of (1.1) such that 0 < u < 1 on D \D , then the 0 1 superlevel setsU(ℓ)ofuarestrictlystarshaped forℓ∈(0,1). (ii) Assume b ≥ pg and D \D is a C1,1 domain. Then there exists a unique solution u 0 1 of (1.1). It satisfies 0<u<1 on D \D and all superlevel setsU(ℓ) of u are strictly 0 1 starshaped forℓ∈(0,1). 5 WenotethatTheorem1.1isinfactaspecialcaseofthefollowingmoregeneralresultinwhich wedonotassumeutobeconstantonD andonRN\D . Tobeprecise,letb ,b becontinuous 1 0 0 1 andbounded functions onRN andconsider thefollowingproblem −(−D )a /2u= f(x,u) inD \D 0 1 u=b inRN\D , (1.5) 0 0 u=b inD , 1 1 Wesaythatafunction uisasolution of(1.5),ifuiscontinuous andbounded onRN,u=b in 0 RN\D ,u=b inD ,and−(−D )a /2u= f(x,u)asdistributions inD \D . 0 1 1 0 1 Theorem1.8. LetD ,D ⊂RN satisfy(D), f :(D \D )×[0,1]→Randb ,b becontinuous 0 1 0 1 0 1 and bounded functions on RNsuch that b ≡ 1 on ¶ D and b ≡ 0 on ¶ D and b and b 1 1 0 0 0 1 have starshaped superlevel sets. Then the statements (i), (ii), and (iii) of Theorem 1.1 hold for solutions uof (1.5). By similar methods we obtain the following result for Green functions corresponding to frac- tional Laplacians onconvex bounded domains. Forbasicproperties oftheGreenfunctions see Preliminaries. Theorem1.9. LetD⊂RN beanopenbounded convex setandG (x,y) betheGreenfunction D for Dcorresponding to(−D )a /2, a ∈(0,2). Thenfor any fixed y∈D thesuperlevel setsU(ℓ) ofthefunction u(x)=G (x,y)arestarshaped withrespecttoyforanyℓ∈(0,¥ ). D Letusrecallthatinthelimitcasea =2,thatisinthecaseoftheusualLaplacian, theseareall well-knownresult, seeforinstance [3,12,15,16,19,24,25,27,30]. 2 Preliminaries Let us fix some notation. In the following N ∈N and a ∈(0,2). For U ⊂RN, a nonempty measurable set, wedenote by 1 :RN →R the characteristic function, |U|the Lebesgue mea- U sure, andUc =RN\U the complement ofU. The notation D⊂⊂U means that D is compact and contained in the interior ofU. The distance between D and U is given by dist(D,U):= inf{|x−y| : x∈D,y∈U} and if D={x} we simply write dist(x,U). Note that this notation does not stand for the usual Hausdorff distance. We write d (x)=dist(x,RN\U) for the dis- U tance function. For x∈RN, r>0, B (x) is the open ball centered at x with radius r. We also r denotehf,gi= fg. RN Let D ⊂ RN be an open bounded set. By G (x,y) we denote the Green function of D with R D respect to (−D )a /2. For any x ∈ D by w x(dy) we denote the harmonic measure of D with D respect to (−D )a /2. The definition and basic properties of G (x,y) and w x(dy) may be found D D e.g. in[10,pages14-15]. Itiswell-known(seee.g.[9,page297])that GD(x,y)=Ka (x−y)− Ka (z−y)w Dx(dz), (2.1) DZc 6 foranyx,y∈D. ForN >a thekernelKa denotestheRieszkernelgivenby Ka (x)=CN,a |x|a −N, whereCN,a =G ((N−a )/2)/(2a p N/2G (a /2)). For 1=N ≤a the kernel Ka denotes the so- calledcompensated Rieszkernel,givenby(seee.g.