ebook img

Standard monomial theory: Invariant theoretic approach PDF

270 Pages·2008·1.785 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Standard monomial theory: Invariant theoretic approach

Encyclopaediaof MathematicalSciences Volume137 Invariant Theoryand AlgebraicTransformation GroupsVIII SubseriesEditors: RevazV.Gamkrelidze VladimirL.Popov Venkatramani Lakshmibai Komaranapuram N. Raghavan Standard Monomial Theory Invariant Theoretic Approach VenkatramaniLakshmibai KomaranapuramN.Raghavan DepartmentofMathematics InstituteofMathematicalSciences NortheasternUniversity,Boston02115 C.I.T.Campus,Taramani USA Chennai,600113 e-mail:[email protected] INDIA e-mail:[email protected] FoundingeditoroftheEncyclopaediaofMathematicalSciences:RevazV.Gamkrelidze ISBN978-3-540-76756-5 e-ISBN978-3-540-76757-2 DOI10.1007/978-3-540-76757-2 EncyclopaediaofMathematicalSciencesISSN0938-0396 LibraryofCongressControlNumber:2007939889 MathematicsSubjectClassification(2000):13F50,14M12,14M15,14M17,14L35 (cid:2)c 2008Springer-VerlagBerlinHeidelberg Thisworkissubjecttocopyright.Allrightsarereserved,whetherthewholeorpartofthematerialis concerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation,broadcasting, reproductiononmicrofilmorinanyotherway,andstorageindatabanks.Duplicationofthispublication orpartsthereofispermittedonlyundertheprovisionsoftheGermanCopyrightLawofSeptember9, 1965,initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer.Violationsare liabletoprosecutionundertheGermanCopyrightLaw. The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevantprotective lawsandregulationsandthereforefreeforgeneraluse. Coverdesign:WMXDesignGmbH,Heidelberg,Germany Printedonacid-freepaper 9 8 7 6 5 4 3 2 1 springer.com Tothememoryof Professor C.Musili Preface ThegoalofthisbookistopresenttheresultsofClassicalInvariantTheory(abbrevi- atedCIT)andthoseofStandardMonomialTheory(abbreviatedSMT)insuchaway astobringouttheconnectionbetweenthetwotheories.Eventhoughtherearemany recent books on CIT, e.g., [25,35,53,97,99], none of them discusses SMT: there is but only a passing mention of the main papers of SMT towards the end of [53]. Detailsabouttheconnectionarealsonottobefoundinthecomprehensivetreatment ofSMT[59]thatisinpreparation.Hencetheneedwasfeltforabookthatdescribes insomedetailthisnaturalandbeautifulconnection. After presenting SMT for Schubert varieties—especially, for those in the ordi- nary,orthogonal,andsymplecticGrassmannians—itisshown(usingSMT)thatthe categoricalquotientsappearinginCITmaybeidentifiedas“suitable”opensubsets of certain Schubertvarieties.Similar results are presentedfor certaincanonicalac- tionsofthespeciallinearandspecialorthogonalgroups.Wehavealsoincludedsome importantapplicationsofSMT:tothedeterminationofsingularlociofSchubertva- rieties, to the study of some affine varieties related to Schubert varieties—ladder determinantalvarieties,quivervarieties,varietyofcomplexes,etc.—andtotoricde- generationsofSchubertvarieties. Prerequisiteforthisbookissomefamiliaritywithcommutativealgebra,algebraic geometry and algebraic groups. A basic reference for commutative algebra is [27], for algebraic geometry [37], and for algebraic groups [7]. We have also included a briefreviewofGIT(geometricinvarianttheory),areferenceforwhichis[87](and also[96]). Wehavemostlyusedstandardnotationandterminology,andhavetriedtokeep notationto a minimum.Throughoutthe book,we havenumberedTheorems, Lem- mas, Propositions etc., in order according to their section and subsection; for ex- ample, 3.2.4 refers to fourth item in the second subsection of third section of the presentchapter.Thechapternumberisalsomentionediftheitemappearsinanother chapter. ThisbookmaybeusedforayearlongcourseoninvarianttheoryandSchubert varieties.Thematerialcoveredinthisbookshouldprovideadequatepreparationfor VIII Preface graduate students and researchers in the areas of algebraic geometry and algebraic groupstoworkonopenproblemsintheseareas. A Homage & an acknowledgement: In the original plan for this book, Musili was one of the co-authors. Unfortunately, Musili passed away suddenly on Oct 9, 2005.WededicatethisbooktothememoryofMusili.Wealsowouldliketothank Ms. Bhagyavati (Musili’s wife) and Ms. Lata (Musili’s daughter) for providing us withthefilesthatMusilihadprepared. Wewishtothanktherefereesfortheircomments. Boston,Trieste V.Lakshmibai October2007 K.N.Raghavan Contents 1 Introduction................................................... 1 1.1 Thesubjectmatterinanutshell............................... 1 1.1.1 WhatisCIT?........................................ 1 1.1.2 WhatisSMT?....................................... 2 1.1.3 TheSMTapproachtoCIT ............................ 2 1.2 Thesubjectmatterindetail .................................. 