ebook img

Stand-Alone Hybrid Energy Systems by Hiteshi Sharma Bachelor of Technology, Punjab Technical ... PDF

67 Pages·2017·1.07 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Stand-Alone Hybrid Energy Systems by Hiteshi Sharma Bachelor of Technology, Punjab Technical ...

Stand-Alone Hybrid Energy Systems by Hiteshi Sharma Bachelor of Technology, Punjab Technical University, 2012 A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of MASTER OF APPLIED SCIENCE in the Department of Electrical and Computer Engineering (cid:13)c Hiteshi Sharma, 2018 University of Victoria All rights reserved. This thesis may not be reproduced in whole or in part, by photocopying or other means, without the permission of the author. ii Stand-Alone Hybrid Energy Systems by Hiteshi Sharma Bachelor of Technology, Punjab Technical University, 2012 Supervisory Committee Dr. Fayez Gebali, Supervisor (Department of Electrical and Computer Engineering) Dr. T. Aaron Gulliver, Member (Department of Electrical and Computer Engineering) iii ABSTRACT Portugal is highly dependent on imported fuels when it comes to the energy sector. The government continuously aims at creating a sustainable and competitive renewable energy system. The need for balancing the supply and load demand in the electrical sector is a priority. To promote economic development in Portugal, the government always intend to initiate new projects like the construction of the solar plant. The United Kingdom (UK) solar company WELink Energy will develop a 220MW solar plant in south Portugal and have signed an Engineering, Procurement and Construction (EPC) agreement with China Triumph International Engineering Cooperation (CTIEC). There are 4 ongoing solar projects in Algarve that will produce enough electricity to fulfill the load demand. The problem that the government is facing is the expansion of hybrid power system using other renewable resources in order to overcome climatic changes. In order to design a hybrid system, it is very important for the government to consider the minimum net present cost configuration for fulfilling the load demand. The standalone hybrid system consists of a photovoltaic array (PV), a wind turbine (WT), a diesel generator (DG) and a battery. Different scenarios have been considered using HOMER software to obtain the lowest net present cost of the hybrid system. The results will establish the configuration to eradicate the problems the villagers are undergoing due to unavailability of electricity. This will lead to enhanced job opportunities and better living conditions in Algarve. iv Contents Supervisory Committee ii Abstract iii Table of Contents iv List of Tables vii List of Figures viii Acknowledgements ix Dedication x 1 Introduction 1 1.1 Problem definition and motivation . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Objective of the Thesis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.4 Outline of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.5 List of Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 Literature Review 4 2.1 Wind , PV and Battery Hybrid System . . . . . . . . . . . . . . . . . . . . 4 2.2 PV and Diesel Generator and Battery Hybrid System . . . . . . . . . . . . 5 2.3 Wind , PV , Hydro and Battery Hybrid System . . . . . . . . . . . . . . . . 6 2.4 Wind , Diesel Generator and Battery Hybrid System . . . . . . . . . . . . . 6 2.5 PV , Hydro , Diesel Generator and Battery Hybrid System . . . . . . . . . 7 2.6 Wind , PV and Fuel Cell Hybrid System . . . . . . . . . . . . . . . . . . . . 7 2.7 Wind , PV , Diesel Generator and Battery Hybrid System . . . . . . . . . . 7 2.8 Wind , PV , Diesel Generator , Fuel Cell and Battery Hybrid System. . . . 8 2.9 PV Biomass and Battery Hybrid System . . . . . . . . . . . . . . . . . . . . 8 2.10 Micro-power System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 v 3 Modelling System Components 10 3.1 Introduction to HOMER Software . . . . . . . . . . . . . . . . . . . . . . . 12 3.1.1 Principle of Operation in HOMER . . . . . . . . . . . . . . . . . . . 12 3.2 Review of Photovoltaic Panels . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.2.1 Perturb and Observe (P&O) . . . . . . . . . . . . . . . . . . . . . . 16 3.2.2 Incremental Conductance . . . . . . . . . . . . . . . . . . . . . . . . 16 3.2.3 Constant Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.3 Wind Turbine Conversion System . . . . . . . . . . . . . . . . . . . . . . . . 17 3.3.1 Wind Turbine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.3.2 Betz Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.3.3 Operating Region of the Wind Turbine . . . . . . . . . . . . . . . . 18 3.3.4 Electrical Generators . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.3.5 Power Conversion Schemes . . . . . . . . . . . . . . . . . . . . . . . 21 3.3.6 Rectification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.3.7 Bidirectional Inverter . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.3.8 Mathematical Model of Converter . . . . . . . . . . . . . . . . . . . 22 3.3.9 Charge Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.3.10 Mathematical Model of Charge Controller . . . . . . . . . . . . . . . 23 3.4 Energy Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.4.1 Battery Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.4.2 Mathematical Model of Battery Bank . . . . . . . . . . . . . . . . . 25 3.5 Diesel Generator Power Systems . . . . . . . . . . . . . . . . . . . . . . . . 25 3.5.1 Diesel Generator Selection . . . . . . . . . . . . . . . . . . . . . . . . 26 3.5.2 Diesel Generator Sizing in Hybrid System . . . . . . . . . . . . . . . 26 3.5.3 Mathematical Model of Diesel Generator Subsystem . . . . . . . . . 