ebook img

Stability of the Turnpike Phenomenon in Discrete-Time Optimal Control Problems PDF

114 Pages·2014·0.593 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Stability of the Turnpike Phenomenon in Discrete-Time Optimal Control Problems

SpringerBriefs in Optimization Editors PanosM.Pardalos Industrial&SystemsEngineering UniversityofFlorida Gainesville,Florida USA JánosD.Pintér PinterConsultingServices,Inc. Halifax,NovaScotia Canada StephenRobinson IndustrialandSystemsEngineering UniversityofWisconsin Madison,Wisconsin USA TamásTerlaky Industrial&SystemsEngineering LehighUniversity Bethlehem,Pennsylvania USA MyT.Thai ComputerandInformationScienceandEngineering UniversityofFlorida Gainesville,Florida USA SpringerBriefs in Optimization showcases algorithmic and theoretical tech- niques,casestudies,andapplicationswithinthebroad-basedfieldofoptimization. Manuscripts related to the ever-growing applications of optimization in applied mathematics, engineering, medicine, economics, and other applied sciences are encouraged. Moreinformationaboutthisseriesathttp://www.springer.com/series/8918 Alexander J. Zaslavski Stability of the Turnpike Phenomenon in Discrete-Time Optimal Control Problems 2123 AlexanderJ.Zaslavski DepartmentofMathematics Technion-IsraelInstituteofTechn Haifa Israel ISSN2190-8354 ISSN2191-575X(electronic) ISBN978-3-319-08033-8 ISBN978-3-319-08034-5(eBook) DOI10.1007/978-3-319-08034-5 SpringerChamHeidelbergNewYorkDordrechtLondon LibraryofCongressControlNumber:2014943649 © TheAuthor2014 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartofthe materialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped.Exemptedfromthislegalreservationarebriefexcerptsinconnection withreviewsorscholarlyanalysisormaterialsuppliedspecificallyforthepurposeofbeingenteredand executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publicationorpartsthereofispermittedonlyundertheprovisionsoftheCopyrightLawofthePublisher’s location,initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer.Permissions forusemaybeobtainedthroughRightsLinkattheCopyrightClearanceCenter.Violationsareliableto prosecutionundertherespectiveCopyrightLaw. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Whiletheadviceandinformationinthisbookarebelievedtobetrueandaccurateatthedateofpublication, neithertheauthorsnortheeditorsnorthepublishercanacceptanylegalresponsibilityforanyerrorsor omissionsthatmaybemade.Thepublishermakesnowarranty,expressorimplied,withrespecttothe materialcontainedherein. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) Preface The monograph is devoted to the study of the structure of approximate solutions ofnonconvex(nonconcave)discrete-timeoptimalcontrolproblems.Itcontainsnew resultsonpropertiesofapproximatesolutionswhichareindependentofthelength of the interval, for all sufficiently large intervals. These results deal with the so- calledturnpikepropertyofoptimalcontrolproblems.Thetermwasfirstcoinedby P.Samuelsonin1948whenheshowedthatanefficientexpandingeconomywould spendmostofthetimeinthevicinityofabalancedequilibriumpath(alsocalleda von Neumann path). To have the turnpike property means, roughly speaking, that the approximate solutions of the problems are determined mainly by the objective functionandareessentiallyindependentofthechoiceofintervalandendpointcondi- tions,exceptinregionsclosetotheendpoints.Nowitiswell-knownthattheturnpike propertyisageneralphenomenonwhichholdsforlargeclassesofvariationaland optimalcontrolproblems.UsingtheBairecategory(generic)approach,itwasshown thattheturnpikepropertyholdsforageneric(typical)variationalproblem[45]and for a generic optimal control problem [56].According to the generic approach we saythatapropertyholdsforageneric(typical)elementofacompletemetricspace (orthepropertyholdsgenerically)ifthesetofallelementsofthemetricspacepos- sessing this property contains a G? everywhere dense subset