ebook img

Star-formation rates from young-star counts and the structure of the ISM across the NGC346/N66 complex in the SMC PDF

2.7 MB·English
by  S. Hony
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Star-formation rates from young-star counts and the structure of the ISM across the NGC346/N66 complex in the SMC

Mon.Not.R.Astron.Soc.000,1–16(XXX) PrintedJanuary16,2015 (MNLATEXstylefilev2.2) Star-formation rates from young-star counts and the structure of the ISM across the NGC 346/N66 complex in the SMC(cid:63) S. Hony1†, D. A. Gouliermis1,2, F. Galliano3, M. Galametz4, D. Cormier1, C.-H. R. Chen5, S. Dib6,7, A. Hughes8,9,2, R. S. Klessen1,10,11, J. Roman-Duval12, L. Smith13, J.-P. Bernard8,9, C. Bot14, L. Carlson15, K. Gordon12,16, R. Indebetouw15,17, V. Lebouteiller3, M.-Y. Lee3, S. C. Madden3, M. Meixner12,18, J. Oliveira19, M. Rubio20, M. Sauvage3, R. Wu21 5 1 1Universita¨tHeidelberg,Zentrumfu¨rAstronomie,Institutfu¨rTheoretischeAstrophysik,Albert-Ueberle-Str.2,69120Heidelberg,Germany2MaxPlanckIn- 0 stituteforAstronomy,Ko¨nigstuhl17,69117Heidelberg,Germany3LaboratoireAIM,CEA/IRFU/Serviced’Astrophysique,Universite´ParisDiderot,Bat.709, 2 91191Gif-sur-Yvette,France4EuropeanSouthernObservatory,Karl-Schwarzschild-Str.2,85748Garching-bei-Mu¨nchen,Germany5Max-Planck-Institutfu¨r n Radioastronomie,AufdemHu¨gel69,53121Bonn,Germany6NielsBohrInternationalAcademy,NielsBohrInstitute,Blegdamsvej17,2100,Copenhagen, a Denmark7CentreforStarandPlanetFormation,UniversityofCopenhagen,ØsterVoldgade5-7,1350,Copenhagen,Denmark8CNRS,IRAP,9Av.Colonel J Roche,BP44346,31028ToulouseCedex4,France9Universite´deToulouse,UPS-OMP,IRAP,31028ToulouseCedex4,France10DepartmentofAstronomy andAstrophysics,UniversityofCalifornia,1156HighStreet,SantaCruz,CA95064,USA11KavliInstituteforParticleAstrophysicsandCosmology,Stanford 5 University,SLACNationalAcceleratorLaboratory,MenloPark,CA94025,USA12SpaceTelescopeScienceInstitute,3700SanMartinDrive,Baltimore, 1 MD21218,USA13SpaceTelescopeScienceInstituteandEuropeanSpaceAgency,3700SanMartinDrive,Baltimore,MD21218,USA14Observatoire astronomiquedeStrasbourg,Universite´ deStrasbourg,CNRS,UMR7550,11ruedel’Universite´,67000Strasbourg,France15DepartmentofAstronomy, ] A UniversityofVirginia,POBox3818,Charlottesville,VA22903,USA16SterrenkundigObservatorium,UniversiteitGent,Gent,Belgium17NationalRadio AstronomicalObservatory,Charlottesville,VA22904,USA18TheJohnsHopkinsUniversity,DepartmentofPhysicsandAstronomy,366BloombergCenter, G 3400N.CharlesStreet,Baltimore,MD21218,USA19SchoolofPhysical&GeographicalSciences,Lennard-JonesLaboratories,KeeleUniversity,Stafford- . shireST55BG,UK20DepartamentodeAstronomia,UniversidaddeChile,Casilla36-D,Santiago,Chile21DepartmentofAstronomy,GraduateSchoolof h Science,TheUniversityofTokyo,Bunkyo-ku,Tokyo113-0033,Japan p - o r Accepted2015January15.Received2015January14;inoriginalform2014October30 t s a [ ABSTRACT Therateatwhichinterstellargasisconvertedintostars,anditsdependenceonenvironment, 1 isoneofthepillarsonwhichourunderstandingofthevisibleUniverseisbuild.Wepresenta v comparisonofthesurfacedensityofyoungstars(Σ )anddustsurfacedensity(Σ )across 4 (cid:63) dust 3 NGC346(N66)in115independentpixelsof6×6pc2.WefindacorrelationbetweenΣ(cid:63)and 6 Σdust withaconsiderablescatter.Apowerlawfittothedatayieldsasteeprelationwithan 3 exponentof2.6±0.2.WeconvertΣ togassurfacedensity(Σ )andΣ tostarformation dust gas (cid:63) 0 rate(SFR)surfacedensities(Σ ),usingsimpleassumptionsforthegas-to-dustmassratio SFR . andthedurationofstarformation.ThederivedtotalSFR(4±1·10−3 M yr−1)isconsistent 1 (cid:12) 0 with SFR estimated from the Hα emission integrated over the Hα nebula. On small scales 5 theΣSFR derivedusingHαsystematicallyunderestimatesthecount-basedΣSFR,byuptoa 1 factor of 10. This is due to ionizing photons escaping the area, where the stars are counted. : Wefindthatindividual36pc2 pixelsfallsystematicallyaboveintegrateddisc-galaxiesinthe v Schmidt-Kennicuttdiagrambyonaverageafactorof∼7.TheNGC346averageSFRovera i X larger area (90pc radius) lies closer to the relation but remains high by a factor of ∼3. The r fractionofthetotalmass(gasplusyoungstars)lockedinyoungstarsissystematicallyhigh a (∼10percent)withinthecentral15pcandsystematicallyloweroutside(2percent),which weinterpretasvariationsinstarformationefficiency.Theinner15pcisdominatedbyyoung stars belonging to a centrally condensed cluster, while the outer parts are dominated by a dispersedpopulation.Therefore,theobservedtrend couldreflectachangeofstarformation efficiencybetweenclusteredandnon-clusteredstar-formation. Keywords: ISM:individual:NGC346–ISM:Structure–stars:pre-main-sequence–galax- ies:MagellanicClouds (cid:63) basedonobservationsobtainedwithHST,Spitzer,HerschelandAPEX. † E-mail:[email protected] (cid:13)c XXXRAS 2 S.Honyetal. 1 INTRODUCTION complex may have been subject to significant photo-dissociation andusingamoleculargastracer(suchasCO)mayleadtoanin- It is generally accepted that the local star-formation rate (SFR) completeviewofthetotalgassurfacedensities. scaleswiththelocalgasdensityoftheinterstellarmedium(ISM). The object of choice is the star-forming complex related to This wisdom is captured in the Schmidt-Kennicutt relation (SK- NGC 346, also often referred to as N66. NGC 346 is the most relation,seeforareviewKennicutt&Evans2012)whichconnects prominent star-formation region in the Small Magellanic Cloud the observed gas-surface density (Σgas) along various sight-lines (SMC). In order to assess the ΣSFR, an unbiased census of the with the observed surface density of SFR (ΣSFR). Even though youngstellarpopulationisrequired.ThisisavailableforNGC346 therearemultipleincarnationsoftheSchmidt-Kennicuttdiagram, thanks to HST observations (Nota et al. 2006; Gouliermis et al. depending on which tracers are used to measure both Σgas and 2006, see Sect. 3.1). We have access to sensitive IR to submm ΣSFR,andwhethertoconsideronlythedense(molecular)gasor photometryfromSpitzer(PIGordon),Herschel(PIMeixner)and includetheatomicphase,theemergingpictureisclear:thehigher APEX/Laboca (PI Hony) in order to derive reliable dust surface theISMcolumndensity,thehigherthestar-formationrate.Akey densities.Theproximity(60kpc)oftheSMCincombinationwith featureoftheSK-relationisitspowerlawbehaviouroveralarge the size ofthe star forming complex (∼100×100pc2) enables us dynamic range of gas