ebook img

Stability of the optimal filter in a hidden Markov model with multiplicative noise PDF

0.18 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Stability of the optimal filter in a hidden Markov model with multiplicative noise

STABILITY OF THE OPTIMAL FILTER IN A HIDDEN MARKOV MODEL WITH MULTIPLICATIVE NOISE 3 BIRGIT DEBRABANTANDWILHELMSTANNAT 1 0 2 n a Abstract. We consider a hidden Markov model with multiplicative noise J emergingfromstudiesofsoftwarereliability. Weshowthestabilityoftheop- 8 timalfilterw.r.t.generalinitialconditionsinthetotalvariation-andLp-norm 1 and deduce explicitrates. Remarkably, stability turns out to beindependent oftheergodicbehavior ofthesignal. ] R P 1. Introduction . h The stability of nonlinear filters is a field of active research, see e.g. [3], the t introductionof[9]andreferencestherein. However,the majorityofresultsrequires a m the signal process to be ergodic or stable in some sense. In addition, most of the resultsareobtainedforsignalsobservedwithadditivenoise. Thecaseofnonergodic [ signals and also the case of signals observed with multiplicative noise still remains 1 mostlyopen. Inthiscontext,thepresentarticlestudiesthestabilityoftheoptimal v filter in the following hidden Markov model: 8 2 (1) Signal: X = bX W , n n 1 n 4 − 4 (2) Observation: Yn = Xn−1Gn, n∈N, 1. where W , n N, are independent identically Beta(α,β)-distributed random vari- n 0 ables, α,β >∈0, describing the noise incorporated in the unknown signal, b is a 3 positive parameter depending on which the unknownsignalprocess can be ergodic 1 or nonergodic and where G , n N, are independent Γ(1,β)-distributed. Hence, : n v the observation Y depends on X∈ via multiplication with the independent noise n n i X Gn. Thus, model (1) and (2) is an example of filtering a signal observed with multiplicative noise. Note that although to logarithmize leads to a classical linear r a model with additive noise, stability cannot be studied immediately with known methods such as proposed in e.g. [8, 4] since the corresponding noise terms are rather irregular e.g. neither unimodal nor do they have light tails. Essentially, the above model appears in [1] as example for models admitting explicit invariant conditional distributions. In our case this amounts to the fact that the incorporated assumptions on the distributions of signal and observation together with a corresponding initial distribution, i.e. signal: (X /bX X ) Beta(α,β) n n 1 n 1 − | − ∼ initial distribution: X Γ(λ,q), where q =α+β and λ>0 0 ∼ observation: (Y X ) Γ(X ,β) n n n | ∼ imply the following explicit updating rules: 2000 Mathematics Subject Classification. 93E11, 93E15,60G35. Key words and phrases. Stability,Optimalfilter,Multiplicativenoise. 