[9,page296]) |x|a −1 Ka (x)= 2G (a )cos(pa /2), when1=N <a and 1 1 Ka (x)= p log|x|, when1=N =a . Itiswell-knownthatforanyopensetD⊂RN andu∈C2(D)∩La1theexpression(−D )a /2u(x) iswell-definedforx∈Dandwehavethefollowing(see[10,page9]). Lemma2.1. LetD⊂RN beanopenbounded setandu∈C2(D)∩La1. Then (−D )a /2u(tx)=ta (−D )a /2u (tx) forallt >0andx∈t−1D. Let D ⊂RN be an open set, u∈(cid:2)La1 and a(cid:3)ssume that there exists a bounded Borel function g:D→Rsuchthat (−D )a /2u=g asdistributions inD. Thenforanyt >1wedefinethedistribution [(−D )a /2u](t·)int−1Dby [(−D )a /2u](t·)=g(t·). Thefollowinggeneralization ofLemma2.1holds. Lemma 2.2. Let D⊂RN be an open set, u∈La1 and assume that there exists a locally inte- grable Borelfunction g:RN →Rsuchthat (−D )a /2u=gasdistributions inD. Lett >1and putv(x)=u(tx). Then ta [(−D )a /2u](t·)=(−D )a /2v, (2.2) asdistributions int−1D. Remark2.3. Equivalently (2.2)maybeformulated as ta [(−D )a /2u](tx)=(−D )a /2u(tx) foralmostallx∈t−1D. Proof. Letj ∈C¥ (t−1D). Wehave c ta h[(−D )a /2u](t·),j i = ta hg(t·),j i = ta g(tx)j (x)dx. RZN Bysubstitution y=txthisisequalto y · ta −N g(y)j dx = ta −N (−D )a /2u,j t t RZN (cid:16) (cid:17) D (cid:16) (cid:17)E 7 · = ta −N u,(−D )a /2j t D (cid:16) (cid:17)Ey = ta −N u(y)(−D )a /2j dy. t RZN (cid:16) (cid:17) ByLemma2.1itequals y t−N u(y) (−D )a /2j dy. t RZN h i(cid:16) (cid:17) Substituting x=y/t thisfinallygives v(x)(−D )a /2j (x)dx = hv,(−D )a /2j i = h(−D )a /2v,j i. RZN Assume D⊂RN is an open set, g,h∈La1, q, g are bounded Borel functions on D and let us considerthefollowingproblem (−D )a /2u−qu=g≥0, onD u=h≥0, onDc. (2.3) Wesaythatuisasolutionof(2.3)ifu∈La1∩L¥ (D),uiscontinuousonD,(−D )a /2u−qu=g as distributions in D and u=h holds pointwise on Dc. To prove our main statements, we use thefollowingvariantofthemaximumprinciple. Lemma2.4. LetD⊂RN beanopen bounded setwhichsatisfies auniform exterior cone con- dition. Assumethatq≤0onDandthere isanopen bounded setD ⊂⊂RN\Dsuch thathis 0 continuous andbounded onDc\D . Thenasolution uof(2.3)exists anditisunique. Wehave 0 u≥0 on D. If additionally the set {x ∈Dc : h(x) >0)} has positive Lebesgue measure then u>0onD. Proof. The proof will be done in the framework presented in [8,9]. Let (X,Px) denote the t standardsymmetrica -stableprocessinRN generatedby−(−D )a /2. DenotebyExtheexpected valuecorresponding totheprocess X startingfromxandlet t t =inf{t ≥0: X ∈/D}. D t bethefirstexittimefromD. Moreover, denotee (t )=exp tDq(X )ds ,and q D 0 s t (cid:0)R (cid:1) D Ex(e (t ))=Ex exp q(X )ds agauge. q D s Z 0 Sinceq≤0onDwegetsup Ex(e (t ))≤1. Define x∈D q D u˜(x) = Ex(h(X(t ))e (t ))+Vg(x), x∈D D q D u˜(x) = h(x), x∈Dc, 8 whereV is the