column-densities and star-formation rates. to‘zoomin’(∼6pclinearscale)andstudylocalvariationsatthe Theslopeoftherelationdependsonwhetheronemeasuresonlythe angularresolutionoftheavailablesubmmobservations. densegas(exponent∼1)oralsotheatomicgas(exponent∼1.4). Moreover, the entire complex encompasses a range of envi- The physical interpretation of this interdependence, i.e. how ronments.IntermsoftheISM,theregionexhibitsawiderangeof toderivetheefficiencywithwhichinterstellargasisconvertedinto surfacebrightnessofhotdust(24µm),polycyclicaromatichydro- stars, is much less self-evident, especially on small spatial scales carbon (PAH; 8 µm) and molecular gas (CO(J=2-1), Rubio et al. (<1kpc).Thisisduetothefollowing:i)The‘star-formationrate’ 2000). In terms of the stellar content, there are zones which are measuresstarsthathavealreadyformed,whilethegascolumnden- clusterdominatedaswellasregionswheretheyoungstarsaremore sity relates to (the capacity for) future star formation. On small dispersed (Gouliermis, Hony & Klessen 2014). This allows us to scales, with low numbers of stars, one can no longer expect to examinehowtheenvironmentinfluencestherelationbetweenstar measureatime-averagedefficiencyasisthecasewhenaveraging formationandtheavailableISMreservoir.Themainquestionswe over a large number of star forming sites. ii) Dynamical simula- addressare: tions (e.g. Kiseleva et al. 1998) and observations (e.g. Goodman • How well do young stars and the densest ISM track each 2004) show that young stars may be displaced, by several pc per other? Myr, from the location where they were born, and thus removed • DostarcountsyieldthesameΣ asindirecttracers? from the reservoir of gas from which they formed iii) The large SFR • Doestheefficiencyofstarformationvarybetweenclustered scaleaveragesincludenon-star-formingpartsoftheISMandthe andmoreextendedspatialdistributions? relativeproportionofthis‘inactive’gaswillchangewhenzooming in on smaller scales. iv) Many of the used SFR-tracers (e.g. Hα • What is the effect of averaging over different scales on the derivedparametersinthepositionintheSK-diagram? orfar-ultraviolet(FUV)emission)aresensitiveonlytohigh-mass stars,whichrepresentonlyafractionofthestellarmassassembled Additionally, we examine whether there may be an effect of the inthestar-formationeventandtoderivethetotalSFRoneneedsto reducedmetalabundanceoftheSMC(0.2solar,Haseretal.1998) extrapolatethemass-functiontolowermasses.Sincethehigh-mass onthestarformationefficiency. slopeoftheinitialmassfunction(IMF)isverysteep–veryfewof The paper is organised as follows. Previous work on deriv- theformedstarsarehigh-mass–thecorrectionsarelargeandsen- ing SFR from individual young sources is reviewed in Sect. 2. sitivetotheassumedshapeoftheIMF.Someoralloftheseeffects In Sect. 3 we present the catalogue of young stars and the IR to areprobablythereasonwhythestudiesofstarformationratesin submmdata-setsthatweuseforouranalysis.Wefurtherdescribe nearby individual molecular clouds (Evans et al. 2009; Wu et al. thedatatreatmenttoderiveindependentsurfacedensitymeasure- 2010;Heidermanetal.2010;Gutermuthetal.2011)findverydif- mentsin20×20arcsec2(6×6pc2)beams(Sect.3.4).Ourmethod- ferentstarformationratesatagivengascolumndensitycompared ologytoobtaingassurfacedensities,usingSEDfitting,isdescribed toglobalaverages. inSect.4.1and4.2.TheSFRderivedfromouryoungstarcounts Theaimofthispaperistocircumventsomeofthesecompli- iscomparedtoindirectSFRtracersinSect.4.3.InSect.5wecom- cationsbystudyingthecorrelationbetweennewlyformedstarsand parethederivedΣ andΣ .Possiblebiasesthatmayaffectthe gas SFR thegasreservoir(ΣSFR,andΣgas)inmanysmallbeams(∼6pc) observedvalueofΣSFR/ΣgasarediscussedinSect.6.Weconclude whichcoveranentirestarformingcomplex.Weinvestigate,thus, inSect.7. thesmallscalerelationbetweenyoungstarsandgasreservoirwhile coveringalargerregion.Weusethemostdirectwayofdetermining Σ ,i.e.bycountingthenewlyassembledstars.Atthesametime SFR weemploythe‘dustmethod’todeterminetheISMcolumndensity, 2 PREVIOUSWORK i.e.usingtheinfrared(IR)tosubmillimetre(submm)dustcontin- uumemissiontoderivedustsurfacedensities.Thismethodhasthe Most of the work done on comparing ISM column densities and advantage of not being sensitive to the state of the gas (ionized, star-formation rates based on individual objects has concentrated neutralormolecular)aslongasdustandgasarewellmixed.This onnearby(withinonekpcfromthesun)MilkyWaystar-forming insensitivityisimportantbecausewewilluseacatalogueoflow- sites (Evans et al. 2009; Lada, Lombardi & Alves 2010; Heider- andintermediate-masspre-mainsequence(PMS)starsplusupper- man et al. 2010; Wu et al. 2010; Gutermuth et al. 2011). These mainsequence(UMS)stars,i.e.OandBtypestars,asthebasisfor studies have consistently shown that when one considers the im- ourstarcounts.DuetotheevolutionarystageofthePMSstars–a mediate dense environment (on a few parcec scales) surrounding fewMyraftertheonsetofstarformation–theparentalmolecular the newly formed stars, the derived SFR is higher than predicted (cid:13)c XXXRAS,MNRAS000,1–16 RelationbetweengasandyoungstarsinNGC346 3 Figure1.Falsecolourcompositeimage(green:optical,red:infrared,blueHα)ofNGC346basedonHSTimaging(PINota,Notaetal.2006).Thecontours ofthe,2arcsecresolution,densitymap(Σ(cid:63))oftheyoungstarsareshowninyellow.Thecontourlevelscorrespondto3,10and20starspc−2.Themaximum valueofΣ(cid:63)is45starspc−2. bythegalaxyaveragedSK-relation(byuptoafactorof54)fora parsec.TheirdatashowaverysharpdecreaseinΣ belowΣ SFR gas givenISMcolumndensity. ≈102 M pc−2 which is interpreted as resulting from a density (cid:12) thresholdforstar-formation.Note,thatsuchathreshold,ifitexists, Evansetal.(2009);Lada,Lombardi&Alves(2010)present cannotbeauniversalthreshold.Thereareseveralobservationsof thetotalstar-formationratesbasedonyoungstellarobject(YSO) specificregionswhosegassurfacedensitiesexceedthethreshold, candidates, identified from their mid-IR excess using Spitzer and withmuchlessstarformationthanwouldbeexpected(e.g.Long- comparethosetomolecularcloudmassesderivedusingextinction moreetal.2013;Rathborneetal.2014).Moreover,theexistence maps for ∼10 nearby molecular clouds. These studies show that ofacolumndensity-thresholdforstarformationinaturbulentISM there is a large variety of star formation efficiency (SFE) among isnotsupportedbytheoreticalmodels(Clark&Glover2014). thoseclouds.Lada,Lombardi&Alves(2010)showthatsomeof theobservedspreadinSFEdisappearswhenconsideringonlythe A different picture emerges from the analysis presented by massofgasaboveanextinctionthresholdofA >0.8mag.They Gutermuthetal.