2 1.2.1 ProofbytheSMTapproach ........................... 3 1.2.2 SL (K),SO (K)actions ............................. 5 n n 1.3 Whythisbook? ............................................ 6 1.4 AbriefhistoryofSMT...................................... 7 1.5 SomefeaturesoftheSMTapproach........................... 7 1.6 Theorganizationofthebook ................................. 9 2 Generalitiesonalgebraicvarieties................................ 11 2.1 Somebasicdefinitions ...................................... 11 2.2 Algebraicvarieties ......................................... 12 2.2.1 Affinevarieties ...................................... 12 3 Generalitiesonalgebraicgroups ................................. 17 3.1 Abstractrootsystems ....................................... 17 3.2 Rootsystemsofalgebraicgroups ............................. 19 3.2.1 Linearalgebraicgroups ............................... 19 3.2.2 Parabolicsubgroups.................................. 21 3.3 Schubertvarieties .......................................... 22 3.3.1 WeylandDemazuremodules .......................... 24 3.3.2 LinebundlesonG/Q ................................ 25 3.3.3 EquationsdefiningaSchubertvariety ................... 27 4 Grassmannian ................................................. 29 4.1 ThePlückerembedding ..................................... 29 4.1.1 ThepartiallyorderedsetI .......................... 30 d,n X Contents 4.1.2 PlückerembeddingandPlückercoordinates.............. 30 4.1.3 Plückerquadraticrelations ............................ 31 4.1.4 Moregeneralquadraticrelations ....................... 32 (cid:2) 4.1.5 TheconeG overG .............................. 33 d,n d,n 4.1.6 IdentificationofG/P withG ....................... 33 d d,n 4.2 SchubertvarietiesofG ................................... 34 d,n 4.2.1 Bruhatdecomposition ................................ 34 4.2.2 DimensionofX ..................................... 35 i 4.2.3 FurtherresultsonSchubertvarieties .................... 35 4.3 StandardmonomialtheoryforSchubertvarietiesinG ......... 36 d,n 4.3.1 Standardmonomials.................................. 36 4.3.2 Linearindependenceofstandardmonomials ............. 36 4.3.3 Generationbystandardmonomials ..................... 37 4.3.4 EquationsdefiningSchubertvarieties ................... 38 4.4 StandardmonomialtheoryforaunionofSchubertvarieties ....... 39 4.4.1 Linearindependenceofstandardmonomials ............. 39 4.4.2 Standardmonomialbasis.............................. 39 4.4.3 Consequences ....................................... 40 4.5 Vanishingtheorems......................................... 41 4.6 ArithmeticCohen-Macaulayness,normalityandfactoriality....... 44 4.6.1 FactorialSchubertvarieties............................ 46 5 Determinantalvarieties ......................................... 47 5.1 Recollectionoffacts ........................................ 47 5.1.1 EquationsdefiningSchubertvarietiesintheGrassmannian . 48 5.1.2 EvaluationofPlückercoordinatesontheoppositebigcell inG ............................................. 48 d,n 5.1.3 IdealoftheoppositecellinX(w) ...................... 49 5.2 Determinantalvarieties...................................... 49 5.2.1 ThevarietyD ...................................... 49 t 5.2.2 IdentificationofD withY ........................... 49 t φ 5.2.3 Thebijectionθ ...................................... 51 5.2.4 Thepartialorder(cid:2)................................... 51 5.2.5 Cogenerationofanideal .............................. 52 5.2.6 Themonomialorder≺andGröbnerbases ............... 53 6 SymplecticGrassmannian....................................... 55 6.1 SomebasicfactsonSp(V) .................................. 56 6.1.1 SchubertvarietiesinG/B ............................ 59 G 6.2 ThevarietyG/P .......................................... 60 n − 6.2.1 IdentificationofSymM withO ...................... 61 n G 6.2.2 Canonicaldualpair .................................. 62 6.2.3 Thebijectionθ ...................................... 62 6.2.4 ThedualWeylG-modulewithhighestweightω ......... 63 n 6.2.5 IdentificationofD (SymM )withY (ϕ)............... 64 t n Pn Contents XI 6.2.6 Admissiblepairsandcanonicalpairs.................... 65 6.2.7 Canonicalpairs...................................... 65 6.2.8 Theinclusionη:In,2n (cid:7)→WPn ×WPn.................. 66 6.2.9 AstandardmonomialbasisforD (SymM ) ............. 67 t n 6.2.10 DeConcini-Procesi’sbasisforD (SymM ) ............. 68 t n 7 OrthogonalGrassmannian ...................................... 71 7.1 TheevenorthogonalgroupSO(2n) ........................... 71 7.1.1 SchubertvarietiesinG/B ............................ 74 G 7.2 ThevarietyG/P .......................................... 