ebook img

Stability of dynamical systems: continuous, discontinuous, and discrete systems PDF

515 Pages·2008·2.786 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Stability of dynamical systems: continuous, discontinuous, and discrete systems

Systems & Control: Foundations & Applications SeriesEditor TamerBas¸ar,UniversityofIllinoisatUrbana-Champaign EditorialBoard KarlJohanA˚stro¨m,LundUniversityofTechnology,Lund,Sweden Han-FuChen,AcademiaSinica,Beijing WilliamHelton,UniversityofCalifornia,SanDiego AlbertoIsidori,UniversityofRome(Italy)and WashingtonUniversity,St.Louis PetarV.Kokotovic´,UniversityofCalifornia,SantaBarbara AlexanderKurzhanski,RussianAcademyofSciences,Moscow andUniversityofCalifornia,Berkeley H.VincentPoor,PrincetonUniversity MeteSoner,Koc¸ University,Istanbul Anthony N. Michel Ling Hou Derong Liu Stability of Dynamical Systems Continuous, Discontinuous, and Discrete Systems Birkha¨user Boston • Basel • Berlin AnthonyN.Michel LingHou DepartmentofElectricalEngineering DepartmentofElectricaland UniversityofNotreDame ComputerEngineering NotreDame,IN46556 St.CloudStateUniversity U.S.A. St.Cloud,MN56301 U.S.A. DerongLiu DepartmentofElectricaland ComputerEngineering UniversityofIllinoisatChicago Chicago,IL60607 U.S.A. MathematicsSubjectClassification:15-XX,15A03,15A04,15A06,15A09,15A15,15A18,15A21, 15A42, 15A60, 15A63, 26-XX, 26Axx, 26A06, 26A15, 26A16, 26A24, 26A42, 26A45, 26A46, 26A48,26Bxx,26B05,26B10,26B12,26B20,26B30,26E05,26E10,26E25,34-XX,34-01,34Axx, 34A12,34A30,34A34,34A35,34A36,34A37,34A40,34A60,34Cxx,34C25,34C60,34Dxx,34D05, 34D10,34D20,34D23,34D35,34D40,34Gxx,34G10,34G20,34H05,34Kxx,34K05,34K06,34K20, 34K30,34K40,35-XX,35Axx,35A05,35Bxx,35B35,35Exx,35E15,35F10,35F15,35F25,35F30, 35Gxx,35G10,35G15,35G25,35G30,35Kxx,35K05,35K25,35K30,35K35,35Lxx,35L05,35L25, 35L30,35L35,37-XX,37-01,37C75,37Jxx,37J25,37N35,39-XX,39Axx,39A11,45-XX,45A05, 45D05,45J05,45Mxx,45M10,46-XX,46Bxx,46B25,46Cxx,46E35,46N20,47-XX,47Axx,47A10, 47B44, 47Dxx, 47D03, 47D06, 47D60, 47E05, 47F05, 47Gxx, 47G20, 47H06, 47H10, 47H20, 54-XX, 54E35, 54E45, 54E50, 70-XX, 70Exx, 70E50, 70Hxx, 70H14, 70Kxx, 70K05, 70K20, 93-XX,93B18,93C10,93C15,93C20,93C23,93C62,93C65,93C73,93Dxx,93D05,93D10,93D20, 93D30 LibraryofCongressControlNumber:2007933709 ISBN-13:978-0-8176-4486-4 e-ISBN-13:978-0-8176-4649-3 Printedonacid-freepaper. (cid:1)c2008Birkha¨userBoston Allrightsreserved.Thisworkmaynotbetranslatedorcopiedinwholeorinpartwithoutthewrit- tenpermissionofthepublisher(Birkha¨userBoston,c/oSpringerScience+BusinessMediaLLC,233 SpringStreet,NewYork,NY10013,USA),exceptforbriefexcerptsinconnectionwithreviewsor scholarlyanalysis.Useinconnectionwithanyformofinformationstorageandretrieval,electronic adaptation,computersoftware,orbysimilarordissimilarmethodologynowknownorhereafterde- velopedisforbidden. Theuseinthispublicationoftradenames,trademarks,servicemarksandsimilarterms,evenifthey arenotidentifiedassuch,isnottobetakenasanexpressionofopinionastowhetherornottheyare subjecttoproprietaryrights. 987654321 www.birkhauser.com (Lap/MP) To our families Contents Preface xi 1 Introduction 1 1.1 DynamicalSystems . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 ABriefPerspectiveontheDevelopmentofStabilityTheory . . . . 4 1.3 ScopeandContentsoftheBook . . . . . . . . . . . . . . . . . . . 6 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2 DynamicalSystems 17 2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.2 DynamicalSystems . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.3 OrdinaryDifferentialEquations . . . . . . . . . . . . . . . . . . . 20 2.4 OrdinaryDifferentialInequalities. . . . . . . . . . . . . . . . . . . 26 2.5 DifferenceEquationsandInequalities . . . . . . . . . . . . . . . . 26 2.6 DifferentialEquationsandInclusionsDefinedonBanachSpaces . . 28 2.7 FunctionalDifferentialEquations. . . . . . . . . . . . . . . . . . . 31 2.8 VolterraIntegrodifferentialEquations . . . . . . . . . . . . . . . . 34 2.9 Semigroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 2.10 PartialDifferentialEquations . . . . . . . . . . . . . . . . . . . . . 46 2.11 CompositeDynamicalSystems . . . . . . . . . . . . . . . . . . . . 