1 2 BIRGITDEBRABANTANDWILHELMSTANNAT posterior of X : (X Y ) Γ(λ ,q), where Y =Y ,...,Y n n 1:n n 1:n 1 n | ∼ prior of X : (X Y ) Γ(λ /b,α) n+1 n+1 1:n n | ∼ 1-step ahead prediction: (bX /λ Y ) Pearson Type VI n+1 n 1:n | ∼ with parameters β and α, cp. [5] posterior of X : (X Y ) Γ(λ ,q), n+1 n+1 1:n+1 n+1 | ∼ where λn+1 = λbn +yn+1 To study software reliability, model (1) and (2) was later applied in [6, 2] as enhancement to the Kalman filter taking into account that failure data tends to be highly skewed and observational errors are not mainly caused by instrumental inaccuracies. Thereby, the observables Y can be interpreted as interfailure times n of some software. The X play the role of unknown parameters steering their n distribution. Tomodelanevolutionofthesoftwaretheparametersevolveaccording to (1). The value of b is typically unknown and indicates if we have a tendency of increasing reliability since e. g. E(Yn|Y1:n−1,X0) = 2b−n X0+ jn=−11bjYj obviously tends to infinity if b<1. (cid:16) (cid:17) P Our stability results give the dependence of the optimal filter πy1:n, that is the n regular conditional distribution of X given the observations y = (y ) , n 1:n k k=1,...,n on the initial distribution π of X . To cover a wider range of admissible initial 0 0 conditions we extend the assumptions of [1, 2] and suppose the initial distribution of X to be a mixed Gamma-distribution with the following density 0 (3) π0(x) xq−1 ∞λqe−λxdU0(λ), x>0, ∝ Z0 where q = α+β and U is a probability measure on a compact subset of (0, ). 0 ∞ Such a mixture conserves the conjugacy of this distribution, cp. Lemma 6 which shows that all the posterior distributions are of a similar type. The pure Gamma case, where U is a Dirac measure is easy to treat and will 0 serveusasanintroductoryexample,seeSection2. Providedthattheunknowntrue initialconditionπ˜ is absolutelycontinuousw.r.t.theassumedinitialconditionπ 0 0 with a density bounded awayfrom 0, we show stability in the total variationnorm (almost surely given the observations) and in the L -norm for arbitrary p > 0 p (expectation w.r.t.the observationsY ,Y ,...) both with explicit geometricrates. 1 2 In Sections 3 and 4 we pass on to the general mixed Gamma initial condition. UnderassumptionssimilartothoseinSec.2weshowstabilitywithgeometricrates. Concerning the total variation norm, Theorem 5 gives that almost surely (4) ||πny1:n −π˜ny1:n||var = O(δ−n), n→∞, for δ <E(W1β)−β1, which coincides with the pure Gamma case. Note that the rate of stability 1 is independent of the parameter b in the signal. That is, the filter δ is stable whether or not the signal is ergodic. However, the constant on the right hand side of (4) will depend on the given sequence y ,y ,... of observations. For 1 2 the L -norm with p 0, u0 lnE(Wβ) , Theorem 9 yields p ∈ −B¯ 1 (cid:16) (cid:17) E πY1:n π˜Y1:n p = (ρn), n , || n − n ||var O →∞ p where ρ = E(W1β)e(cid:0)puB0¯ p+β and where(cid:1) B¯ = B¯(β,u0,o0) is a positive constant specified in (cid:16)the theorem.