(2011).Theseauthorspresentscatterdiagramsof K interpretthisasanindicationforandensitythresholdbelowwhich surface density of from YSOs versus Σ (from extinction) for gas star-formationdoesnotoccur.Asimilarconclusionisreachedby eightmolecularcloudswithin1kpcfromthesun.Theyfindasteep Heiderman et al. (2010) who study the Σ versus Σ within powerlawcorrelation(withindicesbetween1.4and2.7,withan SFR gas thosecloudsusingYSOs.Thetypicalspatialscaleoverwhichthey outlierat3.8)withsignificantscatterandnoindicationforadensity comparethesequantitiesisfromafewtenthsofaparsectoafew threshold.TheyarguethatthedataareconsistentwithaSFRwhich (cid:13)c XXXRAS,MNRAS000,1–16 4 S.Honyetal. Table1.Valuesandsymbolsusedthroughoutthispaper. Quantity Symbol Value Comments/Refs SMCdistance dSMC 60±3kpc Harries,Hilditch&Howarth(2003) Detectedyoungstars Nstar 5150 Gouliermisetal.(2006),seeSect.3.1 Totalyoungstellarmass Mtot 2.2·104M(cid:12) Sabbietal.(2008),seeSect.3.1 Masspercataloguesource Mcata 4.3M(cid:12) =MtotNs−ta1r,seeSect.3.1 SFduration ∆tSFR 5·106yr Mokiemetal.(2006),seeSect.3.1 Gas-to-dustmassratio rgd 1250 Sect.4.2 DerivedQuantity Youngstarsurfacedensity Σ(cid:63) fromstarcatalogue Stellarmasssurf.dens. ΣM(cid:63) =Σ(cid:63)·Mcat SFRsurf.dens. ΣSFR =ΣM(cid:63)∆t−SF1R Dustsurf.dens. Σdust fromSEDfitting Gassurf.dens. Σgas =Σdust·rgd Stellarmassfraction fracM(cid:63) =ΣM(cid:63)(ΣM(cid:63)+Σgas)−1 aThismassisnotthemeanmassoftheHSTdetectedsourcesbutthemasseachsourcerepresentsaftercorrectingforcompleteness.Themeanmassofthe youngstarsintheHSTcatalogueis∼2M(cid:12). isproportionaltoΣ2 .Notethatthedifferentconclusionreached sities (dust emission versus extinction). This has the following gas bythelatterauthorsisbased,inpart,onthewaythesurfacedensity (dis-)advantages: ofYSOsiscalculatedinthelowsurface-densityregimeastheyuse • Richstellarcatalogue:HSThasprovidedaccuratephotometry the nth-nearest-neighbour centred on the detected YSOs. We fur- formorethan5000stellarsourcescoveringthepre-main-sequence ther note that, given the steep dependence on Σ and the low SFR (Gouliermisetal.2006). numbercounts,distinguishingbetweenathresholdandthispower • Measuredmassfunctionandage:agesandthemassfunction lawisdifficultandalmostamatterofsemantics. havebeendeterminedfortheUMS+PMSstellarcatalogue(Sabbi The work by Gutermuth et al. (2011) is the Galactic study etal.2008).Thismeanswecanrelyontheobservedmassfunction, that can be compared most directly to the NGC 346 analysis we which covers a significant (0.8−40M ) part of the entire mass (cid:12) presenthere,becausetheirΣgasmapscoverseveraltensofparsecs range,andtheobserveddurationofthestar-formationeventtode- aroundthemolecularcloudsandeachcloudharboursasignificant rivetheSFR.TheYSOsstudiesassumeatypicalageandmassfor number(>100)ofYSOs.Comparedtotheworkwepresenthere, a YSO, both of which are uncertain (e.g. Preibisch 2012), which these previous studies have the advantage of proximity and as a couldintroducealargesystematicuncertainty. result,theyareabletoexaminethestar-formationwithinindividual • Largecoverage:theIRandsubmmobservationsthatweuse molecularcloudsonspatialscalesof<1pcwhilethebestangular tomeasuredustcolumndensitiesareverysensitiveandmostcover resolutionwecanattainintheSMCintheISMtracersis∼6pc. theentireSMC(Sect.3.2).Asaresult,wehaveaccesstoanun- Recent Spitzer surveys of the Large and Small Magellanic biasedprobeofthedustsurfacedensityouttolargedistancesand Clouds(LMCandSMC)madeitpossibletouseresolvedmassive lowcolumndensities.Thisisimportanttoassessthebehaviourof YSOstodeterminecurrentSFRsoutsideoftheGalaxy.Unlikethe theSFRatlowΣgas,wheresignificantdisagreementexistsinthe consistentlyhigherSFRsofsmall-sizecloudsreportedintheafore- literature(seeabove). mentionedGalacticstudies,Chenetal.(2010)showedthatcurrent However, since we are using stars that are no longer embedded, SFR determined from massive YSOs in individual giant molecu- thesourcesinourcataloguearemoreevolved(<5Myr,Sect.3.1) lar clouds in H II complexes in the LMC are distributed above than YSOs (<2Myr) and have had more time to displace (or be and below the SK relation, depending on the evolutionary states displaced from) their parental gas reservoir. Moreover, since the of the giant molecular cloud. The scatter in SFR diminishes and wholeregionhastobemoreevolvedforittohostsomanyPMS followtheSKrelationwhenpropertiesareaveragedovertheen- stars,theradiationfromthehot,youngstarshashadmoretimeto tireHIIcomplexesof150−200pc.Thisisinagreementwiththe affectthesurroundingmedium. findingsofKruijssen&Longmore(2014),whoattributethescatter onsmallerscalestoincompletestatisticalsamplingofindependent star-formingregions.Furthermore,thecommonlyusedSFRtrac- erssuchasHαand24µmluminositieswouldunder-estimatethe 3 OBSERVATIONS amountofstarformationinregionsnotactivelyproducingO-type stars, such as the LMC’s largest molecular ridge and the Magel- 3.1 Youngstellarcatalogue lanic Bridge. They show that using Hα or 24µm as SFR tracers Imaging with the Hubble Space Telescope (HST) of star-forming thesepointsareoutliersontheSK-relationwhiletheyfollowthe regions in the Magellanic Clouds has provided access to excep- SK-relationwhenusingSFRdeterminedfromYSOcounts(Inde- tionally rich samples of newly-born stars down to the sub-solar betouwetal.2008;Chenetal.2014). regimeoverlargeareasofthesky.Ourcatalogueofyoungstarsin The work presented here differs from these previous stud- NGC346,oneofthelargeststar-formingcomplexesintheSMC, iesbythesourcesweusetotracethestarformation(PMS+UMS isamongtherichestMagellanicCloudsstellarensemblesevercol- stars versus YSOs) and the way we derive the ISM column den- lectedwithHST.Threepointings(withsignificantoffsets),centred (cid:13)c XXXRAS,MNRAS000,1–16 RelationbetweengasandyoungstarsinNGC346 5 onNGC346wereobservedwiththeWide-FieldChannel(WFC) massindirectlydetectedstars(M >0.8M )is1.2·104M ,i.e. (cid:63) (cid:12) (cid:12) of ACS covering an area of about 5×5arcmin2 (∼88×88pc2). 50percentofthetotal.Themainparametersusedinouranalysis TheimageswereobtainedwithintheHSTProgramGO-10248(PI aresummarisedinTab.1. Nota, Nota et al. 2006) in the filters F555W and F814W (equiv- Thetotalstarformationrate,averagedoverthelast5Myr,of alenttostandardVandIbands).Detaileddescriptionsofthedata thecomplexcalculatedinthiswayis4±1·10−3 M yr−1,where (cid:12) reductionandphotometryaregiveninGouliermisetal.