51 2.12 DiscontinuousDynamicalSystems . . . . . . . . . . . . . . . . . . 52 2.13 NotesandReferences . . . . . . . . . . . . . . . . . . . . . . . . . 59 2.14 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 3 FundamentalTheory: ThePrincipalStabilityandBoundedness ResultsonMetricSpaces 71 3.1 SomeQualitativeCharacterizationsofDynamicalSystems . . . . . 73 3.2 ThePrincipalLyapunovandLagrangeStabilityResultsfor DiscontinuousDynamicalSystems . . . . . . . . . . . . . . . . . . 82 vii viii Contents 3.3 ThePrincipalLyapunovandLagrangeStabilityResultsfor ContinuousDynamicalSystems . . . . . . . . . . . . . . . . . . . 92 3.4 ThePrincipalLyapunovandLagrangeStabilityResultsfor Discrete-TimeDynamicalSystems . . . . . . . . . . . . . . . . . . 103 3.5 ConverseTheoremsforDiscontinuousDynamicalSystems . . . . . 112 3.6 ConverseTheoremsforContinuousDynamicalSystems . . . . . . 125 3.7 ConverseTheoremsforDiscrete-TimeDynamicalSystems . . . . . 133 3.8 Appendix: SomeBackgroundMaterialonDifferentialEquations . . 137 3.9 NotesandReferences . . . . . . . . . . . . . . . . . . . . . . . . . 141 3.10 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 4 FundamentalTheory: SpecializedStabilityandBoundedness ResultsonMetricSpaces 149 4.1 AutonomousDynamicalSystems . . . . . . . . . . . . . . . . . . . 149 4.2 InvarianceTheory . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 4.3 ComparisonTheory . . . . . . . . . . . . . . . . . . . . . . . . . . 158 4.4 UniquenessofMotions . . . . . . . . . . . . . . . . . . . . . . . . 165 4.5 NotesandReferences . . . . . . . . . . . . . . . . . . . . . . . . . 167 4.6 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 5 ApplicationstoaClassofDiscrete-EventSystems 173 5.1 AClassofDiscrete-EventSystems . . . . . . . . . . . . . . . . . . 173 5.2 StabilityAnalysisofDiscrete-EventSystems . . . . . . . . . . . . 175 5.3 AnalysisofaManufacturingSystem . . . . . . . . . . . . . . . . . 176 5.4 LoadBalancinginaComputerNetwork . . . . . . . . . . . . . . . 179 5.5 NotesandReferences . . . . . . . . . . . . . . . . . . . . . . . . . 181 5.6 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 6 Finite-DimensionalDynamicalSystems 185 6.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 6.2 ThePrincipalStabilityandBoundednessResultsforOrdinary DifferentialEquations . . . . . . . . . . . . . . . . . . . . . . . . . 199 6.3 ThePrincipalStabilityandBoundednessResultsforOrdinary DifferenceEquations . . . . . . . . . . . . . . . . . . . . . . . . . 211 6.4 ThePrincipalStabilityandBoundednessResultsforDiscontinuous DynamicalSystems . . . . . . . . . . . . . . . . . . . . . . . . . . 219 6.5 ConverseTheoremsforOrdinaryDifferentialEquations. . . . . . . 232 6.6 ConverseTheoremsforOrdinaryDifferenceEquations . . . . . . . 241 Contents ix 6.7 ConverseTheoremsforFinite-DimensionalDDS . . . . . . . . . . 243 6.8 Appendix: SomeBackgroundMaterialonDifferentialEquations . . 245 6.9 NotesandReferences . . . . . . . . . . . . . . . . . . . . . . . . . 249 6.10 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253 7 Finite-DimensionalDynamicalSystems: SpecializedResults 255 7.1 AutonomousandPeriodicSystems . . . . . . . . . . . . . . . . . . 256 7.2 InvarianceTheory . . . . . . . . . . . . . . . . . . . . . . . . . . . 258 7.3 DomainofAttraction . . . . . . . . . . . . . . . . . . . . . . . . . 263 7.4 LinearContinuous-TimeSystems . . . . . . . . . . . . . . . . . . 266 7.5 LinearDiscrete-TimeSystems . . . . . . . . . . . . . . . . . . . . 285 7.6 PerturbedLinearSystems . . . . . . . . . . . . . . . . . . . . . . . 295 7.7 ComparisonTheory . . . . . . . . . . . . . . . . . . . . . . . . . . 316 7.8 Appendix: BackgroundMaterialonDifferentialEquationsand DifferenceEquations . . . . . . . . . . . . . . . . . . . . . . . . . 320 7.9 NotesandReferences . . . . . . . . . . . . . . . . . . . . . . . . . 328 7.10 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335 8 ApplicationstoFinite-DimensionalDynamicalSystems 337 8.1 AbsoluteStabilityofRegulatorSystems . . . . . . . . . . . . . . . 338 8.2 HopfieldNeuralNetworks . . . . . . . . . . . . . . . . . . . . . . 