(cid:17)These rates are smaller compared to ρ = E(Wp) in the 1 pure Gamma case. STABILITY OF THE OPTIMAL FILTER IN A HMM WITH MULTIPLICATIVE NOISE 3 All stability statements of this article are based on an universal stability result of [7]. Therein, a general bound for the total variation distance of optimal filters w.r.t.totheinitialconditionisdeducedintermsoftheLipschitzcontractionχ of ∗n acertainparabolicgroundstatetransformPn∗ associatedwithπny1:n. Moreprecisely, suppose that the optimal filter is erroneously initialized with initial condition π 0 and that π˜ is the true initial condition. If π˜ π with density h = dπ˜0 it fNo,llowwhsertehaPt0n∗fπ˜ny:1=:n π≪ny1:nπgnyR(1·g,:yn(ns,)wyPˆni()tfPhˆππnydny1−1:−en1:nn1−−s11i)t(ys)dhsn, Pgˆivr0eens≪pb.ypˆ0hisnt=hePdn∗ua◦l·o·p·e◦r0aPt1∗ohr0od,fπn0th∈e transitionprobabilityP resp.thetransitiondensitypofthesignal,thatisP(X n+1 ∈ dx X ) = p(X ,x )dx and Pˆf = p(x, )f(x)dx, and where g denotes n+1 n n n+1 n+1 | · the regular conditional density of the observation given the signal, i.e. P(Y n R ∈ dy X ) = g(X ,y)dy. It follows that the error between the true optimal filter n n | π˜y1:n and the erroneously initialized filter πy1:n can be expressed in terms of the n n Lipschitz contractions χ of the Markovian transition kernels P , whereby χ := ∗n n∗ ∗n P f sup || n∗ ||Lip and where Lip is the space of all Lipschitz continuous functions f f Lip Lip ∈ || || with the corresponding norm : Lip ||·|| Proposition 1 (cp. Prop. 2.1 of [7]). For the total variation distance of the true optimalfilterπ˜y1:n toawronglyinitialized πy1:n thefollowing explicit boundisvalid: n n n σˆ (5) ||πny1:n −π˜ny1:n||var ≤ 2Hn · χ∗k·||h0||Lip, n∈N, k=1 Y provided that π˜ has π -density h which is bounded away from 0 by a positive 0 0 0 constant H and with σˆn = ∞∞|x1−x2|dπny1:n(x1)dπny1:n(x2). 00 RR Note that the formulation in [7] is more general and gives a bound also in the case H =0. Clearly, for our model (1) and (2) we obtain (bx)1 q p(x,y)= Beta(α−,β)yα−1(bx−y)β−11l[0,bx](y) and (by)1 q pˆ(x,dy)=p(y,x)dy = Beta(α−,β)xα−1(by−x)β−11l[b−1x,∞)(y)dy. 2. Stability w.r.t. pure Gamma initial conditions We consider the particular case π (x) xq 1λqe λx, x > 0, for some λ > 0, 0 − − ∝ hence X is Γ(λ,q)-distributed. Using the recursion 0 (6) πy1:n+1(x) g(x,y ) p(s,x)πy1:n(ds), n+1 ∝ n+1 n Z it is straightforward to show that the corresponding optimal filters πy1:n, n N, are again