q-Green operator corresponding to the Schro¨dinger operator based on the frac- tionalLaplacian(fortheformaldefinitionofV see[8,page58]). Bythegaugetheorem(see[8, page 59]), properties of h, q and standard estimates we get u˜(x)<¥ for every x∈D. Clearly, u˜(x)≥0 for every x∈D. If the set {x∈Dc : h(x)>0} has positive Lebesgue measure then u˜(x)≥Ex(h(X(t )e (t )))>0 for any x∈D. By[9, Theorem 4.1] and [8, Proposition 3.16] D q D u˜isasolution of(2.3). Assumethatu˜˜isanothersolution of(2.3). Putv=u˜−u˜˜. Clearlyv∈L¥ (D)anditsatisfies (−D )a /2v−qv = 0, onD v = 0, onDc. By[9,Remark6.3]andarguments fromtheproofof[8,Lemma5.4]v≡0onRN. Corollary 2.5. Let D⊂RN be an open set which satisfies a uniform exterior cone condition, q≤0onDandhiscontinuousandboundedonDc. Ifuisasolutionof (2.3),andliminfu(x)≥ |x|→¥ 0,thenu≥0onD. Proof. Set u :=u+1 on RN for n∈N. Note that u is a solution of (2.3) with h, g replaced n n n byh ,g ,whereg =g−q, h =h+1. Sinceliminfu(x)≥0,for everyn∈Nthere isr >0 n n n n n n |x|→¥ n suchthat u ≥0on(B (0)∩D)c . SetR =r +n. SinceB (0)∩Dsatisfies againauniform n rn n n Rn exteriorconecondition, Lemma2.4impliesu ≥0onB (0)∩D. Hencetheclaimfollowsfor n Rn n→+¥ . Remark 2.6. Note that the above framework is in the sense of distributions. For maximum principles inthevariational senseseee.g.[21,22]. 3 Starshapedness Forthesakeofcompleteness wegiveherethefollowingtriviallemma. Lemma 3.1. Let u:RN →R such that M =maxRNu=u(0). Then the superlevel setsU(ℓ), ℓ∈R,ofuareallstarshaped ifandonlyifu(tx)≤u(x)foreveryx∈RN andeveryt ≥1. Proof. AssumeU(ℓ)={x∈RN : u(x)≥ℓ}isstarshaped foreveryℓ∈R. By(1.4)thismeans thatsU(ℓ)⊆U(ℓ)foreverys∈[0,1). Nowsettx=yandℓ=u(y);thenx=sywheres=t−1∈ (0,1],whencex∈U(ℓ),i.e. u(x)≥ℓ=u(tx). Conversely, assume u(x) ≥u(tx) for every x∈RN and every t ≥1. Now take ℓ∈R: if ℓ≤ infRNu or ℓ > M there is nothing to prove. Then let infRNu < ℓ ≤ M. The superlevel set U(ℓ)={x∈RN : u(x)≥ℓ} is starshaped if and only if sU(ℓ)⊆U(ℓ) for every s∈[0,1], see (1.4). If s = 0 it is trivial, otherwise let x ∈U(ℓ), that is u(x) ≥ ℓ: we want to prove that y=sx∈U(ℓ)aswell,i.e. u(y)≥ℓ. Butx=tywheret =s−1≥1,thenℓ≤u(x)=u(ty)≤u(y) andtheproveiscomplete. Nowwecanproceedtotheproofsofourmainresults. 9 ProofofTheorem1.8. Foranyt >1set u (x)=u(x)−u(tx) x∈RN. t ThankstoLemma3.1,thestarshapedness ofthelevelsetsofuisequivalent to u ≥0 inRN for t >1. (3.1) t Observe that since the superlevel sets of b and b are starshaped, we have u ≥0 in RN\D 0 1 t 0 andint−1D and 1 u (x)≥0 forx∈D \(t−1D ) and x∈D \(t−1D ). (3.2) t 0 0 1 1 PutD =(t−1D )\D . Itremains to investigate u inD . Notethat if D is bounded then fort t 0 1 t t 0 largeenoughD areempty. t Proofof(i). ByLemma2.2andRemark2.3weget (−D )a /2u (x) = (−D )a /2u(x)−ta (−D )a /2u (tx) t a = t