344 8.3 DigitalControlSystems. . . . . . . . . . . . . . . . . . . . . . . . 353 8.4 Pulse-Width-ModulatedFeedbackControlSystems . . . . . . . . . 364 8.5 DigitalFilters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376 8.6 NotesandReferences . . . . . . . . . . . . . . . . . . . . . . . . . 387 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389 9 Infinite-DimensionalDynamicalSystems 395 9.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 396 9.2 ThePrincipalLyapunovStabilityandBoundednessResultsfor DifferentialEquationsinBanachSpaces . . . . . . . . . . . . . . . 398 9.3 ConverseTheoremsforDifferentialEquationsinBanachSpaces . . 408 9.4 InvarianceTheoryforDifferentialEquationsinBanachSpaces . . . 409 9.5 ComparisonTheoryforDifferentialEquationsinBanachSpaces . . 413 9.6 CompositeSystems . . . . . . . . . . . . . . . . . . . . . . . . . . 415 9.7 AnalysisofaPointKineticsModelofaMulticoreNuclearReactor . 420 9.8 ResultsforRetardedFunctionalDifferentialEquations . . . . . . . 423 9.9 ApplicationstoaClassofArtificialNeuralNetworkswithTime Delays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 438 x Contents 9.10 DiscontinuousDynamicalSystemsDeterminedbyDifferential EquationsinBanachSpaces . . . . . . . . . . . . . . . . . . . . . 449 9.11 DiscontinuousDynamicalSystemsDeterminedbySemigroups . . . 463 9.12 NotesandReferences . . . . . . . . . . . . . . . . . . . . . . . . . 479 9.13 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 480 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 486 Index 489 Preface Intheanalysisandsynthesisofcontemporarysystems, engineersandscientistsare frequently confronted with increasingly complex models that may simultaneously includecomponentswhosestatesevolvealongcontinuoustime(continuousdynam- ics)anddiscreteinstants(discretedynamics); componentswhosedescriptionsmay exhibit hysteresis nonlinearities, time lags or transportation delays, lumped param- eters, spatiallydistributedparameters, uncertaintiesintheparameters, andthelike; andcomponentsthatcannotbedescribedbytheusualclassicalequations(ordinary differentialequations,differenceequations,functionaldifferentialequations,partial differential equations, and Volterra integrodifferential equations), as in the case of discrete-eventsystems,logiccommands,Petrinets,andthelike. Thequalitativeanal- ysisofsystemsofthistypemayrequireresultsforfinite-dimensionalsystemsaswell asinfinite-dimensionalsystems;continuous-timesystemsaswellasdiscrete-timesys- tems;continuouscontinuous-timesystemsaswellasdiscontinuouscontinuous-time systems(DDS);andhybridsystemsinvolvingamixtureofcontinuousanddiscrete dynamics. Presently,therearenobooksonstabilitytheorythataresuitabletoserveasasingle sourcefortheanalysisofsystemmodelsofthetypedescribedabove. Mostexisting engineeringtextsonstabilitytheoryaddressfinite-dimensionalsystemsdescribedby ordinary differential equations, and discrete-time systems are frequently treated as analogousafterthoughts,orarerelegatedtobooksonsampled-datacontrolsystems. On the other hand, books on the stability theory of infinite-dimensional dynamical systemsusuallyfocusonspecificclassesofsystems(determined,e.g.,byfunctional differentialequations,partialdifferentialequations,andsoforth). Finally,theliter- atureonthestabilitytheoryofdiscontinuousdynamicalsystems(DDS)ispresently scatteredthroughoutjournalsandconferenceproceedings. Consequently,tobecome reasonablyproficientinthestabilityanalysisofcontemporarydynamicalsystemsof thetypedescribedabovemayrequireconsiderableinvestmentoftime. Thepresent bookaimstofillthisvoid. Toaccomplishthis, thebookaddressesfourgeneralar- eas: therepresentationandmodelingofavarietyofdynamicalsystemsofthetype describedabove;thepresentationoftheLyapunovandLagrangestabilitytheoryfor dynamical systems defined on general metric spaces; the specialization of this sta- bilitytheorytofinite-dimensionaldynamicalsystems;andthespecializationofthis stabilitytheorytoinfinite-dimensionaldynamicalsystems. Throughoutthebook,the applicabilityofthedevelopedtheoryisdemonstratedbymeansofnumerousspecific examplesandapplicationstoimportantclassesofsystems. xi

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.