ebook img

Star product and its application PDF

59 Pages·2014·0.41 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Star product and its application

...... ..... .............. ... ..... .... ........... . .. . . . . . . §1.Introduction:theidea §2.Starcalculationofeigenvalues §3.Starproducts Star product and its application AkiraYoshioka Dept. Math. TokyoUniversityofScience,Japan 16May2014Vancouver AkiraYoshiokaDept.Math.TokyoUniversityofScience,Japan Starproductanditsapplication ...... ..... .............. ... ..... .... ........... . .. . . . . . . §1.Introduction:theidea §2.Starcalculationofeigenvalues §3.Starproducts Abstract Weintroduceastarproduct∗ onpolynomialsandshow O someexpamles. Wedefinegeneralstarproducts∗Λ,∗ . K Thenweintroduceexponentialelementinthestarproduct algebra. Usingthestarexponentialelementswedefineseveral functionscalledstarfunctionsinthealgebra. Weshowcertainexpamplesofstarfunctions. AkiraYoshiokaDept.Math.TokyoUniversityofScience,Japan Starproductanditsapplication ...... ..... .............. ... ..... .... ........... . .. . . . . . . §1.Introduction:theidea §2.Starcalculationofeigenvalues §3.Starproducts §1. Introduction: the idea Thecanonicalcommutationrelationisabasicidentityofquantum mechanics,whichisgivenbyapairofoperatorssuchas [pˆ,qˆ] = pˆqˆ −qˆ pˆ = i~ where pˆ = i~∂ andqˆ isamultiplicationoperatorq×actingonthe q functionsofq,and~isthePlankconstant. Thealgebrageneratedby pˆ andqˆ iscalledtheWeylalgebrawhich playsafundamentalroleinquantummechanics. AkiraYoshiokaDept.Math.TokyoUniversityofScience,Japan Starproductanditsapplication ...... ..... .............. ... ..... .... ........... . .. . . . . . . §1.Introduction:theidea §2.Starcalculationofeigenvalues §3.Starproducts Wehaveanotherwaytogivethesamealgebrabyusingonly functions,notusingoperators. Insteadofusingoperators,weintroduceanassociativeproduct∗ O intothespaceoffunctionsof(q,p). Theproductisdifferentfromtheusualmultiplicationoffunctions, butisgivenasadeformationoftheusualmultiplicationinthe followingway. (Cf. Bayen-Flato-Fronsdal-Lichnerowicz-Sternheimer[1],Moyal). AkiraYoshiokaDept.Math.TokyoUniversityofScience,Japan Starproductanditsapplication ...... ..... .............. ... ..... .... ........... . .. . . . . . . §1.Introduction:theidea §2.Starcalculationofeigenvalues §3.Starproducts Theproduct∗ O Forsmoothfunctions f,gonR2,wehavethecanonicalPoisson bracket {f,g}(q,p) = ∂ f∂ g−∂ f∂ g, (q,p) ∈ R2 p q q p Indeformationquantization,weveryoftenusethenotationof ←− →− ←− −→ bidifferentialopearator∂ ·∂ −∂ ·∂ suchas p q q p ( ) ←− →− ←− −→ {f,g} = f ∂ ·∂ −∂ ·∂ g = ∂ f ∂ g−∂ f ∂ g p q q p p q q p AkiraYoshiokaDept.Math.TokyoUniversityofScience,Japan Starproductanditsapplication ...... ..... .............. ... ..... .... ........... . .. . . . . . . §1.Introduction:theidea §2.Starcalculationofeigenvalues §3.Starproducts Forpolynomials f,gweconsideraproduct f ∗ ggivenbythe O exponentialpowerseriesofthebidifferentialoperator ←− →− ←− −→ ∂ ·∂ −∂ ·∂ suchthat p q q p f∗ g = f exp i~ (←∂−·→−∂ −←∂−·−∂→) g = f ∑∞ 1 (i~)k(←∂−·→−∂ −←∂−·−∂→)k g O 2 p q q p k! 2 p q q p k=0 = fg+ i~f (←∂−·→−∂ −←∂−·−∂→) g+ 1 (i~)2 f (←∂−·→−∂ −←∂−·−∂→)2 g 2 p q q p 2! 