Gamma-distributed, namely Γ(λ ,q) with λ =b nλ+ nn bj ny∈. n n − j=1 − j Tostudytheasymptoticdependenceoftheoptimalfilterontheinitialcondition P we apply Prop. 1. Since (7) p∗n(x,dy) = λΓβn(−β)1(y−b−1x)β−1e−λn−1(y−b−1x)1l(b−1x,∞)(y)dy, 4 BIRGITDEBRABANTANDWILHELMSTANNAT we find P =b 1, n N. Further || n∗||Lip − ∈ 1 2 ∞∞ √2q σˆ (x x )2dΓ(λ ,q)(x )dΓ(λ ,q)(x ) = , n N. n 1 2 n 1 n 2 ≤  −  λ ∈ n ZZ 0 0   Prop. 1 then implies √2q h (8) ||πny1:n −π˜ny1:n||var ≤ |2|H0||Lip(bnλn)−1, n∈N, if the true initial condition π˜ has a π -density which is bounded away from 0 by 0 0 some constant H >0. The following lemma analyses the limiting behavior of bnλ = λ+ n bjy n j=1 j which evidently plays a crucial role concerning stability: P uLleamr,ma∞j=21.bPjY(jlim=i+nf∞j→a∞lm{bojsYtjsu>reδljy}.)=1 for arbitrary δ <E(W1β)−β1. In partic- Proof.PWe may assume δ 0. Note that ≥ Xβ δjb−j P(bjYj δj) = E j yβ−1e−Xjydy ≤ Γ(β)Z0 ! δjβ (9) E (b jX )β − j ≤ Γ(β+1) · =(E(cid:0)(Wβ))jE(X(cid:1)β) 1 0 | {z } 1 is summable for δ < E Wβ −β. Hence, the Borel-Cantelli lemma yields 1 Pim(plilmiesintfhj→at∞{b∞jj=Y1jb>jYjδjd}i)ve=(cid:16)rg1e.s(cid:17)tSoinicnefinEit(yWa1βlm)−oβ1st>su1r,elwy.e can choose δ > 1 whic(cid:3)h P Remark3. Lemma2remainsvalidforanyinitialconditionπ satisfyingE(Xβ)< . 0 0 ∞ Concerningalmostsurestability,Lemma2impliesthat(8)convergesto0almost surely and behaves as O(δ−n) for every δ <E(W1β)−β1. Moreover,concerning stability in the Lp-norm, for 0<p<β we find E((bnYn)−p) = E ∞(bny)−p Xnβ yβ−1e−Xnydy Γ(β) (cid:18)Z0 (cid:19) Γ(β p) Γ(β p)E(Xp) = Γ(−β) E (b−nXn)p = −Γ(β) 0 E(W1p)n, (cid:0) (cid:1) n N. Therefore, the optimal filter is stable in the corresponding Lp-norm and ∈ satisfies E πY1:n π˜Y1:n p = (ρn), n , || n − n ||var O →∞ with ρ=E(Wp)=(cid:0)Beta(α+p,β). (cid:1) 1 Beta(α,β) STABILITY OF THE OPTIMAL FILTER IN A HMM WITH MULTIPLICATIVE NOISE 5 3. Stability in the total variation norm We return to the more general mixed Gamma initial conditions of the form (3) anddeduceanestimateofthetotalvariationdistanceofπy1:n w.r.t.differinginitial n conditionsinThm.4whichthenimpliesalmostsurestabilitywithgeometricrates, cp. Thm. 5. Theorem 4. Let π and π˜ be such that 0 0 • π0(x) ∝ xq−1 0∞λqe−λxdU0(λ) for some probability measure U0 with sup- port [u ,o ] (0, ), and 0 0 π˜ is a proba⊂bRility∞density on R such that the corresponding density h := 0 + 0 • π˜0 is Lipschitz continuous and h H >0 for some constant H. π0 0 ≥ Let y1:n ∈ Rn+ and let πny1:n resp. π˜ny1:n be the optimal filter w.r.t. π0 resp. π˜0. Then n 1 (10) ||πny1:n −π˜ny1:n||var ≤ bnQu − 1+Bo0bk−uu0 ||h0||Lip, n∈N, n k=0(cid:18) k (cid:19) Y where Q= √q(q+1) and B = 1 β(β+1) 2β2u0 + β(β+1)o20 21. √2H 2 − o0 u20 (cid:16) (cid:17) This estimate induces stability