ebook img

Stabilization of Navier–Stokes Flows PDF

284 Pages·2011·2.735 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Stabilization of Navier–Stokes Flows

Communications and Control Engineering Forothertitlespublishedinthisseries,goto www.springer.com/series/61 SeriesEditors (cid:2) (cid:2) (cid:2) (cid:2) A.Isidori J.H.vanSchuppen E.D.Sontag M.Thoma M.Krstic Publishedtitlesinclude: StabilityandStabilizationofInfiniteDimensional SwitchedLinearSystems SystemswithApplications ZhendongSunandShuzhiS.Ge Zheng-HuaLuo,Bao-ZhuGuoandOmerMorgul SubspaceMethodsforSystemIdentification NonsmoothMechanics(Secondedition) TohruKatayama BernardBrogliato DigitalControlSystems NonlinearControlSystemsII IoanD.LandauandGianlucaZito AlbertoIsidori MultivariableComputer-controlledSystems L2-GainandPassivityTechniquesinNonlinearControl EfimN.RosenwasserandBernhardP.Lampe ArjanvanderSchaft DissipativeSystemsAnalysisandControl ControlofLinearSystemswithRegulationandInput (Secondedition) Constraints BernardBrogliato,RogelioLozano,BernhardMaschke AliSaberi,AntonA.StoorvogelandPeddapullaiah andOlavEgeland Sannuti AlgebraicMethodsforNonlinearControlSystems RobustandH∞Control GiuseppeConte,ClaudeH.MoogandAnnaM.Perdon BenM.Chen PolynomialandRationalMatrices ComputerControlledSystems TadeuszKaczorek EfimN.RosenwasserandBernhardP.Lampe Simulation-basedAlgorithmsforMarkovDecision ControlofComplexandUncertainSystems Processes StanislavV.EmelyanovandSergeyK.Korovin HyeongSooChang,MichaelC.Fu,JiaqiaoHuand StevenI.Marcus RobustControlDesignUsingH∞Methods IanR.Petersen,ValeryA.Ugrinovskiand IterativeLearningControl AndreyV.Savkin Hyo-SungAhn,KevinL.MooreandYangQuanChen ModelReductionforControlSystemDesign DistributedConsensusinMulti-vehicleCooperative GoroObinataandBrianD.O.Anderson Control WeiRenandRandalW.Beard ControlTheoryforLinearSystems HarryL.Trentelman,AntonStoorvogelandMaloHautus ControlofSingularSystemswithRandomAbrupt Changes FunctionalAdaptiveControl El-KébirBoukas SimonG.FabriandVisakanKadirkamanathan NonlinearandAdaptiveControlwithApplications Positive1Dand2DSystems AlessandroAstolfi,DimitriosKaragiannisandRomeo TadeuszKaczorek Ortega IdentificationandControlUsingVolterraModels Stabilization,OptimalandRobustControl FrancisJ.DoyleIII,RonaldK.PearsonandBabatunde AzizBelmiloudi A.Ogunnaike ControlofNonlinearDynamicalSystems Non-linearControlforUnderactuatedMechanical FelixL.Chernous’ko,IgorM.AnanievskiandSergey Systems A.Reshmin IsabelleFantoniandRogelioLozano PeriodicSystems RobustControl(Secondedition) SergioBittantiandPatrizioColaneri JürgenAckermann DiscontinuousSystems FlowControlbyFeedback YuryV.Orlov OleMortenAamoandMiroslavKrstic ConstructionsofStrictLyapunovFunctions LearningandGeneralization(Secondedition) MichaelMalisoffandFrédéricMazenc MathukumalliVidyasagar ControllingChaos ConstrainedControlandEstimation HuaguangZhang,DerongLiuandZhiliangWang GrahamC.Goodwin,MariaM.Seronand JoséA.DeDoná ControlofComplexSystems AleksandarZecˇevic´andDragoslavD.Šiljak RandomizedAlgorithmsforAnalysisandControl ofUncertainSystems RobertoTempo,GiuseppeCalafioreandFabrizio Dabbene Viorel Barbu Stabilization of Navier–Stokes Flows Prof.ViorelBarbu Fac.Mathematics Al.I.CuzaUniversity Blvd.CarolI11 700506Ias¸i Romania [email protected] ISSN0178-5354 ISBN978-0-85729-042-7 e-ISBN978-0-85729-043-4 DOI10.1007/978-0-85729-043-4 SpringerLondonDordrechtHeidelbergNewYork BritishLibraryCataloguinginPublicationData AcataloguerecordforthisbookisavailablefromtheBritishLibrary ©Springer-VerlagLondonLimited2011 MATLAB® and Simulink® are registered trademarks of The MathWorks, Inc., 3 Apple Hill Drive, Natick,MA01760-2098,U.S.A.http://www.mathworks.com Apartfromanyfairdealingforthepurposesofresearchorprivatestudy,orcriticismorreview,asper- mittedundertheCopyright,DesignsandPatentsAct1988,thispublicationmayonlybereproduced, storedortransmitted,inanyformorbyanymeans,withthepriorpermissioninwritingofthepublish- ers,orinthecaseofreprographicreproductioninaccordancewiththetermsoflicensesissuedbythe