2 p q q p +···+ 1 (i~)k f (←∂−·→−∂ −←∂−·−∂→)k g+··· k! 2 p q q p where~isapositivenumber. Theproductiswell-definedand associativeforpolynomials. AkiraYoshiokaDept.Math.TokyoUniversityofScience,Japan Starproductanditsapplication ...... ..... .............. ... ..... .... ........... . .. . . . . . . §1.Introduction:theidea §2.Starcalculationofeigenvalues §3.Starproducts Nowwecalculatethecommutatorofthefunctions pandq. Wesee p∗ q = pexp i~ (←∂−·→−∂ −←∂−·−∂→) q = p∑∞ 1 (i~)k(←∂−·→−∂ −←∂−·−∂→)k q O 2 p q q p k! 2 p q q p ( k=0 ) ←− →− ←− −→ = pq+ i~p ∂ ·∂ −∂ ·∂ q = pq+ i~ 2 p q q p 2 Similarlywesee q ∗ p = pq− i~ O 2 Thenthefunctions pandqsatisfythecanonicalcommutation relationunderthecommutatoroftheproduct∗ O [p,q]∗ = p ∗ q−q∗ p = i~ O O AkiraYoshiokaDept.Math.TokyoUniversityofScience,Japan Starproductanditsapplication ...... ..... .............. ... ..... .... ........... . .. . . . . . . §1.Introduction:theidea §2.Starcalculationofeigenvalues §3.Starproducts Theproduct∗ isassociativeonpolynomials,andthenweobtain O theWeylalgebragivenbytheordinarypolynomialswiththe product∗ ,(C[q,p],∗ ). O O UsingthisWeylalgebraoftheproduct∗ ,wecanobtainsome O resultsofquantummechanics,andfurtherwecandiscusssome extensions. Inthistalk,wegiveabriefreviewonthispointmainlyrelatedour investigation([4],[8]). AkiraYoshiokaDept.Math.TokyoUniversityofScience,Japan Starproductanditsapplication ...... ..... .............. ... ..... .... ........... . .. . . . . . . §1.Introduction:theidea §2.Starcalculationofeigenvalues §3.Starproducts §2.1.EigenvaluesofHarmonicOscillator §2. Star calculation of eigenvalues §2.1.EigenvaluesofHarmonicOscillator Wecancalculatetheeigenvaluesoftheharmonicoscillatorby meansofthestarproduct∗ . O Eigenvalues TheSchrd¨ingieroperatoroftheharmonicoscillatoris ( ) Hˆ = −~2 ∂ 2+ 1q2. 2 ∂q 2 Theeigenvaluesare E = ~(n+ 1), n = 0,1,2,··· n 2 AkiraYoshiokaDept.Math.TokyoUniversityofScience,Japan Starproductanditsapplication ...... ..... .............. ... ..... .... ........... . .. . . . . . . §1.Introduction:theidea §2.Starcalculationofeigenvalues §3.Starproducts §2.1.EigenvaluesofHarmonicOscillator Star product calculation Paralleltotheargumentsinquantummechanics,wecancalculate theeigenvalues E byusingthestarproduct∗ andthefunctions n O of pandqinthefollowingway. Theclassicalhamiltonianfunctionis H = 1(p2+q2). 2 Weputfunctionssuchas 1 1 a = √ (p+iq), a† = √ (p−iq). 2~ 2~ AkiraYoshiokaDept.Math.TokyoUniversityofScience,Japan Starproductanditsapplication

Description:
plays a fundamental role in quantum mechanics. Akira Yoshioka Dept. Math. Tokyo University of Science, Japan. Star product and its application
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.