(2006).The theuncertaintytakesintoaccountpossiblestarformationoutsideof photometryrevealsmorethan98000starsatvariousevolutionary thefield-of-viewofHST(20percent)andtheextrapolationofthe stages,andits50%completenesslimitism (cid:39)27(Gouliermis observedmassfunctiontolowermasses(20percent)butnotthe 555 etal.2006). systematicuncertaintyduetheassumeddurationofthestarforma- ThesampleofyoungstellarpopulationsinNGC346consists tionevent.ThisvalueisconsistentwiththeresultsofSimonetal. ofthelow-masspre-main-sequence(PMS)stars,whichareidenti- (2007)whofindaSFR>3.2·10−3 M yr−1 overthelast1Myr (cid:12) fiedfromtheirfaint-redpositionsonthecolour–magnitudediagram usingSpitzeridentifiedYSOcandidates. (CMD).SeeGouliermis(2012)forareviewonlow-massPMSstars Fortherestoftheanalysisweassumethatthemassfunction in the Magellanic Clouds. This sample is complemented by the andthedurationofstarformationareinvariantacrossthestarform- UMSstars(selectedwithcoloursm −m (cid:54) 0.0andmag- ingcomplex.Therearesomeindicationsofvariationsintheslope 555 814 nitudes12∼m555<∼17),includingmorethan30early-typestars ofthemassfunctioninNGC346(Sabbietal.2008;Cignonietal. (seealsoMassey,Parker&Garmany1989;Mokiemetal.2006). 2011).Thegeneraltrendisasteepingoftheslopewithincreasing ThemassesoftheselectedUMSstarsaresuchthattheywouldhave distance to the central cluster, i.e. a larger fraction of high-mass evolvedoffthemainsequenceiftheywereolderthanthePMSpop- starstowardsthecentralcluster,consistentwithacertaindegreeof ulation.Thus,thecatalogueweuseinthisanalysiscontains5150 masssegregationinthecluster.However,suchvariationshavelittle young(PMSandUMS)starsinthemassrangebetween∼0.5M impactonourresultswhicharebasedonstarcounts,whilelumi- (cid:12) and∼40M .Thelocationoftheyoungstarswithinthecomplexis nositybasedSFRtracers(e.g.Hα)areverysensitivetothenum- (cid:12) indicatedinFig.1withyellowcontours.Thisimageshowsthevery ber of high-mass stars and thus the high-mass slope of the mass prominentHαemissionassociatedwiththecentralclusterandthe function.Asanillustrationofthisinvarianceconsiderthestandard presenceofseveralsecondaryclustersofyoungstarstotheNorth Kroupamassfunction(Kroupa2001)withahigh-masspowerlaw whichcauselittleHαemission. slopeof-1.3.Whenwevarythisslopebetween-1.0and-2.0–the Itishardtogetaccurateageandmassdeterminationsofthe observedrangeofslopesinNGC346(Sabbietal.2008)–thetotal individualPMSstarsbasedontheirpositionintheCMD(Jeffries masspernumberofstarsabove0.8M (i.e.M )variesbyonly (cid:12) cat 2012). An isochronal median age around ∼3Myr has been de- ∼20percent.Forthesamevariationsinslopethefractionofmass fined for the ensemble of PMS stars in NGC 346 on the basis of locked in the high-mass stars – those powering the Hα emission comparisonwithevolutionarymodels(Sabbietal.2008;Cignoni (M >8M )–variesby1500percent! (cid:63) (cid:12) etal.2011).Mokiemetal.(2006)havespectroscopicallystudied thehigh-massstarstowardsNGC346.Theyfindagesbetween0 and5Myrforthehigh-massstarsthatbelongtothestar-formation 3.2 HerschelandSpitzerdata complex.Thisagerangeisfullycompatiblewiththepositionand We use the mid-IR to submm photometric maps that have been spreadofthelow-massPMSstarsintheCMD.Sinceourobjective obtainedwithSpitzer(SAGE-SMC:Gordonetal.2011)andHer- istomeasuretheaverageSFRcountingallstarsthathaveformed schel (HERITAGE: Meixner et al. 2013). Within these two large duringthestar-formationevent,weuse5Myrasthestar-formation programstheentireSMChasbeenobservedatIRAC(3.6,4.55.8 duration(∆t ).Thus,∆t referstothedurationoftheevent SFR SFR and8.0µm),MIPS(24,70,and160µm),PACS(100and160µm) nottotheagesoftheindividualstars.Therefore,thisapproachis andSPIRE(250,350and500µm)wavelengths.Thesensitivityof conceptuallydifferentfromtheYSO-countingstudies(e.g.Lada, thesedatasetsissuchthatfortheenvironmentoftheprominentstar Lombardi&Alves2010;Heidermanetal.2010)inwhichagesof formingregionNGC346thephotometricuncertaintyisdominated theindividualobjectshavebeenassumed. bytheabsolutefluxcalibration(seealsoSect.3.4).Anoverviewof WeconstructtheentiremassfunctionoftheUMS+PMScata- NGC346insomekeyISMtracersisshowninFig.2.Inthefollow- loguebyextrapolatingthemassfunctionformassesabove0.8M (cid:12) inganalysiswemainlyusetheIRAC,MIPS-24,MIPS-70,PACS- derivedbySabbietal.(2008,Fig3bottompanel)fromthesame 100, PACS-160 and SPIRE-250 data, because these sufficiently observational material. Their mass function is completeness cor- coverthespectralenergydistribution(SED)toderiveaccuratedust rected for crowding and photometric sensitivity but not for inter- surface densities at optimal angular resolution (∼20arcsec). The stellarextinction.Overthemeasuredrangethemassfunctionhas SPIRE350µmand500µmdatahavepoorerangularresolution. aslopeof-1.431.WeextrapolatetolowermassesusingaKroupa Theonlyexceptionisthedustmassesderivedwithinlargecircular massfunctionwithaslopeof-0.3between0.08and0.5M and (cid:12) apertures(Tab.2)whichusestheSPIRE-350µmdatatoreplacethe aslopeof0.7between0.01and0.08M (Kroupa2001).Theto- (cid:12) Labocabecausethelatterisnotobservedoversuchalargearea. tal stellar mass formed in the last 5Myr, obtained by integrating thismassfunctionandmultiplyingbythesurveyarea(88×88pc2) equals∼2.24·104M .Sincewehave5150starsinourcatalogue, (cid:12) 3.3 Laboca870µmimagingdata eachsourcerepresentsonaverageamassof4.3M (M ).The (cid:12) cat To constrain the emission by the coolest dust, we use Laboca data at 870µm, instead of the SPIRE 350 data. This data set al- 1 Weusetheformalismofthemassfunction–log10(N(∆log10(m)))ver- lowsustoobtainmeasurementsat∼20arcsecresolutionwhichis suslog10(m)–asgivenbyScalo(1986).InthisdefinitiontheSalpetermass unattainablewithHerschel/SPIRE350and500.Labocaisamulti- functionhasaslopeof-1.35andtheKroupamassfunctionhasaslopeof channelbolometerarrayforcontinuumobservationsat870µmin- -1.3above0.5M(cid:12) stalledontheAtacamaPathfinderEXperiment(APEX)telescope (cid:13)c XXXRAS,MNRAS000,1–16 6 S.Honyetal. Figure3.Laboca870µmmapofNGC346.Thecontoursshowthe36cm Figure2.Falsecolourimageshowinganoverviewofthelargeenviron- radiocontinuumemissionfromSUMSS(Mauchetal.2003).The3and mentofNGC346inkeyISMtracers.Weshow8µmemissionindicative 6cm radio continuum