CopyrightLicensingAgency.Enquiriesconcerningreproductionoutsidethosetermsshouldbesentto thepublishers. Theuseofregisterednames,trademarks,etc.,inthispublicationdoesnotimply,evenintheabsenceofa specificstatement,thatsuchnamesareexemptfromtherelevantlawsandregulationsandthereforefree forgeneraluse. Thepublishermakesnorepresentation,expressorimplied,withregardtotheaccuracyoftheinformation containedinthisbookandcannotacceptanylegalresponsibilityorliabilityforanyerrorsoromissions thatmaybemade. Coverdesign:eStudioCalamarS.L. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) Preface In the last years, notable progresses were obtained in mathematical theory of sta- bilization of equilibrium solution to Newtonian fluid flows as a principal tool to eliminateorattenuatetheturbulence.Oneofthemainresultsobtainedinthisdirec- tionisthattheequilibriumsolutionstoNavier–Stokesequationsareexponentially stabilizable by finite-dimensional feedback controllers with support in the interior ofthedomainorontheboundary.Thisbookwascompletedintheideatopresent these new results and techniques which are in our opinion the core of a discipline stillindevelopmentandfromwhichonemightexpectinthefuturesomespectacular achievements. Beside internal and boundarystabilizationof Navier–Stokesequations, the sto- chasticstabilizationandrobustnessofstabilizablefeedbacksarealsodiscussed.We hadinmindarigorousmathematicaltreatmentofthestabilizationproblem,which relies on some advanced results and techniques involving the theory of Navier– Stokesequationsandfunctionalanalysisaswell.Wetriedtoanswertothefollowing questions:whichisthestructureofthestabilizingfeedbackcontrollerandhowcan be designed by using a minimal set of eigenfunctions of the Stokes–Oseen opera- tor. Though most of the feedback controllers constructed here are conceptual and their practical implementation requires a computational effort which still remains to be done, the analysis developed here provides a rigorous pattern for the design ofefficientstabilizablefeedbackcontrollersinmostspecificproblemsofpractical interest. To this purpose, the exposition is in mathematical style: definitions, hy- potheses, theorems, proof. It should be emphasized that no rigorous stabilization theorywithinternalorboundarycontrollersispossiblewithoutuniquecontinuation theoryforthesolutionstoStokes–Oseenequations. Byincludingapreparatorychapteroninfinite-dimensionaldifferentialequations andafewappendicespertaininguniquecontinuationpropertiesofeigenfunctionsof theStokes–Oseenoperatorandstochasticprocesses,wehaveattemptedtomakethis work essentially self-contained and so, accessible to a broad spectrum of readers. What is assumed of the reader is a knowledge of basic results in linear functional analysis,linearalgebra,probabilitytheoryandgeneralvariationaltheoryofelliptic, parabolic and Navier–Stokes equations, most of these being reviewed in Chap. 1 and in Sects. 3.8 and 4.5. An important part of the material included in this book v vi Preface representthepersonalcontributionoftheauthorandhiscoworkersand,thoughwe mentioned the basic references and a brief presentation of other significant works in this field, we did not present them, however, in details. In fact, the presentation wasconfinedtothestabilizationtechniquesbasedonthespectraldecompositionof thelinearizedsysteminstableandunstablesystemsandsowehaveomittedother importantresultsinliterature. The author is indebted to Ca˘ta˘lin Lefter who made pertinent observations and suggestions. I also thank Irena Lasiecka and Roberto Triggiani for useful discus- sions on several results presented in this book. Also, I am indebted to Mrs. Elena MocanufromInstituteofMathematicsinIas¸iwhopreparedthistextforprinting. I wish to express my thanks to Professor Miroslav Krstic, from University of California, San Diego, for the invitation to write this book for the Springer series CommunicationandControlEngineeringheiscoordinating. SpecialthanksareduetoMr.OliverJackson,EditorofEngineeringatSpringer, forunderstandingandassistanceintheelaborationofthiswork. Contents 1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 BanachSpacesandLinearOperators . . . . . . . . . . . . . . . . 