26 4 System Configuration and Simulation Results 27 4.1 Selection of Study Area and Load Assessment . . . . . . . . . . . . . . . . . 27 4.1.1 Input to renewable systems using HOMER . . . . . . . . . . . . . . 27 4.1.2 Photovoltaic Resource Specifications . . . . . . . . . . . . . . . . . . 29 4.1.3 Wind Turbine Specifications. . . . . . . . . . . . . . . . . . . . . . . 30 4.1.4 Battery Bank Specifications . . . . . . . . . . . . . . . . . . . . . . . 31 4.1.5 Diesel Generator Specifications . . . . . . . . . . . . . . . . . . . . . 31 4.1.6 Converter Specifications . . . . . . . . . . . . . . . . . . . . . . . . . 32 4.2 HOMER Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 4.3 System Controls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 4.4 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 4.5 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 vi 4.5.1 Optimization of Hybrid PV Wind Model. . . . . . . . . . . . . . . . 34 4.5.2 Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 4.5.3 Minimization of Cost . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 4.5.4 Scenario 1- PV , Diesel Generator . . . . . . . . . . . . . . . . . . . 36 4.5.5 Scenario 2- PV , Wind Turbine . . . . . . . . . . . . . . . . . . . . . 36 4.5.6 Simulation Scenario 3- PV , Wind Turbine , Diesel Generator . . . . 38 4.5.7 Scenario 4- PV , Wind Turbine , Diesel Generator . . . . . . . . . . 40 4.5.8 Scenario 5- PV , Wind Turbine , Diesel Generator . . . . . . . . . . 40 4.5.9 Scenario 6- PV , Diesel Generator . . . . . . . . . . . . . . . . . . . 43 4.5.10 Scenario 7- PV , Wind Turbine , Diesel Generator . . . . . . . . . . 45 4.5.11 Scenario 8- PV , Diesel Generator , Wind Turbine . . . . . . . . . . 45 4.5.12 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 5 Conclusion 49 5.1 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Bibliography 51 vii List of Tables Table 4.1 Load Profile Month (kW) vs. Hour . . . . . . . . . . . . . . . . . . . 28 Table 4.2 Input Photovoltaic Resource . . . . . . . . . . . . . . . . . . . . . . . 29 Table 4.3 Average Monthly Wind Velocity . . . . . . . . . . . . . . . . . . . . . 30 Table 4.4 Storage Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Table 4.5 Result for Scenario 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Table 4.6 Electrical Production for Scenario 1 . . . . . . . . . . . . . . . . . . . 36 Table 4.7 Diesel Hours of Operation for Scenario 1 . . . . . . . . . . . . . . . . 37 Table 4.8 Result for Scenario 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Table 4.9 Electrical Production for Scenario 2 . . . . . . . . . . . . . . . . . . . 38 Table 4.10 Result for Scenario 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Table 4.11 Electrical Production for Scenario 3 . . . . . . . . . . . . . . . . . . . 39 Table 4.12 Diesel Hours of Operation for Scenario 3 . . . . . . . . . . . . . . . . 40 Table 4.13 Result for Scenario 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Table 4.14 Electrical Production for Scenario 4 . . . . . . . . . . . . . . . . . . . 41 Table 4.15 Diesel Hours of Operation for Scenario 4 . . . . . . . . . . . . . . . . 41 Table 4.16 Result for Scenario 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Table 4.17 Electrical Production for Scenario 5 . . . . . . . . . . . . . . . . . . . 42 Table 4.18 Diesel Hours of Operation for Scenario 5 . . . . . . . . . . . . . . . . 43 Table 4.19 Result for Scenario 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Table 4.20 Electrical Production for Scenario 6 . . . . . . . . . . . . . . . . . . . 44 Table 4.21 Diesel Hours of Operation for Scenario 6 . . . . . . . . . . . . . . . . 44 Table 4.22 Result for Scenario 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Table 4.23 Electrical Production for Scenario 7 . . . . . . . . . . . . . . . . . . . 45 Table 4.24 Result for Scenario 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Table 4.25 Electrical Production for Scenario 8 . . . . . . . . . . . . . . . . . . . 47 Table 4.26 Diesel Hours of Operation for Scenario 8 . . . . . . . . . . . . . . . . 47 viii List of Figures Figure 3.1 Schematic of the overall system [1] . . . . . . . . . . . . . . . . . . . 11 Figure 3.2 Solar cell circuit diagram [2] . . . . . . . . . . . . . . . . . . . . . . 14 Figure 3.3 I-V characteristics of the solar cell [2] . . . . . . . . . . . . . . . . . 15 Figure 3.4 Wind turbine operating regions [5] . . . . . . . . . . . . . . . . . . . 19 ix ACKNOWLEDGEMENTS I would like to express my appreciation to my supervisor Dr. Fayez Gebali for his support, encouragement and continuous motivation during my research. I would like to thank him for sharing his immense knowledge and guiding me to make my report better at every step. I would also like to express my gratitude to my university, for giving me an insight of my project and offering me an opportunity to study with them in a highly knowledgeable university helped me in exhibiting my leadership qualities in a diversify environment. My sincere thanks to the library of University of Victoria for providing me productive information that was beneficial for my research. Lastly I would like to thank my family members for their constant support and being my strength throughout my life. x DEDICATION I would like to dedicate my work to Professor Dr. Fayez Gebali, the late Dr. Subhasis Nandi, my parents Mr N.K Sharma, Mrs Vanita Sharma, my husband Mr Ishatpreet Singh Grewal and my mother in law Mrs Jasbir Kaur Grewal.

Description:
4.5.6 Simulation Scenario 3- PV , Wind Turbine , Diesel Generator operating cost associated with the generators may be too high due to discontinued VAWT. Vertical axis wind turbine. MOSFET. Metal oxide semiconductor field .. include multi-blade wind turbines used for water pumping on farms.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.