f(tx,u(tx))− f(x,u(x)) (cid:2) (cid:3) a = t f(tx,u(tx))− f(x,u(tx))+ f(x,u(tx))− f(x,u(x)). foralmostallx∈D . Forx∈D put t t f(x,u(tx))− f(x,u(x)) , when u (x)6=0, qt(x)= ut(x) t 0, when u (x)=0. t Clearly, f(x,u(tx))− f(x,u(x)) =q(x)u (x). t t Thusby(F1)wehave (−D )a /2u (x)−q (x)u (x)=ta f(tx,u(tx))− f(x,u(tx)) ≥0. t t t By(F2)|q (x)|≤C for x∈D . By(F3)q (x)≤0for x∈D . Recall that u(x)≥0 forx∈Dc. t t t t t t Lemma2.4impliesu (x)≥0forx∈D . Thisfinishestheproofincase(i). t t Proofof(ii). Inthiscaseitisenoughtoshowthat u (x)>0 forallt >1andx∈D . (3.3) t t Put t =sup{s∈(1,¥ ): D isnotempty}, 0 s A={s∈(1,¥ ): thereexistsx∈D suchthatu (x)≤0} s s and t =supA. Weputt =−¥ ifthesetAisempty. Bystrictstarshapedness ofD ,D ,thefactthat0<u<1 0 1 onD \D andcontinuity ofuwegetthatt <t <¥ (sinceD isbounded). 0 1 0 0 10 On the contrary, assume that (3.3) does not hold. Then the set A is not empty sot >1. Using strict starshapedness of D , D we obtain u (x)>0 for x∈¶ D . By continuity, u (x)≥0 for 0 1 t t t x∈D andthereexistsx ∈D suchthatu (x )=0. t 0 t t 0 Similarlyasbefore, byLemma2.2andRemark2.3weget (−D )a /2u (x) = (−D )a /2u(x)−ta (−D )a /2u (tx) t a = t f(tx,u(tx))− f(x,u(tx))+ f(x,u(tx))− f(x,u(x)). (cid:2) (cid:3) foralmostallx∈D . Forx∈D putF(x,t)= f(x,u(tx))−f(x,u(x)), F (x,t)=max(0,F(x,t)), t t + F (x,t)=max(0,−F(x,t))and − −F (x,t) − , when u (x)6=0, qt(x)= ut(x) t 0, when u (x)=0. t Wehave f(x,u(tx))− f(x,u(x))=F (x,t)+q (x)u (x). + t t Using(F1)weobtain (−D )a /2u (x)−q (x)u (x)=ta f(tx,u(tx))− f(x,u(tx))+F (x,t)≥0. t t t + Clearly, q (x) ≤ 0 for x ∈ D . By (F2) |q (x)| ≤C for x ∈ D . Note that u (x) > 0 for x ∈ t t t t t D \t−1D . Clearly, D \t−1D has positive Lebesgue measure. Recall that u (x) ≥ 0 for 1 1 1 1 t x∈Dc. Lemma2.4impliesu (x)>0forx∈D . Thiscontradicts u (x )=0. So(3.3)holds. t t t t 0 Proofof(iii). Theproofproceeds exactlyastheoneof(i),butweuseCorollary2.5inplaceof Lemma2.4. ProofofTheorem1.1. Choosing b ≡0andb ≡1inTheorem1.8givesTheorem1.1. 0 1 ProofofTheorem1.2. Weuse[1,Theorem 1.5]. Weextend f byputting f(x,u)= f(x,0)=0 for u<0 and f(x,u)= f(x,1) for u>1 (x∈D \D ). As a subsolution we take u=1 , as 0 1 D1 a supersolution we take u=1 . By [1, Theorem 1.5] there exists a unique weak solution u D0 of (1.1) in the sense of [1, Definition 1.3]. This solution satisfies 0≤u≤1. PutD=D \D . 0 1 By[1,Theorem1.4]wehave u(x)=− G (x,y)f(y,u(y))dy+h(x), x∈RN, (3.4) D Z D wherehistheuniquecontinuous solution of −(−D )a /2h=0 inD h=0 inRN\D , 0 h=1 inD . 1 By [9, Lemma 5.3] we get (1.3). It is well known [8, page 57] that G (x,y)f(y,u(y))dy is D D continuous on D. Hence u is a solution of (1.1). Now we show that 0<u<1 in D. Since R f(x,0)=0forallx∈Dby(F4),u≥0inDwehaveby(F2)thatq:D→R, −f(x,u(x)) forx∈Dsuchthatu(x)6=0 q(x)= u(x) ( 0 otherwise,