with geometric rates: Theorem 5. Under the assumptions of Theorem 4 the optimal filter is stable for almost all sequences y ,y ,... of observations and we have 1 2 (11) ||πny1:n −π˜ny1:n||var = O(δ−n), n→∞, for every δ <E(W1β)−β1. Proofs and preliminary results. Before proving the above main statements we con- sider two preliminary results. Firstly note that posterior distributions correspond- ing to an initial condition of the form (3) are again of mixed Gamma type: Lemma 6. The posterior distributions πy1:n are mixed Gamma-distributions with n densities πny1:n(x)∝xq−1 ∞λqe−λxdUn(λ), x>0. Z0 Hereby, the distributions U , n N, obey the following recursive scheme: n ∈ U(1)(dλ)=λαU (dλ), n n • U(2)(A)=U(1)(b A) for A (R ), n n + • · ∈B U(3) = δ ⋆U(2), where δ denotes the Dirac measure in y and ⋆ • n yn+1 n yn+1 n+1 the convolution, U (dλ)=λ qU(3)(dλ). n+1 − n • Remark7. ForU0 =δλ with someλ>0weobtain Un =δb−nλ+Pnk=1bk−nyk. This setup corresponds to the pure Gamma case of Section 2. If U has compact support [u ,o ] then U has also a compact support [u ,o ] 0 0 0 n n n with u =b nu + n bk ny and o =b no + n bk ny , n N. n − 0 k=1 − k n − 0 k=1 − k ∈ P P 6 BIRGITDEBRABANTANDWILHELMSTANNAT Proof. The recursion (6) implies πy1:n+1(dx) n+1 xβe−xyn+1 ∞ (bs)1−qxα−1(bs x)β−1 sq−1 ∞λqe−λsdUn(λ)ds ∝ Zb−1x − · Z0 xq−1e−xyn+1 ∞λαe−λb−1xdUn(λ) ∝ Z0 = xq−1e−xyn+1 ∞e−λb−1xdUn(1)(λ) = xq−1e−xyn+1 ∞e−λxdUn(2)(λ) Z0 Z0 = xq 1 ∞e λxdU(3)(λ) = xq 1 ∞λqe λxdU (λ), x>0. − − n − − n+1 Z0 Z0 (cid:3) In order to apply Prop. 1 we deduce an upper bound for the contraction coeffi- cient χ of the ground state transform P : ∗n n∗ Proposition 8. Let f : R R be Lipschitz-continuous. Under the assumptions + → of Thm. 4 we find 1sup d (x)+1 ||Pn∗f||Lip ≤ 2 x>0bn ||f||Lip with 1 ∞∞ β(β+1) 2β2 β(β+1) 2 d (x) = λ λ + dUx (λ )dUx (λ ) n ZZ | 1− 2|(cid:18) λ21 − λ1λ2 λ22 (cid:19) n−1 1 n−1 2 0 0 and λαe λb−1xdU (λ) dUnx−1(λ)= λαe−−λb−1xdUnn−11(λ), n∈N, x>0. − Moreover R 1 o 2β2u β(β+1)o2 2 sxu>p0dn(x) ≤ (cid:18)unn−−11 −1(cid:19)(cid:18)β(β+1)− o0 0 + u20 0(cid:19) , n∈N. Notations: To simplify notations in the following proof we introduce for x,y > 0 and n N the following measures derived from U : n ∈ λαe λb−1xdU (λ) dUx(λ) = − n , n 0∞λαe−λb−1xdUn(λ) dUnx,y(λ) = RΓλ(ββ)yβ−1e−λydUnx(λ), dU¯ (λ,y) = dUx,y(λ)dy. n n STABILITY OF THE OPTIMAL FILTER IN A HMM WITH MULTIPLICATIVE NOISE 7 Moreover,note the following estimate via Jensen’s inequality ∞∞ y y dΓ(λ ,β)(y )dΓ(λ ,β)(y ) 1 2 1 1 2 2 | − | ZZ 0 0 1 2 ∞∞ (y y )2dΓ(λ ,β)(y )dΓ(λ ,β)(y ) 1 2 1 1 2 2 ≤  −  ZZ 0 0  1  β(β+1) 2β2 β(β+1) 2 (12) = + . λ2 − λ λ λ2 (cid:18) 1 1 2 2 (cid:19) Proof. Let n N. Due to the structure of the optimal filter we obtain for x,y >0 ∈ p∗n(x,y) = R0∞Γe(−βλ)y(0y∞−λαbe−−1xλb)−β1−x1dλUqnd−U1n(−λ1)(λ)1l(b−1x,∞)(y). R For x ,x >0 we find 1 2 Pn∗f(x1)−Pn∗f(x2) ∞ x1 x2 x2 = f y+ f y+ p x ,y+ dy b − b ∗n 2 b Z0 h (cid:16) (cid:17) (cid:16) (cid:17)i (cid:16) (cid:17) =:T1 +| ∞f y+ x2 p x{z,y+ x1 p x ,y+ x}2 dy. b ∗n 1 b − ∗n 2 b Z0 (cid:16) (cid:17)h (cid:16) (cid:17) (cid:16) (cid:17)i =:T2 | {z } As x p (x,y+b 1x) is differentiable with 7→ ∗n − d x p x,y+ dx ∗n b = (cid:16)0∞−λb−(cid:17)1e−λ(y+b−1x)yβ−1λqdUn−1(λ) R 0∞λαe−λb−1xdUn−1(λ)Γ(β) + 0∞Re−λ(y+b−1x)yβ−1λqdUn−1(λ) 0∞λb−1λαe−λb−1xdUn−1(λ) R 0∞λαe−λb−1xdURn−1(λ) 2Γ(β) = ∞ λdUx,y (λ(cid:0))R+ ∞dUx,y (λ) ∞(cid:1)∞ λdUx,y (λ)dy, −Z0 b n−1 Z0 n−1 ·Z0 Z0 b n−1 for T we find 2 ∞ x2 x2 d x T2 = f y+ b dxp∗n x,y+ b dxdy Z0 (cid:16) (cid:17)Zx1 (cid:16) (cid:17) x2 ∞ x2 d x = f y+ p x,y+ dydx. b dx ∗n b Zx1 Z0 (cid:16) (cid:17) (cid:16) (cid:17) =:T3 | {z } 8 BIRGITDEBRABANTANDWILHELMSTANNAT Further we have ∞∞ x λ T = f y+ 2 dU¯x (λ,y) 3 b b n−1 Z0 Z0 (cid:16) (cid:17) ∞∞ x ∞∞λ f y+ 2 dU¯x (λ,y) dU¯x (λ,y) − b n−1 · b n−1 Z0 Z0 (cid:16) (cid:17) Z0 Z0 1 ∞∞∞∞ x x λ λ 2 2 1 2 = f y + f y + 1 2 2 b − b b − b Z0 Z0 Z0 Z0 (cid:16) (cid:16) (cid:17) (cid:16) (cid:17)(cid:17)(cid:18) (cid:19) dU¯x (λ ,y )dU¯x (λ ,y ), n 1 1 1 n 1 2 2 − − since U¯x is a probability measure on [0, )2. Therefore, n−1 ∞ f ∞∞∞∞ T || ||Lip y y λ λ dU¯x (λ ,y )dU¯x (λ ,y ) | 3| ≤ 2b | 1− 2|·| 1− 2| n−1 1 1 n−1 2 2 ZZZZ 0 0 0 0 f ∞∞∞∞ (λ λ )β = || 2||bLip |y1−y2|· Γ1(β2)2 (y1y2)β−1e−λ1y1−λ2y2dy1dy2 ZZZZ 0 0 0 0 λ λ dUx (λ )dUx (λ ) ·| 1− 2| n−1 1 n−1 2 and formula (12) yields 1 f ∞∞ λ λ 2β2λ β(β+1)λ2 2 T || ||Lip | 1− 2| β(β+1) 1 + 1 | 3| ≤ 2b λ − λ λ2 ZZ 1 (cid:18) 2 2 (cid:19) 0 0 dUx (λ )dUx (λ ) n 1 1 n 1 2 − − 1 f o 2β2u β(β+1)o2 2 || ||Lip n−1 1 β(β+1) 0 + 0 ≤ 2b u − − o u2 (cid:18) n−1 (cid:19)(cid:18) 0 0 (cid:19) =:2B since 1≤ uonn ≤ uo00 and uonn ↓1 due|to Lemma 2. For{zT2 we finally hav}e f o Lip n 1 T2 x1 x2 || || − 1 B | | ≤ | − | b u − (cid:18) n−1 (cid:19) which together with the obvious estimate |T1|≤ ||f|b|Lip ·|x1−x2| yields 1+ on−1 1 B P f un−1 − f . || n ||Lip ≤ (cid:16) b (cid:17) || ||Lip (cid:3) Now we can proceed with the proofs of Theorems 4 and 5: Proof. of Thm. 4: We apply Prop. 1. Due to Prop. 8 we have o u o u χ∗k ≤ b−1 1+B k−1u− k−1 = b−1 1+Bbk01−u 0 . (cid:18) k−1 (cid:19) (cid:18) − k−1(cid:19) STABILITY OF THE OPTIMAL FILTER IN A HMM WITH MULTIPLICATIVE NOISE 9 For σˆ we find n ∞∞∞∞ σˆ = x x dΓ(λ ,q)(x )dΓ(λ ,q)(x )dU (λ )dU (λ ) n 1 2 1 1 2 2 n 1 n 2 | − | ZZZZ 0 0 0 0 1 2 ∞∞q(q+1) q2 q(q+1) 2 + dU (λ )dU (λ ) ≤  λ2 − λ λ λ2 n 1 n 2  ZZ 1 1 2 2 0 0 ≤ u−n1(2q(q+1))21  due to (12). Altogether this yields (10) and proves the theorem. (cid:3) Proof. of Thm. 5: We show that (bnun)−1 kn=−01 1+Bob0k−uuk0 