images (not shown) exhibit the same morphology ofthelocationofthemostprominentPDRs(blue;IRAC4emissionminus (Dickeletal.2010).Thepossiblecorrespondingcontributionoffree-free thestellarcontinuumestimatedfromIRAC2),thewarmerdusttracedby emissionat870µmhasbeenfiltered-outbythemedianfilteringappliedin PACS100(green)andthecoolerdust(SPIRE250,red).Eachwaveband thedatareductionprocess.Thedashedcircleindicatestheapproximateex- isshownatitsnativeresolution.Thebluecontoursshowthestellardensity tentoftheHαnebula.Weshowaclose-upofthebrightestregioninthe (seeFig.1).Thegeneralobservedtrendisadecreasingdusttemperature inset,inwhichthe250µmdustemissioncontours,inperfectcorrespon- withdistancetothemostrichcluster(yellowtoredcolourgradient)and dencewiththeLabocamap,areshown. strongPDRsnear(butnotpeakingon)thestellarconcentrations.There- gionwherebothdustsurfacedensity,includingLabocameasurements,and stellardensitiesarewelldefinedisindicatedbythewhiteline(seeSect.3.4 mapisshowninFig.3.Withintheregionofinteresttherearethree fordetails). mainemissionfeatures.Thereisanemissionpeaktowardsthecen- tralcluster,adirectindicationthatthissight-lineisdustrich.We detectabrighteremissionpeaktowardsthenorth-westofthemain in Chile. It has a field-of-view of 11.4arcmin and a PSF full- clusterandaplumeof870µmemissionwhichfollowsthestring width-at-half-max of 19.2±0.3arcsec. Observations of the NGC ofstellarclusteringtowardsthenorth-west.Thisplumecoincides 346 region with Laboca were carried out in December 2008 and withthebrightestCO(j=2-1)emissiondetectedintheregionRubio April, May and September 2009 (Program ID: O-081.F-9329A- etal.(2000).Duetothemedianfilteringthatisappliedtoremove 2008 PI: Hony). The mapping was done with a raster of spiral theatmosphericandtelescopesignal,anyspatiallyveryextended pattern in order to fully sample the final map (size of the region mapped: 25×25arcmin2). Data are reduced with the BOlometer emissionhasbeenremovedaswell.Thisexplainswhywedonot detectanyfree-freeemissionfromtheionizedgaswhichshouldbe Array Analysis Software (BoA Schuller et al. 2010). The scans presentinthisregion(seeFig.3) are reduced individually. They are calibrated using the observa- tionsofplanets(Mars,Neptune,Uranus,Venus)andsecondarycal- ibrators(G10.62,G5.89,HLTAU,PKS0506.61,PMNJ0210-5101, PMNJ0303-6211,PMNJ0450-8100,N2071IRandVY-CMa).We 3.4 Beammatcheddata determinezenithopacitiesusingalinearcombinationoftheopac- In our analysis, we use maps with a resolution of 20arcsec (6pc itydeterminedusingsky-dipsandthatcomputedfromtheprecip- at the distance of the SMC). All maps with intrinsic spatial res- itablewatervapor2.Weremovedeadornoisychannelsaswellas olutionsbetterthanthisresolution,includingthestellarcatalogue, stationary points or data taken at fast scanning velocity or above havebeenconvolvedtothethiseffectivespatialresolution.Laboca, anaccelerationthreshold.Wesubtractthecorrelatednoise,apply MIPS70andSPIRE250mapshavenotbeenconvolvedsincethey stepsofmediannoiseremoval,baselinecorrectionanddespiking. alreadyhaveanintrinsicspatialresolutionverycloseto20arcsec. Thereducedscansarethencombinedintoafinalmap.Weisolate WeusetheconvolutionkernelsavailablefromKarlGordonsweb the pixels above a given signal-to-noise ratio to define a ‘source page4forconvolvingtotheSPIRE250beams.Forthestellarden- model’thatissubtractedfromthetime-ordereddata.Wererunthe sitymap–whichhasanexceedinglygoodintrinsicangularreso- reduction pipeline and add the source model to the time-ordered lutionwehavedirectlyconvolvedthe2arcsecstellardensitymap data to obtain a new map. The process is iterated until the result with the SPIRE 250 µm beam. After convolution, all maps have mapconverges(5iterationswereappliedforNGC346)3.Thefinal been re-projected on the same pixels scheme with pixels the size 2 Tabulated sky opacities are provided at http://www. apex-telescope.org/bolometer/laboca/calibration 4 http://dirty.as.arizona.edu/˜kgordon/mips/conv_ 3 MoredetailsonthetechniquesareprovidedinGalametzetal.(2013). psfs/conv_psfs.html (cid:13)c XXXRAS,MNRAS000,1–16 RelationbetweengasandyoungstarsinNGC346 7 of20×20arcsec2 inordertohavespatiallyindependentmeasure- mentsandtoallowpixel-by-pixelSEDextractionandcomparison betweenthestellardensitiesandderiveddustsurfacedensities.We use the program swarp from AstroMatic5 for calculating the re- projected maps, as it is in our experience the most accurate tool inconservingthemeansurfacebrightness.Thisisparticularlytrue whenre-projectingtoapixelschemewithverydifferentpixelsizes, whichisourcase6. In order to create reliable random noise maps that represent wellthenoiseintheoriginalmapsandtheeffectsofconvolution andre-projectionweapplythefollowingprocedure: • Theamplitudeofthenoiseineachmaphasbeenestimatedby measuringthemedianabsolutedeviationfromthemedian(MAD). This value is a more robust measure of the noise in a map than thestandarddeviationinthepresenceofrealsourceemission.The estimatedstandarddeviationequals1.4825*MAD. • Wegenerateapurenoisemapattheoriginalresolutionusing themeasuredstandarddeviation. • We generate a projected noise map convolving and re- projectingthisnoisemapintheexactsamemanneraswedothe sciencemap. • Wemeasuretheamplitudeofthenoiseintheprojectednoise mapasthestandarddeviationofthefittedGaussianfunctiontothe histogramofpixelvalues. Figure4.MapsoftheoutputparametersofthedustSEDfitting.Theregion showncorrespondstothewhitecontourinFig.2.Forreferenceweshow Theseoutputnoiselevelshavebeencomparedtotheformal thesurfacedensitymapofyoungstarsincontours(seeFig.1).Weshow calibrationuncertainties(expressedaspercentagesoftheobserved theluminosityofthedustemissionrangingfrom150to1300L(cid:12)(a),the surface brightness levels). For all maps except the Laboca map, averageradiationfieldasexperiencedbythedustrangingbetween6and theabsolutecalibrationisdominantthroughouttheregionofinter- 45G0(b),dustsurfacedensityrangingfrom0.05to0.3M(cid:12) pc−2(c)and est.InthecaseoftheLabocamap,weretainforeachpixelinthe themassofPAHsrelativetothetotaldustmassnormalisedtotheGalactic projectednoisemapthelargervalueofthefluxcalibrationuncer- valuerangingfrom0to0.3(d). taintyandtherandomnoisevalue.Theseuncertaintiesshouldnot be added (quadratically) because the Laboca flux calibration un- certaintyreflectsthescatterinthemeasuredcalibratorfluxesandis shape of the SED (in particular, both its peak wavelength and its thus,inessence,alsoarandomnoiseterm. width)constraintheparametersofthispowerlaw. PixelsoutsidetheareasurveyedbyHSTandpixelswherethe Foragivenstarlightintensity,U,thedustemissivityisderived Laboca measurement is less than 2 σ are masked. There are 115 fromtheZubko,Dwek&Arendt(2004,dustfamily:BARE-GR-S) valid, independent 20×20arcsec2 pixels (covering about ∼4000 model,designedtofitthediffuseGalacticemission.However,we pc2)inthefollowingpixel-by-pixelanalysis.Theiroutlineisshown replacegraphitebyamorphouscarbon(Zubkoetal.1996,ACAR). inFig.2.Allmapsattheotherwavelengthshavesignal-to-noisera- Indeed,Gallianoetal.