ebook img

Star formation driven galactic winds in UGC 10043 PDF

1.8 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Star formation driven galactic winds in UGC 10043

MNRAS000,1–14(2016) Preprint9January2017 CompiledusingMNRASLATEXstylefilev3.0 Star formation driven galactic winds in UGC 10043 C. López-Cobá1, S. F. Sánchez1, A. V. Moiseev2, D. V. Oparin2, T. Bitsakis3, I. Cruz-González1, C. Morisset1, L. Galbany4,5, J. Bland-Hawthorn6, M. M. Roth7, R.-J. Dettmar8, D. J. Bomans8, Rosa M. González Delgado9, M. Cano-Díaz10, R. A. Marino11, C. Kehrig12, A. Monreal Ibero13 and V. Abril-Melgarejo14 1InstitutodeAstronomía,UniversidadNacionalAutónomadeMéxico,A.P.70-264,C.P.04510,México,D.F.,Mexico 2SpecialAstrophysicalObservatory,RussianAcademyofSciences,NizhniiArkhyz369167,Russia 7 3CONACYTResearchFellow-InstitutodeRadioastronomíayAstrofísica,UniversidadNacionalAutónomadeMéxico,C.P.58190,Morelia,Mexico 1 4PittsburghParticlePhysics,Astrophysics,andCosmologyCenter(PITTPACC),USA. 0 5PhysicsandAstronomyDepartment,UniversityofPittsburgh,Pittsburgh,PA15260,USA. 2 6SydneyInstituteforAstronomy,SchoolofPhysics,UniversityofSydney,NSW2006,Australia n 7Leibniz-InstitutfürAstrophysikPotsdam(AIP),AnderSternwarte16,D-14482Potsdam,Germany a 8AstronomischesInstitut,Ruhr-UniversitätBochum,Universitätsstr.150,D-44801Bochum,Germany J 9InstitutodeAstrofísicadeAndalucía(IAA/CSIC),GlorietadelaAstronomías/nAptdo.3004,E-18080Granada,Spain 6 10CONACYTResearchFellow-InstitutodeAstronomía,UniversidadNacionalAutónomadeMéxico,ApartadoPostal70-264,MéxicoD.F.,04510Mexico 11DepartmentofPhysics,InstituteforAstronomy,ETHZu¨rich,CH-8093Zu¨rich,Switzerland ] 12InstitutodeAstrofísicadeAndalucía(CSIC),GlorietadelaAstronomías/nAptdo.3004,18080,Granada,Spain A 13GEPI,ObservatoiredeParis,PSLResearchUniversity,CNRS,UniversitéParis-Diderot,SorbonneParisCité,PlaceJulesJanssen,92195Meudon,France 14DepartamentodeFísica,UniversidaddelosAndes,Cra.1No.18A–10,EdificioIp,A.A.4976Bogotá,Colombia G . h p AcceptedXXX.ReceivedYYY;inoriginalformZZZ - o r t ABSTRACT s a [ We study the galactic wind in the edge-on spiral galaxy UGC 10043 with the combi- nation of the CALIFA integral field spectroscopy data, scanning Fabry-Perot interferometry 1 (FPI), and multiband photometry. We detect ionized gas in the extraplanar regions reaching v a relatively high distance, up to ∼ 4 kpc above the galactic disk. The ionized gas line ra- 5 tios ([Nii]/Hα, [Sii]/Hα and [Oi]/Hα) present an enhancement along the semi minor axis, 9 incontrastwiththevaluesfoundatthedisk,wheretheyarecompatiblewithionizationdue 6 1 toHii-regions.Thesedifferences,togetherwiththebiconicsymmetryoftheextra-planarion- 0 izedstructure,makesUGC10043aclearcandidateforagalaxywithgasoutflowsionizatedby . shocks.Fromthecomparisonofshockmodelswiththeobservedlineratios,andthekinemat- 1 icsobservedfromtheFPIdata,weconstrainthephysicalpropertiesoftheobservedoutflow. 0 Thedataarecompatiblewithavelocityincreaseofthegasalongtheextraplanardistancesup 7 to<400kms−1 andthepreshockdensitydecreasinginthesamedirection.Wealsoobserve 1 : adiscrepancyintheSFRestimatedbasedonHα (0.36M(cid:12) yr−1)andtheestimatedwiththe v CIGALE code, being the latter 5 times larger. Nevertheless, this SFR is still not enough to i X drive the observed galactic wind if we do not take into account the filling factor. We stress thatthecombinationofthethreetechniquesofobservationwithmodelsisapowerfultoolto r a exploregalacticwindsintheLocalUniverse. Keywords: galaxies:individual:UGC10043.–galaxies:ISM:.–galaxies:kinematicsand dynamics–ISM:jetsandoutflows. 1 INTRODUCTION themassmetallicityrelation(e.g.Tremontietal.2004;Finlator& Davé 2008; Peeples & Shankar 2011), (ii) the shape of the stel- larmassfunction(e.g.Nakanoetal.1995;Elmegreen2001)and Galacticwindsdrivenbyacombinationofsupernovaeexplosions (iii) the enrichment of the intergalactic medium with metals (e.g. andstellarwindsfrommassivestarshavebeenproposedasareg- Aguirreetal.2001;Oppenheimer&Davé2008). ulatingmechanismintheformationandevolutionofgalaxies(e.g. Silk&Rees1998;Springeletal.2005;Ciardi2008).Theycanalso Sincethediscoveryofthecentral-starburstdrivenwindinM explaintheoriginofsomeglobalpropertiesofgalaxiessuchas(i) 82(Lynds&Sandage1963),therehavebeenseveralworksaiming (cid:13)c 2016TheAuthors 2 C.López-Cobáetal Table1.ParametersofUGC10043.References:(1)NASA/IPACExtra- galacticDatabase;(2)HyperLeda;(3)Matthews&deGrijs(2004) 30 Parameter UGC10043 References Morphology Sbc 1 20 z 0.007208 1 α(J2000) 15h48m41.2s 1 ec) 10 δD(isJt2a0n0c0e)[Mpc] 3+42.19d9552m09.8s 21 cs m−M[mag] 32.72 2 C (ar 0 θ iP.