of the metric space which is a countable intersection of open everywhere dense sets. In [55] we were interestedinindividual(non-generic)turnpikeresultsandinsufficientandnecessary conditionsfortheturnpikephenomenoninthecalculusofvariations.Inourrecent research [46-51, 54] we were are also interested in individual turnpike results but fordiscrete-timeoptimalcontrolproblemswhich, inparticular, describeageneral modelofeconomicdynamics.Fortheseproblemsweestablishedtheturnpikeprop- ertyforapproximatesolutionswithasingleton-turnpikeandstudiedthestabilityof theturnpikephenomenonundersmallperturbationsofobjectivefunctions. In this book we continue to study the discrete-time optimal control problems considered in [46-51, 54]. Some results of these works are discussed in Chap. 1. In Chaps. 2 and 3 we show the stability of the turnpike phenomenon under small perturbationsofobjectivefunctionsandundersmallperturbationsofcontrolmaps. TheoptimalcontrolproblemswithoutdiscountingarestudiedinChap.2whilethe discountcaseisconsideredinChap.3.InChap.4weestablishtheturnpikeproperty v vi Preface anditsstabilityfordiscrete-timeproblemswithnonsingleton-turnpikes.Notethatthe stabilityoftheturnpikepropertyiscrucialinpractice.Onereasonisthatinpractice wedealwithaproblemwhichconsistsofaperturbationoftheproblemwewishto consider.Anotherreasonisthatthecomputationsintroducenumericalerrors. RishonLeZion AlexanderJ.Zaslavski December30,2013 Contents 1 Introduction................................................... 1 1.1 TheTurnpikePhenomenon................................... 1 1.2 Discrete-TimeProblems..................................... 3 1.3 Examples ................................................. 6 2 OptimalControlProblemswithSingletonTurnpikes ............... 9 2.1 PreliminariesandStabilityResults ............................ 9 2.2 Extensions ................................................ 14 2.3 ThreeLemmata ............................................ 16 2.4 AuxiliaryResults........................................... 20 2.5 ProofsofTheorems2.2and2.3............................... 34 2.6 ProofsofTheorems2.4and2.5............................... 37 2.7 ProofofTheorem2.6 ....................................... 40 2.8 ProofofTheorems2.7and2.8................................ 43 3 OptimalControlProblemswithDiscounting ...................... 47 3.1 StabilityoftheTurnpikePhenomenon ......................... 47 3.2 AuxiliaryResults........................................... 50 3.3 ProofsofTheorems3.2and3.3............................... 57 3.4 ProofofTheorem3.4 ....................................... 61 4 OptimalControlProblemswithNonsingletonTurnpikes............ 65 4.1 Discrete-TimeOptimalControlSystems ....................... 65 4.2 TheTurnpikeProperty ...................................... 67 4.3 Preliminaries .............................................. 70 4.4 AuxiliaryResults........................................... 76 4.5 ProofofTheorem4.5 ....................................... 96 References........................................................ 105 Index ............................................................ 109 vii List of Symbols A,65 a(x),65 A,67 ¯ A,67 B(M),65–69,79 B(x,r),9 Card,6,13,14,39,40,44 c(f),66 cl(E),66 C(M),65 c¯,3,10,17 d ,66,67 1 dist,66,68,70 ¯ E,66 E(λ),12,13 H(f),68 (K,d),65 M,9,12,65 M ,47 0 M ,67,68 reg r¯,5,11 Uf(q,y,z),70 U({f }T2−1,y,z),66 i i=T1 V ,67 f (cid:2)w(cid:2),6 X,3 X ,4 M ix x ListofSymbols x¯,4 Y({(cid:3) }T2−1,T ,T ),12 t t=T1 1 2 Y¯({(cid:3) }T2−1,T ,T ),12 t t=T1 1 2 zf,67 j Z,65 Z ,65 p Zq,65 p γ(f),67,69 ¯ λ,11 μ(f),67 ρ,1,3 ρ ,9 1 σ(w,T,x,y),10 σ({u }T2−1,{(cid:3) }T2−1,T ,T ),11 t t=T1 t t=T1 1 2 σ({u }T2−1,{(cid:3) }T2−1,T ,T ,x),11 t t=T1 t t=T1 1 2 σ({u }T2−1,{(cid:3) }T2−1,T ,T ,x,y),11 t t=T1 t t=T1 1 2 (cid:3)({x }∞ ),66 i i=0 ω({x }∞ ),66 i i=0

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.