ebook img

Stability, Approximation, and Decomposition in Two- and Multistage Stochastic Programming PDF

178 Pages·2009·1.77 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Stability, Approximation, and Decomposition in Two- and Multistage Stochastic Programming

Christian Küchler Stability, Approximation, and Decomposition in Two- and Multistage Stochastic Programming VIEWEG+TEUBNER RESEARCH Stochastic Programming Editor: Prof. Dr. Rüdiger Schultz Uncertainty is a prevailing issue in a growing number of optimization prob- lems in science, engineering, and economics. Stochastic programming offers a flexible methodology for mathematical optimization problems involving uncertain parameters for which probabilistic information is avail - able. This covers model formulation, model analysis, numerical solution m ethods, and practical implementations. The series ”Stochastic Program- ming“ presents original research from this range of topics. Christian Küchler Stability, Approximation, and Decomposition in Two- and Multistage Stochastic Programming VIEWEG+TEUBNER RESEARCH Bibliografische Information der Deutschen Nationalbibliothek Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über <http://dnb.d-nb.de> abrufbar. Dissertation Humboldt-Universität zu Berlin, 2009 1. Auflage 2009 Alle Rechte vorbehalten © Vieweg+Teubner|GWV Fachverlage GmbH, Wiesbaden 2009 Lektorat: Dorothee Koch | Anita Wilke Vieweg+Teubner ist Teil der Fachverlagsgruppe Springer Science+Business Media. www.viewegteubner.de Das Werk einschließlich aller seiner Teile ist urheberrechtlich g es chützt. Jede Verwertung außerhalb der engen Grenzen des Ur heber rechts ge - set zes ist ohne Zustimmung des Verlags unzuläs sig und straf bar. Das gilt ins be sondere für Vervielfältigungen, Über setzun gen, Mikro verfil mungen und die Eins peicher ung und Vera rb eitung in elekt ron ischen S ystem en. Die Wiedergabe von Gebrauchsnamen, Handelsnamen, Warenbezeichnungen usw. indiesem Werk berechtigt auch ohne besondere Kennzeichnung nicht zu der Annahme, dass solche Namen im S inne der Warenzeichen- und Markenschutz-Gesetzgebung als frei zu betrachten wären und daher von jedermann benutzt werden dürften. Umschlaggestaltung: KünkelLopka Medienentwicklung, Heidelberg Druck und buchbinderische Verarbeitung: STRAUSS GMBH, Mörlenbach Gedruckt auf säurefreiem und chlorfrei gebleichtem Papier. Printed in Germany ISBN 978-3-8348-0921-6 To my parents Preface Thepresentdoctoralthesishasbeendevelopedduringmyemploymentatthe Department of Mathematics at Humboldt-Universität zu Berlin. This em- ploymentwasenabledandsupportedbytheBundesministerium für Bildung und Forschung and the Wiener Wissenschafts-, Forschungs- und Technolo- giefonds. First of all, it is a great pleasure to express my gratitude to my advisor Prof.Werner Römisch who enabled for me a most pleasant and inspiring time at Humboldt-Universität. Prof.Römisch supported me with numerous discussions and suggestions, incessantly encouraged me to follow my own ideas, and made me attend various workshops and conferences that gave me many opportunities to present and discuss my work. Very special thanks also go to my colleague Stefan Vigerske from Hum- boldt-Universität for the intensive collaboration whose results are also part of this thesis. In particular, it was his profound knowledge in optimization and programming which had allowed to implement the recombining tree de- compositionapproachinthepresentform. Iwouldalsoliketothankhimfor never tiring to discuss the many facets of computer manipulation as well as mathematics. Special thanks also go to Prof.René Henrion from Weierstraß-Institut in Berlin for the very pleasant and fruitful collaboration on scenario reduction, resulting in parts of this thesis. I also want to thank him for numerous motivating and inspiring discussions. I would also like to thank my colleaguesfrom the BMBF network for the successful cooperation, especially Alexa Epe from Ruhr-Universität Bochum and Oliver Woll from Universität Duisburg-Essen. Furthermore, I want to thank all of my friends and colleagues from Humboldt-Universität for their support, many helpful discussions, and the enjoyable common coffee breaks. In particular, I thank Dr.Andreas Eichhorn, Thomas Surowiec, and, once again, Stefan Vigerske for proofreading parts of this thesis. I also want to thank Dr.Holger Heitsch for providing me his scenred software. Finally, I want to express my deepest gratitude to my family for all their loveandsupport,and,inparticular,toKonnyforhavingbeensostrongand patient during the last years. Christian Küchler Contents 1 Introduction 1 1.1 Stochastic Programming Models . . . . . . . . . . . . . . . . . 