77 n − 7.2.1 IdentificationofSkM withO ....................... 78 n G 7.2.2 Canonicaldualpair .................................. 78 7.2.3 Thebijectionθ ...................................... 79 7.2.4 ThedualWeylG-modulewithhighestweightω ......... 79 n 7.2.5 IdentificationofD (SkM )withY (ϕ) ................. 80 t n G 7.2.6 AstandardmonomialbasisforD (SkM )............... 82 t n 8 Thestandardmonomialtheoreticbasis ........................... 85 8.1 SMTfortheevenorthogonalGrassmannian .................... 86 8.2 SMTforthesymplecticGrassmannian......................... 89 9 ReviewofGIT ................................................. 95 9.1 G-spaces.................................................. 95 9.1.1 Reductivegroups .................................... 95 9.2 Affinequotients............................................ 98 9.2.1 Affineactions ....................................... 99 9.3 Categoricalquotients ....................................... 101 9.3.1 Examples........................................... 102 9.4 Goodquotients ............................................ 103 9.4.1 Someresultsongoodquotients ........................ 105 9.5 Stableandsemi-stablepoints................................. 108 9.5.1 Stable,semistable,andpolystablepoints................. 108 9.5.2 Othercharacterizationsofstability,semistability .......... 110 9.6 Projectivequotients......................................... 114 9.7 L-linearactions ............................................ 117 9.8 Hilbert-Mumfordcriterion ................................... 117 10 Invarianttheory ............................................... 121 10.1 Preliminarylemmas ........................................ 121 10.2 SL (K)-action ............................................ 124 d 10.2.1 Thefunctionsf ..................................... 124 τ 10.2.2 Thefirstandsecondfundamentaltheorems............... 126 10.3 GL (K)-action: ........................................... 128 n 10.3.1 Thefirstandsecondfundamentaltheorems............... 129 10.4 O (K)-action.............................................. 132 n XII Contents 10.5 Sp (K)-action ............................................ 136 2(cid:9) 11 SL (K)-action................................................. 137 n 11.1 Quadraticrelations ......................................... 138 11.1.1 ThepartiallyorderedsetH .......................... 139 r,d 11.2 TheK-algebraS ........................................... 140 11.2.1 TheSL (K)-action .................................. 141 n 11.3 StandardmonomialsintheK-algebraS........................ 142 11.3.1 Quadraticrelations................................... 143 11.3.2 Linearindependenceofstandardmonomials ............. 145 11.3.3 ThealgebraS(D).................................... 146 11.3.4 AstandardmonomialbasisforR(D) ................... 148 11.3.5 StandardmonomialbasesforM(D),S(D)............... 149 11.4 NormalityandCohen-MacaulaynessoftheK-algebraS .......... 150 11.4.1 Thealgebraassociatedtoadistributivelattice ............ 150 11.4.2 FlatdegenerationsofcertainK-algebras................. 151 11.4.3 ThedistributivelatticeD.............................. 152 11.4.4 FlatdegenerationofSpecR(D)tothetoricvariety SpecA(D).......................................... 154 11.5 TheringofinvariantsK[X]SLn(K) ............................ 155 12 SO (K)-action ................................................ 159 n 12.1 Preliminaries .............................................. 160 12.1.1 TheLagrangianGrassmannianvariety................... 161 12.1.2 SchubertvarietiesinL .............................. 161 m 12.1.3 TheoppositebigcellinL ............................ 162 m − 12.1.4 Thefunctionsf onO ............................. 163 τ,ϕ G 12.1.5 TheoppositecellinX(w)............................. 164 12.1.6 Symmetricdeterminantalvarieties ...................... 164 12.1.7 ThesetH ......................................... 165 m 12.2 ThealgebraS.............................................. 167 12.2.1 Standardmonomialsandtheirlinearindependence ........ 168 12.2.2 Linearindependenceofstandardmonomials ............. 169 12.3 ThealgebraS(D) .......................................... 169 12.3.1 Quadraticrelations................................... 170 12.3.2 AstandardmonomialbasisforR(D) ................... 171 12.3.3 StandardmonomialbasesforS(D) ..................... 172 12.4 Cohen-MacaulaynessofS ................................... 173 12.4.1 AdosetalgebrastructureforR(D) ..................... 175 12.5 TheequalityRSOn(K) =S ................................... 176 12.6 Applicationtomoduliproblem ............................... 180 12.7 ResultsfortheadjointactionofSL (K) ....................... 181 2

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.