[Ade.g[d]eg] 19501.5 33 E D hz[pc] 395 3 ∆ 10 LHα[ergs−1] 4.5×1040 Thispaper log(M∗/M(cid:12)) 9.79 Thispaper 20 Starburstgalaxiesarecommonlyobservedtohostsupernovae- 30 driven galactic scale winds (e.g. Heckman et al. 1990; Heckman 2003).Agalacticwindisproducedwhenthekineticenergyejected 30 20 10 0 10 20 30 bysupernovaeandstellarwinds,producedbymassivestarforma- ∆ RA (arcsec) tion,isefficientlythermalized.Thismeansthatthekineticenergy ofthewindisconvertedintothermalenergyviashocks,withalit- tlelossofenergybyradiationduetothehightemperaturesandlow Figure 1. True-color image of UGC 10043 extracted from the CALIFA densities.Thejointeffectofsupernovaeandstellarwindscreatesa datacube,wherebluecorrespondsto4450Å,greento5500Å andredto bubbleofhotgas(T∼108K)insidethestar-formingregionwitha 6580Å.Itisappreciatedthedustabsorptionlinealongthegalacticdisk, pressuregreaterthanitsenvironment(e.g.Heckmanetal.1990). thatismoreevidentinthecentralregions.Thewhitecontourindicatesthe detectionlimitofthefluxintensityofthe[Nii]λ6584emissionline.The Asthebubbleexpandsandsweepsitsenvironment,itquickly dashedlinesindicatethepotentialbi-conicalstructureoftheionizedgas turns into a radiative phase. If the environment is stratified, like emission,withanapertureangleofθ≈80◦tracedbyeyeatthemaximum in the case of galactic disks, the bubble will expand faster in the extensionoftheemissionlineintensity. verticaldirectionofthepressuregradient.Thevelocityofthishot gasisexpectedtobeintherangeofafewthousandskms−1 (e.g. Heckman 2003). Once the bubble reaches a certain scale height, tounderstandtheprocessthatdrivegalacticwindsinactivegalac- the expansion will accelerate and break into fragments. This will ticnuclei(AGN),starburstandmerginggalaxies(Heckmanetal. allow the gas to expand freely into the halo and the intergalactic 1990;Richetal.2010,2011;Sturmetal.2011;Wildetal.2014). mediumfollowsabipolarcollimatedoutflowgeometry.Thisisthe Theunderstandingoffeedbackprocessesbyoutflowsplaysanim- so-calledblow-outphasewhenthebubbleturnsintoasuper-wind. portantroleinthestudyofgalaxyevolutionsincetheymayaffect TheopticalandX-rayemissionintheblow-outphasecomesfrom stronglythepropertiesoftheinterestellarmedium:i.e.theenergy obstacles(clouds,fragmentedshells)thatareimmersedinthegas released by star formation (SF, hereafter), and AGN activity into andareshock-heatedbytheoutflow.Thisscenariowasexplained the halo can heat the gas, preventing its cooling and as a conse- indetailbyHeckmanetal.(1990). quencesuppressingtheSFinlow-massgalaxies(e.g.Scannapieco Hugeadvantagesoverclassicallongslitspectroscopyareob- etal.2000;Hopkinsetal.2012).Suchprocessesmayhaveasignif- tainedbytheuseofIntegralFieldSpectroscopy(IFS)tostudythe icantimpactontheevolutionofthehostgalaxybyregulatingthe spatially resolved properties of galaxies. IFS provides with spa- amountofcoldgasavailableforSF.Inaddition,thegalacticwinds tiallyresolvedspectraofacompleteField-of-View(FoV),allow- canreducethenumberofexistingdwarfgalaxies,sincethekinetic ingthestudyofdifferentcomponentsofagalaxyinasimultane- energy from supernovae ejects halo gas, thus suppressing the SF ousway.ThecombinationofimageandspectroscopythroughIFS (e.g.Dekel&Silk1986). providesabetterunderstandingofthepropertiesofgalaxies.Sev- Super-windsarephenomenologicallycomplexsincetheyare eralworkshaveimplementedtheuseofthistechniquetostudythe comprised of multiple gas phases moving at different velocities ionizationbyshocksand/oroutflowsofgalacticwinds(e.g.Rich (e.g. Bland-Hawthorn 1995; Heckman et al. 2000; Veilleux et al. etal.2010,2011,2014;Hoetal.2014;Wildetal.2014;Biketal. 2005; Strickland & Heckman 2009). The mass released by star- 2015;Mahonyetal.2016).However,toourknowledge,thereare burst superwinds can range from tens to thousands of M(cid:12) yr−1 nodetailedstudiesofthefrequencyofoutflowsingalaxies(seefor with velocities of ∼ 100 km s−1 for the cool component, mean- exampleDahlemetal.1998;Heckmanetal.2000;Heckman2003; whileinAGN-drivenoutflowsthevelocitiesexceeds500kms−1. Hoetal.2016). Themechanismthatdrivesoutflowsinstarburstsisthemechanical Inourcurrentpaper,wepresentthestudyofthespatiallyre- energy supplied by supernovae explosions and stellar winds (e.g. solved properties of the ionized gas in UGC 10043 based on the Leitherer&Heckman1995).Itisknownthatsuper-windsathigh datafromtheCalar-AltoLegacyIntegralFieldArea(CALIFA)sur- scalesareverycommoningalaxieswithSFsurfacedensitylarger vey(Sánchezetal.2012),focusingontheanalysisofthedetected than0.1M yr−1 kpc−2,bothinthelocalUniverse(Dahlemetal. galacticwind.Thisisapilotstudywhichultimategoalistheex- (cid:12) 1998;Lehnert&Heckman1996)andathighredshift(Pettinietal. plorationofthefrequencyandphysicalconditionsofsuchoutflows 2001). inthecompletesampleofCALIFA.Thepaperisorganizedasfol- MNRAS000,1–14(2016) GalacticwindsinUGC10043 3 lows:wepresentthemainpropertiesofUGC10043in§2;thedata inGarcía-Benitoetal.(2015).Theprocedurecomprisestheusual are described in §3, and the conducted analysis in §4. Section 5 stepsinreductionofIFSdata,asdescribedinSánchez(2006):bias describestheanalysisofobservationswithascanningFabry-Perot anddarksubtraction,cosmic-rayremoval,CCDflat-fielding,spec- interferometerattheRussian6-mtelescope;whilethemainresults tratracingandextraction,wavelengthandfluxcalibration,andfi- arepresentedin§6.Finally,wepresentthemainconclusionsand nallycubereconstruction.Thefinalproductofthedatareduction discussion in §7. Throughout the paper, we adopted the standard isaregular-griddata-cube,withxandycoordinatesindicatingthe LCDMcosmology,withparametersH =70.4kms−1Mpc−1,Ω rightascensionanddeclinationofthetargetandzacommonstep 0 m =0.268andΩΛ=0.732. inwavelength.TheCALIFApipelinealsoprovideswiththepropa- gatederrorcube,apropermaskcubeofbadpixels,andaprescrip- tionofhowtohandletheerrorswhenperformingspatialbinning (duetocovariancebetweenadjacentpixelsafterimagereconstruc- 2 MAINPROPERTIESOFUGC10043 tion). UGC10043isanedge-onspiralgalaxy(i∼90◦)locatedatadis- These data were complemented with multi-band, aperture tance of ∼ 35 Mpc (see Table 1). It is found close to MD2004 matched, photometry extracted from the Galaxy Evolution Ex- dwarf, a companion galaxy located 84(cid:48)(cid:48)to the NW. Matthews & plorer (GALEX; Martin et al. 2005), Sloan Digital Sky Survey deGrijs(2004)suggestedapossibleinteractionwithUGC10043 (SDSS;Yorketal.2000),andWide-FieldInfraredSurveyExplorer whichmayexplaintheobservedtidalwarpinitsdisk.UGC10043 (WISE;Wrightetal.2010)surveys,extractedfollowingtheproce- presents a very thin disk and a prominent large and bright bulge duresdescribedinBitsakisetal.