1 1.2 Approximations, Stability, and Decomposition . . . . . . . . . 4 1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2 Stability of Multistage Stochastic Programs 9 2.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . 10 2.2 Continuity of the Recourse Function . . . . . . . . . . . . . . 13 2.3 Approximations . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.4 Calm Decisions . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.5 Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3 Recombining Trees for Multistage Stochastic Programs 33 3.1 Problem Formulation and Decomposition . . . . . . . . . . . . 35 3.1.1 Nested Benders Decomposition . . . . . . . . . . . . . 37 3.1.2 Cut Sharing . . . . . . . . . . . . . . . . . . . . . . . . 38 3.1.3 Recombining Scenario Trees . . . . . . . . . . . . . . . 39 3.2 An Enhanced Nested Benders Decomposition . . . . . . . . . 40 3.2.1 Cutting Plane Approximations. . . . . . . . . . . . . . 41 3.2.2 Dynamic Recombining of Scenarios . . . . . . . . . . . 45 3.2.3 Upper Bounds . . . . . . . . . . . . . . . . . . . . . . . 51 3.2.4 Extended Solution Algorithm . . . . . . . . . . . . . . 53 3.3 Construction of Recombining Trees . . . . . . . . . . . . . . . 55 3.3.1 A Tree Generation Algorithm . . . . . . . . . . . . . . 57 3.3.2 Consistency of the Tree Generation Algorithm . . . . . 60 3.4 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 3.4.1 A Power Scheduling Problem . . . . . . . . . . . . . . 77 3.4.2 Numerical Results . . . . . . . . . . . . . . . . . . . . 79 3.5 Out-of-Sample Evaluation . . . . . . . . . . . . . . . . . . . . 83 3.5.1 Problem Formulation . . . . . . . . . . . . . . . . . . . 84 3.5.2 Towards Feasible Solutions . . . . . . . . . . . . . . . . 85 x Contents 3.5.3 Numerical Examples . . . . . . . . . . . . . . . . . . . 89 4 Scenario Reduction with Respect to Discrepancy Distances 97 4.1 Discrepancy Distances . . . . . . . . . . . . . . . . . . . . . . 98 4.2 On Stability of Two-Stage and Chance-Constrained Programs 100 4.3 Scenario Reduction . . . . . . . . . . . . . . . . . . . . . . . . 105 4.4 Bounds and Specific Solutions . . . . . . . . . . . . . . . . . . 106 4.4.1 Ordered Solution and Upper Bound . . . . . . . . . . . 106 4.4.2 Lower Bound . . . . . . . . . . . . . . . . . . . . . . . 110 4.5 The Inner Problem . . . . . . . . . . . . . . . . . . . . . . . . 113 4.5.1 Critical Index Sets . . . . . . . . . . . . . . . . . . . . 114 4.5.2 Reduced Critical Index Sets . . . . . . . . . . . . . . . 115 4.5.3 Determining the Coefficients . . . . . . . . . . . . . . . 116 4.5.4 Optimal Redistribution Algorithm. . . . . . . . . . . . 121 4.6 The Outer Problem . . . . . . . . . . . . . . . . . . . . . . . . 124 4.6.1 Revising Heuristics . . . . . . . . . . . . . . . . . . . . 124 4.6.2 A Glimpse on Low Discrepancy Sequences . . . . . . . 127 4.6.3 A Branch and Bound Approach . . . . . . . . . . . . . 127 4.7 Numerical Experience. . . . . . . . . . . . . . . . . . . . . . . 131 4.8 Further Results . . . . . . . . . . . . . . . . . . . . . . . . . . 138 4.8.1 A Note on Extended Discrepancies . . . . . . . . . . . 138 4.8.2 Mass Transportation and Clustering . . . . . . . . . . 140 4.8.3 An Estimation between Discrepancies . . . . . . . . . . 144 Appendix 153 Bibliography 159 List of Figures 3.1 Recombining and non-recombining scenario trees. . . . . . . . 40 3.2 Electricity demand and wind turbine power curve . . . . . . . 78 3.3 Out-of-sample values for the power scheduling model . . . . . 91 3.4 Out-of-sample values for the swing option model . . . . . . . . 95 4.1 Recourse function of Example 4.2.1 . . . . . . . . . . . . . . . 104 4.2 Supporting and non-supporting polyhedra . . . . . . . . . . . 117 4.3 Rectangular discrepancy for different reduction techniques . . 125 4.4 Cumulative distribution functions of Example 4.6.1 . . . . . . 126 4.5 Cell discrepancy and running time for the Forward Selection. . 134 4.6 Low discrepancy points with adjusted probabilities . . . . . . 135 4.7 Perturbation of the optimal value of Example 4.7.1 . . . . . . 136 4.8 Recourse function of Example 4.7.2 . . . . . . . . . . . . . . . 137 4.9 Perturbation of the optimal value of Example 4.7.2 . . . . . . 138 4.10 Probabilities adjusted with respect to αBrect and ζ2 . . . . . . 142 4.11 αBrect and ζ2 for different weighting factors . . . . . . . . . . . 143 4.12 Optimal mass transportation with respect to αBrect and ζ2 . . 144 4.13 A polyhedron and the corresponding set M∦ . . . . . . . . . . 147 4.14 Enlargements of a polyhedron . . . . . . . . . . . . . . . . . . 149 4.15 Polyhedral singularity of multivariate normal distributions . . 151

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.