(2011a)showedthatthestandardGalactic tioslargerthan2–inmostcasesmuchlarger–inthesepixels. grainpropertiesappliedtoSpitzerandHerschelobservationsofthe LMC lead to violation of elemental abundance constraints, while themodifiedcomposition(the‘ACmodel’)givesrealisticgas-to- dustmassratios.Insummary,wemaketheassumptionthatgrains 4 DUST,GASANDSFRSURFACEDENSITIES intheSMCwillhavesimilaropticalpropertiesasintheLMC. Thechoiceofasetofgrainemissivitiesistaintedbysystem- 4.1 SEDfitting aticuncertainties.AsdemonstratedbyGallianoetal.(2011b),the In order to derive dust surface densities, we fit the IR to submm derived dust mass change by a factor of 2 to 3 depending on the dustcontinuumSEDforeachindependentpixelintheregion.The opticalproperties.However,itisalsoshownthatthechangeises- dustemissionfittingisperformedwiththeGallianoetal.(2011a) sentiallyasimplescalingofthedustmass,anddonotsignificantly SED model. This model accounts for variations of dust excita- affect the trends. Besides, if the origin of the difference in emis- tion rates along the line-of-sight. Following the prescription of sivitybetweentheMilkyWayandtheLMCisanevolutionaryef- Dale et al. (2001), it assumes that the distribution of dust mass, fect,linkedtometallicity(cf.PlanckCollaborationetal.2011),it M ,isparametrizedbythestarlightintensity,U,asapowerlaw: is likely that using LMC emissivities puts us closer to the reality d dM /dU ∝U−α,betweenU andU +∆U.Theparameter thansimplyassumingGalacticproperties. d min min U isthestellarfluxreceivedbythedustandisnormalisedtothe The fit of the observed SED, with the previously described solarneighbourhoodvalue(Mathis,Mezger&Panagia1983).The dustmodel,providesconstraintson:thedustmass,M ;theparam- d eters of the power law distribution of starlight intensities, U , min ∆U andα,whichwesummarisebyquotingtheaveragestarlight 5 http://www.astromatic.net intensity,(cid:104)U(cid:105);andthePAHmassfraction,normalisedtotheGalac- 6 TheIDL/astrolibtoolhastrom,oftenusedforthesamepurpose,performs ticvalue,fPAH.Inordertoestimatethefinaluncertaintiesonthese poorlyinthiscase. derived dust parameters, we perform Monte-Carlo iterations, fol- (cid:13)c XXXRAS,MNRAS000,1–16 8 S.Honyetal. of1021[cm−2(Kkms−1)−1](Bolatto,Wolfire&Leroy2013).If Table2.Totaldustmass,gasconsumptiontime-scaleandintegratedSFE asafunctionoftheareaconsideredintheanalysis.Thefirstrowcorre- weuseanXCO of1022 [cm−2 (Kkms−1)−1]wefindamolecu- spondstotheareaincludedinthepixel-by-pixelanalysis.Aradiusof52pc largasmassof7.5·105 M(cid:12).SuchanelevatedXCO maybemore isequivalenttotheareacoveredbytheHSTobservations.The90pcradius appropriate given the harsh radiation field that is prevalent in the matchestheprominentSPIRE250and350µmwavebandemission,while region,whichmayinduceenhancedphoto-dissociationoftheCO thelargestradiusprobesthefullextentoftheHαnebulaaroundNGC346. molecules.Thus,wederiveatotalgasmassintherangeof2.7·106 Thegasconsumptiontime-scale(τgas)isdefinedastheMgas/SFRand to 3.4·106 M . The dust mass derived using the dust continuum (cid:12) the integrated star-formation efficiency (SFE10Myr) is calculated as the photometryinthisapertureandapplyingthesameSEDfittingrou- percentageofgasthatwillhavebeenconvertedintostarsafter10Myr,as- tineweuseforthepixel-by-pixelanalysisyields2.7·103M .The sumingthattheSFRremainsconstant.Weuse10Myrasthelimitingage, (cid:12) derivedr rangesfrom∼1000to∼1250.Inthefollowingweusea whensupernovaemightdisrupttheISMandhaltthestarformation. gd fiducialvalueforr of1250,whichismuchhigherthantheGalac- gd ticvalue(100,Draine&Li2007)duetothelowermetallicityofthe area/radius Mdust τgas SFE10Myr SMC.Ourvalueforrgd of1250islowerthanthetotalSMCinte- [M(cid:12)] [108yr] [%] gratedvalueof1740fromGordonetal.(2014).Theglobalvalue includesasignificantamountofatomicgasatlowcolumndensity mask 498±18% 1.7 5.8 intheoutskirtsoftheSMCwhichisnotdetectedindustemission. 52pc 900±19% 2.5 4.0 Thisdrivesuptheglobalr . 90pc 1616±19% 4.5 2.2 gd 145pc 2741±22% 7.6 1.3 Given that the derivation of rgd is susceptible to significant systematicuncertaintiesinX forthegassurfacedensitiesand CO dust optical properties for the dust surface densities, we will dis- cusstheimplicationsofafactoroftwovariationsintheabsolute lowingthemethoddescribedinGallianoetal.(2011a),takinginto value of r on our results. Note that, part of the purpose of this gd accountthecorrelationbetweencalibrationuncertainties.Theme- paperistodeterminehowwelltheISMandstarsfolloweachother dianuncertaintiesonthederivedparameters(σx/x)are6percent onsmallspatialscales.Thispartoftheanalysisdoesnotdepend forLdust,and19percentforΣdustand(cid:104)U(cid:105).Themedianstandard onthechosenabsolutevalueforrgd.ThecomparisonofSFRand deviationonfPAHis0.02. star-formationefficiencieswithvaluesderivedforotherregionsis Maps of the best fit output parameters are shown in Fig. 4. howeversensitivetothechosenvalueandwewilldiscusstheinflu- OneofthekeyresultsfromtheSEDfittingwhichisevidentfrom enceofourchoiceontheresultswefind. these maps is the clear distinction between the parameters which Wefurtherassumer tobeinvariantfortheentireregion.In gd tracetheheatingofthedust(panelsaandb)andthesurfaceden- principle,itispossiblethatr couldvarysignificantly,inpartic- gd sityofdust(panelc).Clearlythedustluminosityintheveryactive ular in the vicinity of high-mass star-formation sites, where dust starformingregionNGC346(panela)tracescloselytheradiation destruction can become important due to supernovae explosions. field. This is in stark contrast to other (more usual) observations Reidetal.