1 1.2 SobolevSpacesandEllipticBoundaryValueProblems . . . . . . . 3 1.2.1 VariationalTheoryofEllipticBoundaryValueProblems . . 7 1.2.2 Infinite-dimensionalSobolevSpaces . . . . . . . . . . . . 10 1.3 TheSemigroupsofClassC . . . . . . . . . . . . . . . . . . . . . 12 0 1.4 TheNonlinearCauchyProblem . . . . . . . . . . . . . . . . . . . 14 1.5 StrongSolutionstoNavier–StokesEquations . . . . . . . . . . . . 17 2 StabilizationofAbstractParabolicSystems . . . . . . . . . . . . . . 25 2.1 NonlinearParabolic-likeSystems . . . . . . . . . . . . . . . . . . 25 2.2 InternalStabilizationofLinearizedSystem . . . . . . . . . . . . . 30 2.2.1 TheCaseofNotSemisimpleEigenvalues . . . . . . . . . . 37 2.2.2 DirectProportionalStabilizationofUnstableModes . . . . 40 2.3 BoundaryStabilizationofLinearizedSystem . . . . . . . . . . . . 42 2.4 StabilizationbyNoiseoftheLinearizedSystems . . . . . . . . . . 45 2.4.1 TheBoundaryStabilizationbyNoise . . . . . . . . . . . . 50 2.5 InternalStabilizationofNonlinearParabolic-likeSystems . . . . . 52 2.5.1 High-gainRiccati-basedStabilizableFeedback . . . . . . . 54 2.5.2 Low-gainRiccati-basedStabilizableFeedback . . . . . . . 57 2.5.3 InternalStabilizationofNonlinearSystemviaHigh-gain Riccati-basedFeedback . . . . . . . . . . . . . . . . . . . 58 2.5.4 InternalStabilizationofNonlinearSystemviaLow-gain Riccati-basedFeedback . . . . . . . . . . . . . . . . . . . 61 2.5.5 High-gain Feedback Controller Versus Low-gain ControllerandRobustness . . . . . . . . . . . . . . . . . . 63 2.6 StabilizationofTime-periodicFlows . . . . . . . . . . . . . . . . 66 2.6.1 TheFunctionalSetting. . . . . . . . . . . . . . . . . . . . 66 2.6.2 StabilizationoftheLinearizedTime-periodicSystem . . . 68 2.6.3 TheStabilizingRiccatiEquation . . . . . . . . . . . . . . 74 2.6.4 StabilizationofNonlinearSystem(2.148) . . . . . . . . . 79 2.7 CommentstoChap.2 . . . . . . . . . . . . . . . . . . . . . . . . 85 vii viii Contents 3 StabilizationofNavier–StokesFlows . . . . . . . . . . . . . . . . . . 87 3.1 TheNavier–StokesEquationsofIncompressibleFluidFlows . . . 87 3.2 TheSpectralPropertiesoftheStokes–OseenOperator . . . . . . . 91 3.3 InternalStabilizationviaSpectralDecomposition . . . . . . . . . 93 3.3.1 TheInternalStabilizationoftheStokes–OseenSystem . . . 94 3.3.2 TheStabilizationofStokes–OseenSystembyProportional FeedbackController . . . . . . . . . . . . . . . . . . . . . 100 3.3.3 InternalStabilizationviaFeedbackController;High-gain Riccati-basedFeedback . . . . . . . . . . . . . . . . . . . 103 3.3.4 InternalStabilization;Low-gainRiccati-basedFeedback . . 112 3.4 TheTangentialBoundaryStabilizationofNavier–StokesEquations 119 3.4.1 The Tangential Boundary Stabilization of the Stokes–OseenEquation . . . . . . . . . . . . . . . . . . . 120 3.4.2 StabilizableBoundaryFeedbackControllersviaLow-gain RiccatiEquation . . . . . . . . . . . . . . . . . . . . . . . 130 3.4.3 TheBoundaryFeedbackStabilizationofNavier–Stokes Equations . . . . . . . . . . . . . . . . . . . . . . . . . . 135 3.5 NormalStabilizationofaPlane-periodicChannelFlow . . . . . . 142 3.5.1 FeedbackStabilization . . . . . . . . . . . . . . . . . . . . 149 3.6 InternalStabilizationofTime-periodicFlows . . . . . . . . . . . . 156 3.7 TheNumericalImplementationofStabilizingFeedback . . . . . . 159 3.8 UniqueContinuationandGenericPropertiesofEigenfunctions . . 