vanishes almost surely if n goes to infinity: (cid:16) (cid:17) Q First note that n 1 n 1 k=−0(cid:18)1+Bo0bk−uku0(cid:19) ≤ exp(B(o0−u0)k=−0(bkuk)−1), Y X since 1+x expx for x R. Rememb≤er that bku =∈u + k bjy . Due to Lemma 2 we canfind δ >1 and k 0 j=1 j a random index J a.s. finite such that Y >(δb 1)j for all j J . Consequently, there is a j N wδith P j − ≥ δ δ ∈ (13) kn=−01 1+Bob0k−uuk0 exp B¯ jkδ=−01 u10 +B¯ kn=−j1δ δ1k , Q (cid:16)bnun (cid:17) ≤ n Pu0+ nj=jδδPj o where B¯ =B(o u ). The right hand side of (13) cPan be bounded for n j by 0 0 δ − ≥ exp B¯j exp B¯ δ (14) u0 δ δ−1 , n oδn n o which tends to 0 as (δ n) for n . (cid:3) − O →∞ 4. Stability in the Lp-norm In the setting of Theorem 4 the optimal filter is always stable in the Lp-norm for every p > 0 since the total variation norm is bounded by 1 and so almost sure convergence of the optimal filter implies E πY1:n π˜Y1:n p 0, n , || n − n ||var → →∞ by dominated convergence. (cid:0) (cid:1) Moreover,for some values of p we can specify the rates of this convergence: Theorem 9. For p 0, u0 lnE(Wβ) we find ∈ −B¯ 1 (cid:16) (cid:17) E πY1:n π˜Y1:n p = (ρn), n , || n − n ||var O →∞ where ρ= E(W1β)ep(cid:0)uB0¯ p+pβ and B¯ = o0(cid:1)−2u0 β(β+1)− 2βo20u0 + β(βu+201)o20 21. (cid:16) (cid:17) (cid:16) (cid:17) 10 BIRGITDEBRABANTANDWILHELMSTANNAT Note that the theorem achieves lower rates than those in the pure Gamma case since p E(W1β)epuB0¯ p+β ≥ E(W1β)p+pβ ≥ E(W1pp+ββ) ≥ E(W1p). The proo(cid:16)f is based o(cid:17)n Theorem 5 and the bound (14) for the total variation distance. ConsiderfirstthefollowingLemmaspecifyingthebehavioroftherandom index J introduced in the proof of Thm. 5. δ Lemma 10. Let 0<δ <E(W1β)−β1. For J = inf k N:bjY >δj for all j k δ j { ∈ ≥ } we find E Xβ 0 (15) P(J >n) qn, n N , δ ≤ Γ(β+(cid:16)1)(1(cid:17) q) ∈ 0 − where q =δβE(Wβ). 1 Proof. Using (9) we have for n N 0 ∈ ∞ P(J >n) = P bjY δj P bjY δj δ ∪∞j=n{ j ≤ } ≤ j ≤ j=n (cid:0) (cid:1) X (cid:0) (cid:1) E X0β qn . ≤ Γ(β(cid:16)+1(cid:17)) · 1 q − (cid:3) Proof. of Thm. 9: First note that for s 0 ≥ ∞ E esJδ =1+(es 1) esnP(Jδ >n). − n=0 (cid:0) (cid:1) X Due to Lemma 10 the expectation is finite if esq <1, where q =δβE(Wβ). 1 1 Now let δ = E(W1β)epuB0¯ −p+β. Then δ satisfies 1 < δ < E(W1β)−β1. Now, Lemma 10 applie(cid:16)s and we obt(cid:17)ain from (14) that E πY1:n π˜Y1:n p || n − n ||var (cid:0)≤ Q||h0||LipE ep(cid:1)B¯δ−δ1eδpuBp0¯nJδ1l{Jδ≤n}+epuB0¯n1l{Jδ>n}! ≤ Q||h0||LipepB¯δ−δ1E(cid:16)eδppunB0¯Jδ(cid:17) +epuB0¯nP(Jδ >n)   ≤ Q||h0||LipepB¯δ−δ1E(cid:16)eδppunB0¯Jδ(cid:17) + ΓE(β(cid:16)X+0β1(cid:17))epuB0¯nqn,   whichtends to 0 as (ρn) since epuB0¯q =δ−p =ρ andρ<1 due to the assumptions on p. O (cid:3)

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.