(2006)havestudiedthesupernovaeremnantswithinthe ofmorediffuseregionswheretheincidentradiationfield(anddust largeenvironmentofNGC346.Theseauthorsshowthattheregion temperature)doesnotvarymuchandLdusttracesthedustsurface we study here appearslargely unaffected by the impact of super- density.PaneldshowsthatthePAHabundanceclosetothemain novae. The closest remnant they identified (SNR B0057-724, see cluster is so low that their emission is undetectable in the broad- also Fig. 2) lies to the North-East of the main cluster, outside of bandphotometry.ThislowabundanceofPAHisinperfectagree- theregionofinterest.Theobservationaldataargueagainststrong mentwiththefindingsofSauvage,Vigroux&Thuan(1990)who variationsofr becausetheyshowthattheratioofdustheating gd deducedanincreaseddifferentialdepletionofPAHstowardsNGC comparedtogasheatingisveryconstantthroughoutthewholere- 346basedonIRASphotometry.SimilarpaucitiesofPAHstowards gion(seeSect.6.2). otherhigh-massstarformingregionintheMagellanicCloudshave beenreported(e.g.Sandstrometal.2010;Honyetal.2010). 4.3 Starformationratesurfacedensities 4.2 Conversionofdustsurfacedensitytogassurfacedensity The star-formation-rate map has been derived using the observed numberofyoungstarsalongtheline-of-sightineachpixelofthe We assume that gas and dust are well mixed along each line-of- beam-matchedstellardensitymap.Itiscalculatedas(seealsoTa- sightinwhichcasethegassurfacedensity(Σgas)isproportional ble1): tothedustsurfacedensity(Σ )andtheproportionalityfactoris dust N M N ·4.3 thegas-to-dustmassratio(rgd).ThedustmassesderivedbySED SFR= ∆(cid:63)t cat = 5(cid:63)·106 [M(cid:12)yr−1] (1) fittingmethodsvarysignificantlyandsystematically(e.g.Galliano SFR etal.2011b;Gordonetal.2014)dependingontheappliedmethod Thestar-formationsurfacedensitymap(Σ )isobtainedbydi- SFR and assumed dust optical properties. It is therefore important to vidingthismapbytheareaofapixelinkpc2. use a value of r consistent with the used SED fitting method- InFig.5,wecomparethederivedΣ withselected,indirect gd SFR ology, i.e. the value of r that gives the correct gas mass given star-formationratetracers.Notethatweonlycomparewiththose gd thederiveddustmass.Wehavecalibratedther usingtheavail- tracers(Σ –calibrationfromHaoetal.(2011)foraKroupaIMF; gd Hα able gas tracers on a large scale. Within a 500arcsec radius cen- Σ –calibrationfromRiekeetal.(2009)andΣ –calibration 24µm TIR tredonNGC346wefindanatomicgasmassof2.7·106M using fromMurphyetal.2011)whichareappropriatefortheveryrecent (cid:12) the Parkes+ATCA HI map (Kim et al. 2003) and a spin temper- epochofstar-formation(<5Myr)andwedonotconsiderFUVbe- ature of 60K (Bernard et al. 2008). The molecular gas mass de- causeitscalibrationassumesaconstantSFRover>10−100Myr. terminedfromCO(J=1-0)withinthesameapertureis7.4·104M Ascanbeseen,theΣ fromstarcountsisgenerallyhigherthan (cid:12) SFR whenusingaCO-to-H columndensityconversionfactor(X ) those obtained from Hα or dust emission. Moreover, the differ- 2 CO (cid:13)c XXXRAS,MNRAS000,1–16 RelationbetweengasandyoungstarsinNGC346 9 Figure 5. Comparison of derived pixel-by-pixel ΣSFR using different methods.Thex-axisshowstheΣSFR usingtheyoung-starsurfaceden- sity. In blue we show ΣSFR calculated following Hao et al. (2011, for Figure6.DerivedtotalSFRfortheNGC346complexbasedonthecom- theKroupaIMF)usingthecontinuumsubtractedHαmapformMCELS bined emission of Hα and 24 µm as function of the radius (centred on (Smith,Leiton&Pizarro2000)thatwaskindlyprovidedbyS.Points.The 14.776◦;-72.1735◦)overwhichthefluxisintegrated.Wefollowthepre- redcrossesareΣSFRestimatesusingthetotalinfrared(TIR)(3−1100µm) scriptionfromCalzettietal.(2007,Eqn.5).TheSFRisexpressedinterms surfacebrightnessfollowingHaoetal.(2011)andtheblacksymbolsshow ofthefractionofthetotalSFRderivedfromstarcounts.TheHαand24µm theestimatedΣSFRbasedonSpitzer/MIPS24µm(Riekeetal.2009). emissionaremuchmoreextendedthanthedistributionoftheyoungstars. As can be seen, the SFR derived within the radius of the HST coverage (∼50pc)isabouthalfofthetotalSFR.Onlywhenweintegrateoverthe completenebula(∼500arcsec),wheretheHαemissionreachesthediffuse ences are largest where the stellar density (i.e. Σ ) is highest. SFR backgroundleveldowederivesimilarSFRvalues. Towardsthedensestclusterthedifferencebetweencountingstars andusingHαisafactorof10,whilethedusttracersyieldalocal Σ lowerbyafactorof50.Thedusttracersyieldmuchlower SFR values(byafactorof∼5)thanbothHαduetothereduceddust percent.Whenweintegrateouttoaradiusof500arcsec(145pc), abundanceintheSMC. wheretheHαemissionfromtheNGC346complexbecomesindis- TheoriginoftheweakdustemissioninNGC346isnotthe tinguishablefromthegeneralSMCemission,werecover∼90per sameastheweakemissionintheGould-beltstar-formationregions cent. In this calculation we assume that outside the field-of-view reportedbyVutisalchavakul&Evans(2013).Theseauthorshave oftheHSTobservations,thestarformationisinsignificant.Thisis compared the SFR one would derive from Spitzer/MIPS 24 µm corroboratedbytheresultsofSewiłoetal.(2013)whoidentified measurementsorTIRwithSFRderivedfromcountingYSOs.They YSOcandidatesbasedonIRphotometryoftheentireSMC.Ofthe find that the IR tracers underpredict the true star formation rate sourcesfromtheirhighly-reliableYSO-candidatelistwhichareas- bytwoordersofmagnitude,becausetheseregionslackhigh-mass sociated with NGC 346, less than 20 per cent (4/23) are located starsduetoincompletesamplingoftheinitialmassfunction.NGC outsideofthefield-of-viewofHST.Averysimilarresultisfound 346 is a very rich environment and does not have such a lack of whenusingthespectroscopicallyconfirmedearly-typestarsfrom high-massstars. Bonanosetal.