164 3.9 CommentsonChap.3 . . . . . . . . . . . . . . . . . . . . . . . . 174 4 StabilizationbyNoiseofNavier–StokesEquations . . . . . . . . . . 177 4.1 InternalStabilizationbyNoise. . . . . . . . . . . . . . . . . . . . 177 4.1.1 StabilizationbyNoiseoftheLinearizedNavier–Stokes System . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180 4.1.2 ProofofTheorem4.1 . . . . . . . . . . . . . . . . . . . . 181 4.1.3 StabilizationbyNoiseofNavier–StokesEquations . . . . . 186 4.1.4 ProofofTheorem4.2 . . . . . . . . . . . . . . . . . . . . 188 4.1.5 StochasticStabilizationVersusDeterministicStabilization . 199 4.2 StabilizationoftheStokes–OseenEquationbyImpulseFeedback NoiseControllers . . . . . . . . . . . . . . . . . . . . . . . . . . 201 4.2.1 ProofofTheorem4.3 . . . . . . . . . . . . . . . . . . . . 204 4.2.2 ProofofTheorem4.4 . . . . . . . . . . . . . . . . . . . . 209 4.2.3 TheRobustnessoftheNoiseFeedbackController . . . . . 209 4.2.4 DeterministicImpulseController . . . . . . . . . . . . . . 211 4.3 TheTangentialBoundaryStabilizationbyNoise . . . . . . . . . . 211 4.4 StochasticStabilizationofPeriodicChannelFlowsbyNoiseWall NormalControllers . . . . . . . . . . . . . . . . . . . . . . . . . 217 4.4.1 FeedbackStabilization . . . . . . . . . . . . . . . . . . . . 221 4.4.2 ProofofTheorem4.6 . . . . . . . . . . . . . . . . . . . . 223 4.5 StochasticProcesses . . . . . . . . . . . . . . . . . . . . . . . . . 230 4.6 CommentsonChap.4 . . . . . . . . . . . . . . . . . . . . . . . . 236 Contents ix 5 Robust Stabilization of the Navier–Stokes Equation ∞ viatheH -ControlTheory . . . . . . . . . . . . . . . . . . . . . . . 237 ∞ 5.1 TheState-spaceFormulationoftheH -ControlProblem . . . . . 237 ∞ 5.2 TheH -ControlProblemfortheStokes–OseenSystem . . . . . . 248 5.2.1 InternalRobustStabilizationwithRegulationofTurbulent KineticEnergy . . . . . . . . . . . . . . . . . . . . . . . . 249 5.2.2 RobustInternalStabilizationwiththeRegulationofFluid Enstrophy . . . . . . . . . . . . . . . . . . . . . . . . . . 251 ∞ 5.3 TheH -ControlProblemfortheNavier–StokesEquations . . . . 252 5.3.1 ProofofTheorem5.7 . . . . . . . . . . . . . . . . . . . . 254 ∞ 5.4 TheH -ControlProblemforBoundaryControlProblem . . . . . 267 5.4.1 TheAbstractFormulation . . . . . . . . . . . . . . . . . . 268 ∞ 5.4.2 TheH -BoundaryControlProblemfortheLinearized Navier–StokesEquation . . . . . . . . . . . . . . . . . . . 269 5.5 CommentsonChap.5 . . . . . . . . . . . . . . . . . . . . . . . . 270 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275 Symbols and Notation Rd thed-dimensionalEuclideanspace R therealline(−∞,+∞) R+ thehalfline[0,+∞) C thecomplexspace Cd thed-dimensionalcomplexspace x·y thedotproductofvectorsx,y∈Rd |·| , (cid:4)·(cid:4) thenormofalinearnormedspaceX X X D y ∂y, i=1,...,d ∇fi t∂hxei gradientofthemapf :X→Y ∇·f thedivergenceofvectorfieldf :O→Rd ⊂Rd L(X,Y) thespaceoflinearcontinuousoperatorsfromXtoY (cid:4)·(cid:4) thenormofL(X,Y) L(X,Y) ∗ (cid:9) X , X thedualofthespaceX (x,y), (x,y) thescalarproductofthevectorsx,y∈H (aHilbertspace).If H x∈X, y∈X∗,thisisthevalueofy atx Aα thefractionalpoweroforderα∈(0,1)oftheoperator A:D(A)⊂H →H D(A) thedomainoftheoperatorA ∗ (cid:9) A , A theadjointoftheoperatorA A−1 theinverseoftheoperatorA {Ω,F,P} theprobabilityspace Lp(0,T;X) (XBanachspace)thespaceofallp-sumablefunctionsfrom [0,T]toX Lp (0,∞;X) thespaceofmeasurablefunctionsy:(0,∞)→Xwhichare loc p-integrableoneachinterval(a,b)⊂(0,∞) y(cid:9)(t),dy(t) thederivativeofthefunctiony:[0,T]→X dt AC([0,T];X) thespaceofabsolutelycontinuousfunctionsfrom[0,T]toX W1,p([0,T];X) thespace{y∈AC([0,T]; y(cid:9)∈Lp(0,T;X)} C([0,T];X) thespaceofallcontinuousfunctionsfrom[0,T]toX C ([0,T];X) thespaceofallweaklycontinuousfunctionsfrom[0,T]toX w eAt theC -semigroupgeneratedbyA 0 Hk(O) theSobolevspaceoforderkonO⊂Rd xi

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.