(inprep.).Toestimatethephysical (Fig.1).Opticalimagesrevealaverypronounceddustlanealong propertiesofthisgalaxy,theseauthorsprovidedaspectralenergy its disk. Matthews & de Grijs (2004), using Hubble Space Tele- distribution(SED)modelling,usingCIGALE(Nolletal.2009). scope (HST) narrow band observations in Hα + [Nii] found evi- We also use Fabry-Pérot Interferometer (FPI) observations denceofstar-formationinitsnucleus.TheyalsofoundHα emis- obtained at the prime focus of the 6-m telescope of Special sionperpendiculartothediskfollowinganapproximatelybi-conic Astrophysical Observatory Russian Academy of Sciences (SAO structureresultingfromapossiblegalacticwind.Theseauthorses- RAS)in2014May24/25.ThescanningFPIwasmountedinside timatethevelocityofthewindin∼100kms−1reachingadistance theSCORPIO-2multi-modefocalreducer(Afanasiev&Moiseev of3.5kpcoverthedisk.Aguirreetal.(2009)mappedUGC10043 2011).Theoperatingspectralrangearoundthe[Nii]λ6584emis- withtheVLA.TheyarguedthatUGC10043isunderinteraction sionlinewascutbyanarrowbandpassfilterwithaFWHM≈21Å withMCG+04−37−035(located2.5(cid:48)totheW;z=0.007398)evi- bandwidth. The interferometer provides a free spectral range be- dencedbyanobservedHi bridgebetweenthetwogalaxies. tweentheneighbouringinterferenceorders∼35Å withaFWHM oftheinstrumentalprofile∼1.7Å (R∼3860).Duringthescanning process,wehaveconsecutivelyobtained40interferograms,eachof 1800sexposure,atdifferentdistancesbetweentheFPIplates,un- 3 DATA derseeingconditionsof1.7−2.1(cid:48)(cid:48).TheFoVwas6.(cid:48)1×6.(cid:48)1witha InourworkweareusingtheIFSobservationsofUGC10043from samplingof0(cid:48).(cid:48)7perpixel.Thedatawerereducedusingalgorithms the first and second CALIFA data releases (e.g. Husemann et al. and programs described by Moiseev & Egorov (2008) and Moi- 2013; García-Benito et al. 2015). The CALIFA survey is a re- seev(2015).Thus,eachspaxelinthereduceddatacubecontainsa centlycompletedprojectthatcomprisesthreedatareleases(DR1, 40-channelspectrum. DR2 and DR3), the last one delivered in 2016 (Sánchez et al. 2016a).TheaimofCALIFAwastoobtainspatiallyresolvedspec- troscopyofmorethan600galaxiesattheLocalUniverse(0.005< 4 ANALYSIS z < 0.03) covering a wide range of morphological and stellar 4.1 ContinuumSubtraction masses.Theobservationscovertheopticalsizeofthegalaxiesup to2.5effectiveradiiusingthewide-fieldIntegralFieldUnit(IFU) To study the properties of the ionized gas we need to uncouple PmasfiberPAcK(PPAK;Kelzetal.2006)ofthePotsdamMulti- thecontinuumfromeachspectraofthedata-cube.Therearesev- ApertureSpectrophotometerinstrument(PMAS;Rothetal.2005). eralroutinesfocusedintheanalysisofthestellarpopulations(e.g. ThePPAKfiberbundleconsistsof331fibersof2.7(cid:48)(cid:48)diametereach STARLIGHT,pPXF,CidFernandesetal.2011a;Cappellari&Em- onecoveringatotalhexagonalFoVof74(cid:48)(cid:48)×64(cid:48)(cid:48)withafillingfac- sellem 2004). Here we adopted Pipe3D, a pipeline developed to tor of ∼ 60%. In order to guarantee a complete coverage of the analyseIFSdata-cubes(Sánchezetal.2016c, S16hereafter)using FoV,threeditheringpointingswereappliedtoobtain993indepen- thefittingpackageFIT3D(Sánchezetal.2016b, S15hereafter). dentspectraforeachobject.Thefinalspatialresolutionis∼1kpc Generally the continuum spectra show a wide range of sig- at the redshift of the sample. This allows to resolve spatially the naltonoiseratios(S/N)thatarehigherinthecentralregionsand spectroscopicpropertiesfromthemostrelevantcomponentsofthe graduallydecreasingoutwardfromthegalacticcentre.Fromsimu- galaxies (Hii regions, bars, spiral arms, bulges). Each galaxy of lationstestedinS15,weobservedthataminimumS/N isrequired theCALIFAsamplewasobservedintwodifferentconfigurations, ineachspectrumtoobtainanaccuratemodelofthecontinuumand oneoflowresolution(V500,R∼850)coveringtheopticalrange thereforetoderivethepropertiesoftheionizedgas.Inordertoin- 3750–7500Å andanotheroneofintermediateresolution(V1200, creasetheS/Nineachspectrumweperformaspatialbinningofthe R∼1650)thatcoversthebluepartoftheopticalrangeofthespec- cubeintheopticalrangeselectingasagoalvalueaS/N∼50.In tra 3700–4800Å. Along this article we use the data of the V500 Fig.3weshowtheresultofthistessellationprocedure.Thistessel- set-upforUGC10043. lationhasoneadvantagecomparedtoothermethods,suchasthe The data were reduced using version 1.5 of the CALIFA Voronoi one (Cappellari & Copin 2003), that the performed seg- pipeline,whosemodificationswithrespecttotheonepresentedin mentation follows the morphology of the galaxy and at the same Sánchez et al. (2012) and Husemann et al. (2013), are described timeincreasestheS/N,asdescribedinS16. MNRAS000,1–14(2016) 4 C.López-Cobáetal 35 17 16 [OIII]5007 30 15 Hβ 14 [OIII]4959 13 12 11 25 10 1] 9 4860 4960 5060 Å 2 m20 Hα c 1 s g er15 16 0 1 ux [10 [NII]6584 Fl [SII]6717 5 Hβ [OIII]5007 [SII]6731 [NII]6548 [OIII]4959 [OI]6300 0 4000 4500 5000 5500 6000 6500 7000 Wavelength [Å] Figure2.ExampleofthefittingprocedureofthestellarpopulationusingFIT3Dforonespectrumderivedbyintegrating25spaxelsaroundthecentralregion ofUGC10043.TheoriginalspectrumisshowninblackandinyellowisthebestfitoftheSSP.Theredcorrespondtothebestcombinationofthestellar populationsandemissionlinesthatdescribethedata.Ingreenisthestellarpopulationaftertheremovalofthefittedemissionlines.Oneoftheresultsofthe fitisaspectrumwithoutthestellarpopulationincludingtheemissionlinesoftheionizedgas.Inbluewepresenttheemissionlinesafterremovingthefitted stellarpopulationandinbrowntheresidualofthesubtractionofthebestfitincludingthestellarpopulationsandtheemissionlinemodel.Theinsightpanel showsanenlargementaroundHβandtheoxygendoublet[Oiii]ofthefit,theyaxishasthesameunitsinbothplots. Oncethetessellationisperformed,allthespectrawithineach extendsperpendiculartothediskandisclearlyvisibleinHα,[Sii], spatial bin are co-added and treated as a single spectrum. Then, and[Nii] maps. wederiveastellarpopulationmodelforeachofthosespectraby performingamultiSyntheticStellarPopulation(SSP)fit.Finally, werecoveramodelofthestellarcontinuumforeachspaxelbyre- 4.3 Spatialvariationoftheemissionlineratios scalingthemodelwithineachspatialbintothecontinuumfluxin- Theionizationstageofaphotoionizednebulaismainlydetermined tensityinthecorrespondingspaxel.Thestellarpopulationmodelis bythreeparameters:theionizationparameterU1,thehardnessof thensubtractedtocreateapuregasdata-cubecomprisingonlythe theionizingradiation(dependingontheeffectivetemperatureand ionizedemissionlines(alsoincludingthenoiseandtheresiduals metallicityofthestar,ortheageandmetallicityofthecluster,or ofthestellarpopulationmodelling).Thestrongestemissionlines the characteristics of the AGN), and the optical depth at the Ly- withintheconsideredwavelengthrangearefittedspaxelbyspaxel mancontinuum(matterboundedregionshavinghigherionization forthepuregascube,adoptingasingleGaussianfunctionforeach stages).Furthermore,theionizationstageofshockedregionsisde- consideredemissionline.Bydoingso,wederivetheircorrespond- terminedbythecharacteristicsoftheshock(speed,magneticfield, ingfluxintensityandthepropagatederrors.Finally,wecanextract densities). asetof2Dmapscomprisingthespatialdistributionofthefluxin- Theemissionlineratiosinvolvingthestronglines[Nii],[Sii], tensitiesforeachanalysedemissionline.InFigure2,weshowthe [Oiii],[Oi]andtheBalmerlines(HαandHβ)havebeenproposed resultsofthefittingprocedureforonesinglespectrumtoillustrate asamethodtoclassifybetweenregionsionizedbyAGNandsofter thefullprocess. ionizingsourcesasHiiregions(seeVeilleux&Osterbrock1987). With the use of IFS, we are able to spatially resolve the location 4.2 Ionizedgasemission ofdifferentionizationsourcesbyanalysingtheirlineratios.Asa firststep,westudythespatialdistributionofthestrongestemission InFigure4weshowtheintensitymapsfortheemissionlinesHα, lineratiosandinvestigateifthereisanycorrespondencewiththe [Nii]λ6584, [Oiii]λ5007, Hβ, [Sii]λλ6731,6716 and [Oi]λ6300 populationproperties. with a cut in S/N > 3. This cut decreases the number of useful Figure 5 shows line ratio maps of [Nii]/Hα, [Sii]/Hα, spaxelsineachmapbutnotsignificantly.Fromthesemapsweob- servethatmostofthecontributiontotheionizedgasislocatedina narrowregionassociatedtothedisk.Thereisanotherevidentcom- 1 U=Q0/4πr2Nec,whereQ0isthenumberofionizingphotonsemittedby ponent of ionized gas that is uncoupled from the disk, located in thesourcepersecond,risthedistancebetweenthesourceandthenebula, the extraplanar regions. This extraplanar emission of ionized gas Neistheelectrondensityandcthelightspeed. MNRAS000,1–14(2016) GalacticwindsinUGC10043 5 diagram, Baldwinetal.1981),toseparatetheemissionfromsoft ionizingsources,likeHiiregions,andobjectswithahigherioniz- ingpower,asAGNs.However,theselineratiosarelessaccurateto distinguishamongobjectsoflowionization,likeweakAGNs,ex- 30 citationbyshocks,planetarynebulaeandionizationbypost–AGB stars(e.g.Binetteetal.1994;Morisset&Georgiev2009;Binette 20 etal.2009;CidFernandesetal.2011b;Kehrigetal.2012;Singh etal.2013).Subsequently,Veilleux&Osterbrock(1987)extended 10 thisschemeincorporatingthediagnosticdiagramsforthe[Sii]/Hα ec) and[Oi]λ6300/Hαlineratios.Bothlineratiosaresensitivetoion- s arc 0 izationbyshocks,being[Oi]/Hαthemostsensitive. C ( Differentdemarcationlineshavebeenproposedforthesethree E D diagnostic diagrams. The most frequently used ones are those by ∆ 10 Kewley et al. (2001) and Kauffmann et al. (2003). The most re- centonesRichardsonetal.(2014)andRichardsonetal.(2016)are 20 showninFig. 6.TheKewleyetal.(2001)curvewasdeterminedby meansofphotoionizationmodels.Itisthemaximumenvelopethat 30 canbereachediftheionizationisproducedbyasingleormulti- pleburstsofstarformation.TheKauffmannetal.