(2010).Ofthe43O-typestarsfromthiscatalogue ThedifferencebetweenyoungstarcountsandtheHαderived withina100pcradiusaroundNGC346only∼15percent(6)are values is due to the fact that the individual massive young stars notwithinthefield-of-viewofHST. inNGC346produceHα(anddust)emissionoveramuchlarger We conclude that the total SFR as measured from the (pre- surfacethanthesizeofthepixelinwhichtheyarecounted,signif- dominantlylow-mass)youngstarcountsisconsistentwiththeSFR icantlylargerthanthefullHSTfield-of-view.Note,thatthiseffect measuredfromHαemissiontowithin∼10percent.However,the willcausethetightrelationbetweenSFR(derivedfromHα)and absorptionofthehardradiationfromthehotstarsandsubsequent thegascolumndensitytobreakdownonsmall(<∼100pc)scales, re-emissionaseitherrecombinationlinesordustcontinuumoccurs similar to what is observed in M33 (Onodera et al. 2010). This far–atdistances>100pc,inthecaseofNGC346–fromtheac- break-downoccursevenintheabsenceofdriftingofthestarsfrom tual location of these stars. See also Relan˜o et al. (2012) and Li theirbirthenvironmentorspreadinducedbyevolutionaryeffects, et al. (2013) for excellent discussions on how radiation escaping simplybecausethelocalHα(ordust)emissionnolongermeasures thelocalenvironmentaffectsHαanddustemissionasSFRtrac- thelocallyproducedUV-radiationfield.Figure6demonstrateshow ersonsmallspatialscales.Asaconsequence,theseindirecttracers large this distance is. We show the fraction of the SFR which is which depend on absorption and re-emission, cannot be used for recoveredwhenintegratingtheextinctioncorrectedHαemission ourpresentpurpose,whichistorelatethestellardensitieswiththe (basedonthecombinationofHαand24µmemission)inapertures ISMonsmallerscaleswithinthestarformingcomplex.Notethat ofincreasingradius.WithintheHSTfield-of-viewwerecover50 mostextra-galacticstudiesthatuseHαtoderivedSFRareprobing (cid:13)c XXXRAS,MNRAS000,1–16 10 S.Honyetal. which is currently, actively forming stars, while the galaxy aver- agedvaluesincludealsoregionswhicharenotpresentlyforming stars. Compared to the study from Heiderman et al. (2010), our approachhastheadvantageofusingthedustinemissiontomea- surethecolumndensitiesandthatwehaveaccesstodustemission coveringalargeareasurroundingthestarformingcomplex.This allowsustocalculateaveragedvaluesoverrelevantspatialscales, takingintoaccountalsopartsoftheISMwhicharelessvigorously formingstars. The thick blue stars correspond to averages over the entire masked area, the entire HST field-of-view, the prominent SPIRE 250 µm emission and the Hα nebula (top-right to bottom left, respectively, see also Tab. 2). The mean value lies progressively closer to the SK-relation as we increase the area over which we calculatetheaverage.Itshouldbenotedthatthesameshiftingto bottom left must occur also to the values from Heiderman et al. (2010)iftheyweretointegratetolargerdistancefromtheiryoung stars(tolowercolumndensities),astheconditionsthatprevailin their low-mass star forming regions are probably more represen- Figure7.Scatterplotofsurfacedensityofyoungstarsversussurfaceden- tativeforthespiralgalaxiesatlowΣSFR ratherthanthoseonthe sityofdustperpixelof20×20arcsec2 (6×6pc2).Thedottedlineshows dividinglinebetweenthemostactivespiralsandstarburstgalaxies. the‘standard’relationfromKennicutt&Evans(2012,Fig.11a).Thevalues ThethirdstarfromthetopinFig.7–highlightedbyacircle–indi- fromHeidermanetal.(2010),basedonYSOcountsandISMcolumndensi- catestheaverageovertheareawheresignificantcolddustemission tiesinnearbyindividualmolecularclumps,arealsoshown.Thevaluesfor isdetectedinexcesstothegeneralSMCemission.Thisisprobably NGC346(blackpluses)liesystematicallyabovethe‘standard’line.The thebestestimateoftheaverageSFRandISMcolumndensityfor thickbluestarsindicatewhereNGC346islocatedwhenweaverageover thecomplexinitsentirety.ThisvalueisabovetheSK-relationby allpixelsinthemaskedarea,andsubsequentlyoverapertureswithradiiof aboutafactorofthreealbeitroughlycompatiblewiththeaverage 52,90and145pc(fromtop-righttobottomleft).Theseradiicorrespondto relationwhentakingintoaccountitsscatterof0.3dex.Thisfactoris theapproximatesizeoftheHSTsurveyedarea,theprominentfar-IRemis- consistentwiththepredictionfromKruijssen&Longmore(2014) sionnebulaandthesizeoftheHαnebula,respectively.Thepowerlaw exponentoftheeffectofaveraging,i.etheslopeofthearrowinthefigure, forthesizeoftheregion∼300pcdiameteroverwhichwedothe is2.9. comparison.WealsoindicateinFig.7byhowmuchtheNGC346 values would be displaced (left-to-right) relative to the data from Heidermanetal.(2010)andtheSKlineasaresultofafactoroftwo much larger regions (>∼kpc) than the scale on which the indirect variationsinr .Ifr were2500asopposedto1250,theaverage gd gd tracersarereconciledwiththedirectmeasurements(∼150pc)and valuesofNGC346wouldfallontheSKline.Suchahighvaluefor arethusunaffectedbythiseffect. r wouldimplythathalfofthetotalgas(morethan80percentof gd themoleculargas)withina500arcsec(145pc)radiusaroundNGC 346ismolecularwithoutcorrespondingCOemission,asaresultof 5 COMPARISONOFGASANDSTARS photo-dissociationoftheCOmolecule.Suchanlargereservoirof hiddenmoleculargas,notrelatedtoCO,seemsdifficulttoreconcile In the following section, we compare the derived SFR and ISM withtheemissionofC+whichtracesthephoto-dissociation.Israel columndensities.Wefirstconcentrateontheglobalbehaviourand &Maloney(2011)showthatthedistributionofthe[CII]158µm howNGC346comparestoothermeasurementsbeforelookingin lineemissioncloselyresemblestheCOdistribution. moredetailatthetendencieswithinthecomplex. 5.2 Thephysicaloriginofvariationsinstellarmassfraction 5.1 Globalcomparison On the spatial scale that we probe here (∼6×6pc2) we measure WeshowinFig.7thestellarsurfacedensityversusthedustsurface significantscatterintherelationbetweenΣ andΣ (Fig.7). gas M(cid:63) density for each pixel. These are the basic observational quanti- Suchscatteronsmallscalesisexpected,duetothestochasticna- ties which do not depend on assumptions about Mcat, ∆tSFR or tureofthelocalstar-formationprocess,aswellasrelativemotions rgd.UsingthevaluesinTable1weconverttheseintoΣSFR and betweentheformedstarsandthereservoirfromwhichtheyformed Σgas(rightandtopaxes).TheindividualpixelswithinNGC346lie (Kruijssen&Longmore2014).Theobservedscatterismoreeasily abovethefiducialSK-relationforΣSFRversusΣHI+H2(Kennicutt assessedinFig.8,whereweconcentrateonthevaluesderivedfor &Evans2012,Fig.11a)byonaverageafactorof7.Forreference, NGC346.Thisfigurealsoshowsthederivedpowerlawfortheen- wealsoshowthepointsforindividualclumpsinnearbyMilkyWay tireensembleofsight-lines.WeusetheIDLroutineMPFITEXY7 starformingregionsfromHeidermanetal.(2010),whichalsolie (Williams, Bureau & Cappellari 2010) which uses MPFIT Mark- consistently above the SK-relation. These authors use SFR from wardt(2009)todetermineastraight-linefittothedata(inlog-log low-massYSOsandcolumndensitiesfromthedensegasmeasured space) with uncertainties in both variables. The best fit value for fromextinctionmapsonatypicalscaleofafewparsec.Thefact theexponentis2.6±0.2,i.e.therelationismuchsteeperthatthe thatallthesesmall-scalemeasurementslieabovethegalaxyaver- aged values is expected (Kruijssen & Longmore 2014). The off- setisduetotheselectionbiasedintroducedbystudyingaregion 7 http://purl.org/mike/mpfitexy (cid:13)c XXXRAS,MNRAS000,1–16

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.