(2003)curvewas obtainedempiricallyfromgalaxiesoftheSloanDigitalSkySurvey 30 20 10 0 10 20 30 (SDSS). It traces the approximate upper limit of the sequence of ∆ RA (arcsec) theSFregioninthisdiagram.Thetwocurvesarefrequentlyused to distinguish from SF regions (below the Kauffmann curve) and Figure3. Tessellationpatternperformedfortheanalysisofstellarpopula- AGNs(abovetheKewleycurve).Theintermediateregionbetween tion.Theadoptedbinningprocedureensuresthatthespatialbinsfollowthe thetwocurvesisusuallyinterpretedasacompositezoneduetoa shapeofthegalaxy. combinationofdifferentionizationsources.However,thiscanalso bepopulatedbyionizationduetostarburstgalaxieswithcontinu- [Oiii]/Hβand[Oi]/Hα.Thelineratios[Nii]/Hαand[Oiii]/Hβare ousSF(e.g.Kewleyetal.2001),post-AGBstars(seeCidFernan- insensitive to dust extinction, as the emission lines are close in desetal.2011b;Papaderosetal.2013;Sánchezetal.2014),shock wavelength.Theotheremissionlineratiosarealsocloseinwave- ionization(e.g.Richetal.2010;Hoetal.2014;Alataloetal.2016), length,excluding[Oi]/Hα.Weincludethe[Oi]/Hαemissionline orevenclassicalHiiregionsinevolvedareasofgalaxies(e.g.Oey inouranalysisdespitetheweaknessof[Oi],becauseitisagood &Kennicutt1993;Sánchezetal.2015). discriminatorbetweenphotoionizationbyhardionizingpower-law InFig.6,weshowtheclassicalBPTdiagramfortheindivid- sourcesandOBstars,andalsobecauseitisagoodtracerofshock ualspaxels.Accordingtothespatialdistributionoflineratiosob- excitation(e.g.Richetal.2010;Farageetal.2010). servedinFig.5,ourinterpretationisthattheextraplanaremission Afirstinspectionofthelineratiomapsrevealsaremarkable is not likely due to photoionization by young stars. These points increaseinalllineratiosfromthedisktowardtheextraplanarre- arespreadovertheregiondominatedbystarformationtowardsthe gions,beingmoreevidentinthe[Nii]/Hαand[Sii]/Hαmaps.Ifwe regionclassicallydominatedbyAGN.Sofarthereisnoevidence assumethatHαtracestheextensionofthediskasseeninFig.4, ofthepresenceofanAGNinthisgalaxy,whichisalsoconsistent thenweobservethatthelineratioschangestartsattheedgeofthe withitssmallmassandbulge.Therefore,wediscardAGNasthe disk. possibleionizationsourceforUGC10043. The[Oiii]/Hβlineratiocoversasmallerareaduetoourcut Due to the shape and geometry of the extraplanar emission, inS/NinHβ,sinceHβ is∼3timesweakerthanHα.Ontheother thedistributionoflineratiosfromthestarformingregiontowards hand,the[Oi]/Hαmapislesspopulatedbecause[Oi]isaweakline theintermediateAGNarea,andthelackofevidenceofanAGN, comparedto[Nii]and[Sii].Thelineratiosatthediskregioninthe weconsiderthattheextraplanaremissionisrelatedtoshockion- [Nii]/Hαmapareconsistentwiththemaximumratio(log[Nii]/Hα ization induced by a galactic wind created by a central SF event. < −0.25) observed in star forming regions (e.g. Kauffmann et al. From Figs. 4 and 5 we observe a symmetrical distribution of the 2003).The[Oiii]/Hβlineratioismoreorlessconstantthroughout extraplanargaswithrespecttothegalacticdisk.Ifweassumethat thegalaxy.Theincreaseinthelineratios[Nii]/Hα,[Sii]/Hαand theburstofSFwasinthenuclearregionofthegalaxy,andassum- [Oi]/Hαfarawayfromthegalacticdiskhasalsobeenobservedin inganidealbiconicaldistributionoftheionizedgas(e.g.Heckman thecaseofextraplanardiffuseionizedgas(DIG)inedge-ongalax- etal.1990)wecantracethelimitoftheoutflowingregionbased ies,inwhichtheionizationatkiloparsecscalesisproducedbyhot onthedistributionofemissionlines.Theexpectedconicstructure oldstarsinthehalowithelectrondensitiesintheextraplanarregion wasalreadyshowninFig.1 lower than 10−1 cm−3 (e.g. Tüllmann et al. 2000; Flores-Fajardo We will try to confirm the suspicion of shock ionization by etal.2011). comparingthepropertiesoftheemissionlineswiththepredictions byphotoionizationandshockmodels. 4.4 DiagnosticDiagrams 4.5 Photoionionizationmodels Inordertounderstandchangesinlineratiosacrossthefieldofview, we explore the so-called diagnostic diagrams. Baldwin, Phillips In Fig. 7 we compare the observed line ratios with the predicted andTerlevichproposedadiagramthatcomparesthelineintensity onesbyphotoionizationmodelsalongthediagnosticdiagramsde- ratios [Oiii]λ5007/Hβ versus [Nii]λ6583/Hα (known as the BPT scribed in previous sections: [Nii]/Hα, [Sii]/Hα, [Oi]/Hα versus MNRAS000,1–14(2016) 6 C.López-Cobáetal Hα Hβ [OIII]λ5007 30 30 30 20 20 20 ec) 10 ec) 10 ec) 10 s s s c c c r r r a 0 a 0 a 0 C ( C ( C ( E E E D 10 D 10 D 10 ∆ ∆ ∆ 20 20 20 30 30 30 30 20 10 0 10 20 30 30 20 10 0 10 20 30 30 20 10 0 10 20 30 ∆ RA (arcsec) ∆ RA (arcsec) ∆ RA (arcsec) -1.80 -1.50 -1.20 -0.90 -0.60 -0.30 0.00 0.30 0.60 -1.05 -0.90 -0.75 -0.60 -0.45 -0.30 -0.15 0.00 -1.75 -1.50 -1.25 -1.00 -0.75 -0.50 -0.25 0.00 0.25 [NII]λ6584 [SII]λ6716+6731 [OI]λ6300 30 30 30 20 20 20 ec) 10 ec) 10 ec) 10 s s s c c c r r r a 0 a 0 a 0 C ( C ( C ( E E E D 10 D 10 D 10 ∆ ∆ ∆ 20 20 20 30 30 30 30 20 10 0 10 20 30 30 20 10 0 10 20 30 30 20 10 0 10 20 30 ∆ RA (arcsec) ∆ RA (arcsec) ∆ RA (arcsec) -1.60-1.40-1.20-1.00-0.80-0.60-0.40-0.20 0.00 -1.40 -1.20 -1.00 -0.80 -0.60 -0.40 -0.20 0.00 0.20 -1.20 -1.10 -1.00 -0.90 -0.80 -0.70 -0.60 -0.50 -0.40 Figure4.Exampleofemissionlineintensitymapsinlogscale.Thegreencontourencloses70%ofthefluxintheV-bandandtheblackcontouristhedetection limitoftheNitrogenemission(i.e.forthosespaxelswithS/N>5,log[Nii]=1.25).Thesetwocontoursdemarcatetheemissionofthedisk+bulgeandthe extraplanaremission.Thecolourbarsrepresenttheintensityinlogscaleoftheemissioninunitsof10−16ergs−1cm−2Å−1. [Oiii]/Hβ. The points are color–coded by their distance from the 4.6 Shockmodels galaxy disk. The three panels include the predicted values from InFigs.6and7,wedescribedtwomaincomponentsintheioniza- theMAPPINGS-IIIphotoionizationmodels(Allenetal.2008),for continuousSFbursts,andusingthePEGASE2syntheticstellarli- tion mechanism, one produced by young stars at the disk and an extraplanar emission that is not reproduced by the analysed pho- brary,asdescribedbyDopitaetal.(2000)andKewleyetal.(2001). Eachlinecorrespondstoadifferentstellarabundance(Z/Z(cid:12)=0.5, toionizationmodels.Mostprobably,thisextraplanarionizationcan beproducedbyradiativeshocksduringthewarmphase(T∼104 1,1.5and2).Foreachofthemtheionizationchangesfromhigh- K) of a galactic wind as described above. The observed ionized ionization(top-left)tolow-ionization(bottom-right).Inallcasesan averageelectrondensityofn = 350cm−3 isassumed.Wewould gascanbelocatedoverthewallsoftheconicstructureorinfila- e mentary structures from the nuclear region. Shock ionization can liketostressherethatthefartheraregionislocatedfromthedisk thestrongertheionizationitpresents(outto∼4kpc). belocatedinthediagnosticdiagramsinareasdistributedfromthe classicallocationofHiiregionstowardsareaswhereAGNioniza- Thususingacontinuousstarburstphotoionizationmodelwe tionisdominant(e.g.Daviesetal.2014). canreproducethelineratiosthatliebelowtheKewleyetal.(2001) curves, whose spatial location is in the disk of the galaxy. These Thesignaturesofshockscanbeseenasdoublepeaksorbroad regionsaremostprobablyassociatedwithstarformingregionsas componentsinthevelocitydispersionprofilesduetothedifferent wesuspected,neverthelessionizationbyshockscoverpartofthe kinematiccomponentsalongthelineofsightandthemorphology star forming region, as we will see later. Furthermore, there are oftheionizedgas.DuetothelowspectralresolutionoftheCAL- severallineratiosinthediagnosticdiagramsthatarenotcovered IFAdata,wearenotabletoseparatethedifferentkinematiccom- withintheparametersspaceofthesephotoionizationmodels. ponentsinthevelocitydispersionprofiles,andthereforeuncouple andanalysethemseparately.AtthewavelengthofHα theinstru- mental resolution of our data is σ ∼ 116 km s−1, which exceeds thetypicalvelocitydispersionofHiiregions(<100kms−1,Yang etal.(1996);Moiseevetal.(2015)).Thus,itisnotenoughtodis- tinguishdifferentkinematiccomponentsoftheorderexpectedby 2 http://www2.iap.fr/pegase/pegasehr/ shocks(e.g.Lehnert&Heckman1996).Moreover,evenFPIdata MNRAS000,1–14(2016) GalacticwindsinUGC10043 7 30 log([NII]/Hα) 0.45 30 log([SII]/Hα) 0.45 20 0.30 20 0.30 c) 10 0.15 c) 10 0.15 e e s s arc 0 0.00 arc 0 0.00 EC ( 0.15 EC ( 0.15 D 10 D 10 ∆ 0.30 ∆ 0.30 20 20 0.45 0.45 30 0.60 30 0.60 30 20 10 0 10 20 30 30 20 10 0 10 20 30 ∆ RA (arcsec) ∆ RA (arcsec) 0.6 30 log([OIII]/Hβ) 0.60 30 log([OI]/Hα) 0.3 0.45 20 20 0.0 0.30 sec) 10 0.15 sec) 10 0.3 c c r r C (a 0 0.00 C (a 0 0.6 E E D 10 0.15 D 10 0.9 ∆ ∆ 0.30 1.2 20 20 0.45 1.5 30 30 0.60 1.8 30 20 10 0 10 20 30 30 20 10 0 10 20 30 ∆ RA (arcsec) ∆ RA (arcsec) Figure 5. 2D line ratio maps for [Nii]/Hα, [Sii]/Hα, [Oiii]/Hα , and [Oi]/Hα. [Sii] represent the sum of the doublet Sulfur ions [Sii] = [Sii]λ6731 + [Sii]λ6717.Thegreencontourencloses70%ofthefluxintheV-band.TheblackcontourrepresentsthesamedetectionlimitshowninFig.1,illustratingthe bi-conicstructureoftheoutflowinthe[Nii]map. takenwithasignificanthigherspectralresolution(σ∼33kms−1) AGN.Thenewdemarcationisabisectorlinewhichseparatesthe did not resolve a multicomponent structure of the [Nii] emission ionizationbyshocksfromAGNestimatedfromtwofiducialclear lineprofile,andonlylinebroadeningandasymmetricprofileswere objectsofthiskindofionizationusingIFSdataaccordingtoSharp observed (see Sec. 5). Broadening profiles in regions outside the & Bland-Hawthorn (2010). In addition to the shown models, we galacticdiskhasalsoobservedinstarburst–drivengalacticwinds haveexploredmanydifferentcombinationsofmagneticfieldsand (e.g. Westmoquette et al. 2010). The presence of broad line pro- pre-shockdensities,alongwiththepossiblepresenceofaprecur- filessuggeststhatcomplexkinematicscomponentscouldexistthat sor. However, noneof them reproduce theobserved line ratios in arestillunresolvedatthespectralresolutionofourFPdata.There- thethreediagramssimultaneously,aswellasthemodelsthatare fore,weneedtocomparetheobservedlineratioswiththepredic- presentedinFig.8. tionsfromshockionizationmodelstodetermineiftheionizationis drivenbyshocks,andifso,deriveitsphysicalconditions. The shock models in the [Nii]/Hα and [Sii]/Hα diagrams cover areas frequently associated with continuous SF (e.g. Kew- WeadoptgridsofshockmodelsfromtheMAPPINGSIIIli- ley et al. 2001; Sánchez et al. 2015) and low ionization nuclear brary of fast radiative shock models (Dopita & Sutherland 1995, emission–line regions (LINER) (e.g. Gomes et al. 2016). We ob- 1996;Dopitaetal.2005;Allenetal.2008).Weselectedashock servethatthemajorityofthepointsabovetheKewleycurvesare velocity(v)rangeof100to400kms−1 inintervalsof25kms−1 located at the right side of the bisector line towards the locus of s and a transverse magnetic field flux density of 5 µG. For the gas shockexcitationandthereforeintheextraplanarregion.Forthese component, we explored a range including both solar and supra- diagramswemakeadistinctionbetweentheregionsthatlieinthe solarabundances,andpre-shockdensitiesof1,10,100and1000 diskandthoseinthebi-conesaccordingtoourdemarcationshown cm−3,respectively.InFig.8,weplotthediagnosticdiagramsforthe inFig4.Thereisionizationspatiallylocatedatthebi-conesbelow differentlineratiosexploredinFig.5,togetherwiththevaluespre- theKauffmanncurve,mostprobablyduetothelowshockveloci- dictedbytheadoptedshockmodelswithoutprecursor.Inthisplot ties components in the emission lines. Our selected shock model wehaveaddedadifferentdemarcationfromtheclassicalLINER– describes pretty well the line ratios for the outflow zone in the MNRAS000,1–14(2016) 8 C.López-Cobáetal intensitymapof[Nii]λ6584,itsline-of-sightvelocityfield,andits 1.0 AGN locus line-of-sightvelocitydispersion(σ)determinedbybroadeningof emission line. The maps are masked using a S/N > 3 threshold LINER in the flux intensity. In the first panel we also plot the spectrum ofkeyregionsinthegalaxy,showingtworegionswithinthedisk, 0.5 andothertwointheareasofmaximumvelocitydispersionlocated SF locus ) along the semi-minor axis within the outflow cone. We observe β H broadandasymmetricprofileswithoutaremarkableseparationof 7/ 0 doubleormultiplecomponents,typicallyfoundingalacticwinds 0 5 driven by SF in these two latter regions (e.g. van Eymeren et al. λ 0.0 I] 2009). I O I Attheouterpartsofthediskweobservealowvelocitydisper- ([ sion(10-40kms−1),whichisthetypicalvalueforgiantHiiregions g o ingalaxies(e.g.Moiseevetal.2015).Whileinthewindbi-cones l 0.5 σ exceeds 100 km s−1, increasing towards larger distances from the galactic disk, reaching vales ∼ 300 km s−1 probably because athigherdistancesfromthediskthedensityoftheISMislower. HII Comp Thesevaluesofthevelocitydispersionareroughlyconsistentwith theshockmodelsdescribedbefore,forwhichtheexpectedveloci- 1.0 tiesareexpectedtobelowerthan400kms−1. 1.0 0.5 0.0 0.5 1.0 log([N II]/Hα) TheFPImapshowsthatthecircularrotationmakesamayor contributiontotheobservedline-of-sitevelocitieseveninthegalac- tic wind region. This picture is typical for edge-on disk galaxies Figure6.BPTdiagnosticdiagram([Nii]/Hαversus[Oiii]/Hβ).Eachgreen with a relatively moderate outflow (e.g., NGC 4460, Oparin & dotcorrespondstothelineintensityratioatdifferentlocationswithinthe Moiseev2015).Themeanrotationcurvewassubtractedfromthe galaxyasshowninFig.5.Bluecontoursaredensityprofilesofthedata. observedvelocityfieldwiththeaimtoremovetheregularveloc- Thelargestcontourencloses90%ofthedata,whiletheotheronesenclose itygradient.Weuseamodelofatransparentrotatingcylinderthat 75,55and35percentofthetotaldata,respectively.Thedashedandsolid providesagoodapproximationofvelocityfieldsinedge-onrotat- blacklinesrepresenttheKauffmannetal.(2003)andKewleyetal.(2001) ingdiskgalaxiesasdescribedindetailin(Moiseev2015).Inshort, curves,respectively.Theblackdottedlinerepresentthedemarcationline therotationcurvewascalculatedfromaveragingpointsacrossthe fromLINERandSeyfertfrom(Kauffmannetal.2003)Theyellowtrian- galaxy major axis, the amplitude of ionized gas rotation in UGC gleisthelocationofthecentralspectrumofUGC10043fromthefitting 10043reaches150kms−1.Themeanrotationcurvewasextrapo- procedureshowninFig.2.Theredandyellowlinesrepresentthelocusof AGNandSFrespectively,resultingfromreconstructedemissionlinefluxes lated outside the galactic mid-plane to create a model of galactic basedonmeanfieldindependentanalysis(MFICA)fromRichardsonetal. rotation.Theresidualline-of-sightvelocitiesafterthecircularro- (2014)andRichardsonetal.(2016).Thegreycoderepresentsthedensity tationsubtractionareshowninthelastpanelofFig.9.Thismap ofpoints.Wenoteabifurcationofthepointsfromtheregionclassicallyas- reveals a dozen “spots” inside the outflow bi-cones with typical sociatedwithionizationbystarstowardregionsclassicallyassociatedwith residualvelocities±30kms−1.Thesymmetricaldistributionofthe AGNionization. residualsrelativetothemajoraxisimpliesthatweareabletoob- serverealregulardeviationsofline-ofsight-velocitiesfromthecir- [Nii]/Hα and[Sii]/Hα diagramsandcoverspartiallytheobserved cularrotationproducedbythewindoutflow. lineratiosfor[Oi]/Hα.Theshockmodelsdescribetheoutflowre- gionforawindwithapre-shockdensitydecreasingtowardlarger 5.2 Outflowvelocities extraplanardistanceswithanincreaseofvelocityupto<400km s−1inthesamedirection. We translated the observed line-of-sight residual velocities into windoutflowvelocitiesintheframeworksofasimplegeometrical modelpresentedbyOparin&Moiseev(2015).Thewindnebulaeis describedbyfrustumrotatingbi-cones.Thematterejectedfromthe 5 FABRY-PÉROTINTERFEROMETERDATAONGAS galacticcircumnuclearregionformsasinglelargeshell.Whilethe KINEMATICS innerhotgashereistransparentatvisiblewavelengths,thewalls of the bi-cones could be observed in optical recombination lines. 5.1 Kinematicmaps From the velocity dispersion map shown in Fig. 9 it is clear that The Fabry-Pérot Interferometer data provide information about theshockedionizedgasfollowsaconicaldistribution,withalow ionized gas kinematics with velocity resolution four times better velocitydispersionatthecentralregions(<100kms−1),andatthe than that of the PPAK/V500 data, in a significantly larger field- edgesofthecone.Followingthiskinematicstructureweestimate of-view, but with a shallower depth. The observed profiles of the theopeningangleasθ ∼45◦(asmarkedinFig.9),tracedbyeye kin [Nii] line were fitted with a Voigt function, which is a convolu- atthelocationofthemaximumgradientinthevelocitydispersion. tionofaLorentzianandaGaussianfunctioncorrespondingtothe Thisapertureangleissmallerthantheoneoneestimatedfromthe FPIinstrumentalprofileandbroadeningofobservedemissionlines, morphologyoftheionizedgasemissionbasedontheCALIFAdata. respectively (Moiseev & Egorov 2008). The emission-line spec- Thisismostprobablybecausetheformertracesthelocationofthe trum is very well described by a single-component Voigt profile observedchangeinthevelocitydispersion,whichthelattertraces withoutdoubleormulti-componentsstructures.Fig.9showstwo- the largest extension of the ionized gas. We note that according dimensional maps derived from the fitting process, including the toobservationsofwindsinothergalaxies,likeM82,conewalls MNRAS000,1–14(2016) GalacticwindsinUGC10043 9 1.0 Seyfert LINER Seyfert LINER1.0 Seyfert LINER 4.0 pc] k 3.5 h [ 0.5 Z=1.0 0.5 )β 3.0 H 7/ Z=0.5 0 2.5 50λ 0.0 Z=1.5 0.0 O III] 2.0 g([ Z=2.0 1.5 lo 0.5 0.5 1.0 0.5 1.0 1.0 0.0 1.0 0.5 0.0 0.5 0.8 0.6 0.4 0.2 0.0 0.2 0.4 2.0 1.5 1.0 0.5 0.0 log([N II]/Hα) log([S II]/Hα) log([O I]λ6300/Hα) Figure7.Diagnosticdiagramsforthe[Nii]/Hα,[Oiii]/Hαand[Oi]/Hαlineratiosasafunctionof[Oiii]/Hβ.Eachdotcorrespondstoonespaxel,thecolour coderepresentstheperpendiculardistancetothedisk,inbothdirections,inunitsofkpc.Thedarknessbluecoloursareregionsclosertothediskandlighterare thosefurtheraway.Thecolourlinesrepresentthepredictionsofphotoionizationmodelsfromyoungstarswithcontinuous-burstforthedifferentabundances, indicatedintheplots,coveringarangefromZ=0.5toZ=2,withdifferentionizationstrengthatvariouslocationswithineachcurve.Thedashedlineinthe [Nii]/Hα diagramistheKauffmannetal.(2003)curveandthesolidlineinthethreepanelsistheKewleyetal.(2001)curveforthoselineratios.Thedotted linesinthe[Nii]/Hα,[Sii]/Hα and[Oi]/Hβ diagramsarethedemarcationlinesforLINERandSeyfertgalaxiesaccordingtoKauffmannetal.(2003)and Kewleyetal.(2006). 1.0 bicone shocks disk+bulge 0.5 vs=100 kms1 n=1 cm3 n=1 cm3 n=1 cm3 H)β 7/ 0 50λ 0.0 n=10 cm3 O III] n=100 cm3 n=1000 cm3 g([ n=300 cm3 o l 0.5 n=1000 cm3 n=1000 cm3 1.0 HII comp 1.0 0.5 0.0 0.5 1.0 0.5 0.0 0.5 2.5 2.0 1.5 1.0 0.5 0.0 0.5 1.0 log([N II]/Hα) log([S II]/Hα) log([O I]λ6300/Hα) Figure8.Diagnosticdiagramsforthe[Nii]/Hα,[Oiii]/Hαand[Oi]/Hαlineratiosasafunctionof[Oiii]/Hβ.Reddotsarethoselocatedwithinthebi-conical structuredescribedbeforeandthebluedotsarethoselocatedinthedisk.EachyellowlinerepresentsashockmodelwiththesamemagneticfieldofB=5 µGanddifferentvelocitiesincreasingattherightofeachpanelfrom100to400kms−1.Theblackdashedlinesconnectmodelswithequalvelocities.Yellow dotsareinterpolationsofthemodelsofn=100cm−3 andn=1000cm−3 atn=300cm−3.Ineachplot,wehaveaddedademarcationfromtwoclearest examplesofAGNphotoinizationandshockionizationaccordingtoSharp&Bland-Hawthorn(2010).Thisgreendashedlinemarksthebisectorbetweenthese twofiducialtraces,totheleftisthelocusoflineratiosfortheAGN-excitedemissionandtotherightthelocusoflineratiosforshock-excitedemission. visible in the optical are not homogeneous but consist of several whereV istheresidualline-of-sightvelocityaftersubtractingthe res emissionfilaments. purecircularrotation,φistheazimuthanglerelativetotheaxisof Underthisassumption,theobservedgasbelongstothecone thecone.Withthisequationseveralregionswithalargeamplitude wallsandmovesalongthemoutofthegalacticdiskwithanoutflow ofV translatedintofastmovingfilamentswithV ≈100–250km res out velocityV .Foranedge-ongalaxythepositivevelocitiescorre- s−1,whilethevelocitiesoftheneighbouringpointsaresignificantly out spondtothegasonthewallsclosesttous,whilethematterwith smaller. These de-projected outflow velocities are in the range of negativevelocitiesmovesalongthefarthestwall.Accordingtothe thosefoundinthesurfaceofbipolarstructures(e.g.Heckmanetal. formula in Oparin & Moiseev (2015) for the galactic inclination 1990; Heckman 2003). Therefore, we confirm the measurements i=90◦: ofthewindvelocitiesareconsistentwithshocksmodels,asinthe caseofthedistributionofσ(see§.5.1). V V = res , (1) out sin(θ /2)sinφ kin MNRAS000,1–14(2016) 10 C.López-Cobáetal Flux [10 16 erg s 1 cm 2 Å 1] Velocities [km s 1] σ [km s 1] Vres [km s 1] 1 2 2000 2400 50 100 150 200 250 -40 40 2 1 60 40 20 ec) 2 C (arcs 0 1 4 E D∆ 3 20 40 3 4 60 40 30 20 10 0 10 20 30 40 40 30 20 10 0 10 20 30 40 40 30 20 10 0 10 20 30 40 40 30 20 10 0 10 20 30 40 ∆ RA (arcsec) ∆ RA (arcsec) ∆ RA (arcsec) ∆ RA (arcsec) Figure9. ResultsoftheFPIobservationsinthe[Nii]emissionline.Fromlefttotheright:[Nii]monochromaticmap,line-of-sightvelocityfield,velocity dispersionmapfreefrominstrumentalprofileinfluenceandmapoftheline-of-sightvelocitiesaftersubtractionofthemeanrotationcurve.Theinsetsinthe firstmapareasubsetofFPIspectraextractedatdifferentlocations.Theselocationsaremarkedwithblacksquaresinthefirstpanel,andtheycorrespondsto aperturesof6.3(cid:48)(cid:48)×6.3(cid:48)(cid:48) .ThehexagonmarksthefieldmappedwithCALIFA.Thegeometricalmodelusedforthewindoutflowvelocitiesestimationisshownonthelastpanel. 1.0 Seyfert LINER Seyfert LINER 240 1] m s 210 k 7/H)β 0.5 180 v [disp 0 50λ 0.0 150 O III] 120 og([ 0.5 90 l 60 1.0 30 1.0 0.5 0.0 0.5 0.8 0.6 0.4 0.2 0.0 0.2 0.4 2.0 1.5 1.0 0.5 0.0 log([N II]/Hα) log([S II]/Hα) log([O I]/Hα) 1.0 Seyfert LINER Seyfert LINER 270 1] 240 m s k 07/H)β 0.5 128100 v [out 0 5λ 0.0 150 O III] 120 og([ 0.5 90 l 60 30 1.0 1.0 0.5 0.0 0.5 0.8 0.6 0.4 0.2 0.0 0.2 0.4 2.0 1.5 1.0 0.5 0.0 log([N II]/Hα) log([S II]/Hα) log([O I]/Hα) Figure10.DiagnosticdiagramssimilartoFig.7,butthecolourcoderepresentstheionizedgasvelocitydispersionσ(toppanels),andVout(bottompanels) accordingFPIdata.Onlypointsbelongingtothebi-conewindnebulaemarkedontheFig.9areshown. MNRAS000,1–14(2016)

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.