ebook img

Stability and Vibrations of Thin Walled Composite Structures PDF

756 Pages·2017·55.73 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Stability and Vibrations of Thin Walled Composite Structures

Related titles FailureMechanismsinPolymerMatrixComposites (ISBN:978-1-84569-750-1) CreepandFatigueinPolymerMatrixComposites (ISBN:978-1-84569-656-6) FatigueLifePredictionofCompositesandCompositeStructures (ISBN:978-1-84569-525-5) Woodhead Publishing Series in Composites Science and Engineering Stability and Vibrations of Thin-Walled Composite Structures Edited by Haim Abramovich Technion, I.I.T., Haifa, Israel WoodheadPublishingisanimprintofElsevier TheOfficers’MessBusinessCentre,RoystonRoad,Duxford,CB224QH,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates TheBoulevard,LangfordLane,Kidlington,OX51GB,UnitedKingdom Copyright©2017ElsevierLtd.Allrightsreserved. Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans, electronicormechanical,includingphotocopying,recording,oranyinformationstorageand retrievalsystem,withoutpermissioninwritingfromthepublisher.Detailsonhowtoseek permission,furtherinformationaboutthePublisher’spermissionspoliciesandour arrangementswithorganizationssuchastheCopyrightClearanceCenterandtheCopyright LicensingAgency,canbefoundatourwebsite:www.elsevier.com/permissions. Thisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightby thePublisher(otherthanasmaybenotedherein). Notices Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchand experiencebroadenourunderstanding,changesinresearchmethods,professionalpractices, ormedicaltreatmentmaybecomenecessary. Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgein evaluatingandusinganyinformation,methods,compounds,orexperimentsdescribed herein.Inusingsuchinformationormethodstheyshouldbemindfuloftheirownsafetyand thesafetyofothers,includingpartiesforwhomtheyhaveaprofessionalresponsibility. Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors, assumeanyliabilityforanyinjuryand/ordamagetopersonsorpropertyasamatterof productsliability,negligenceorotherwise,orfromanyuseoroperationofanymethods, products,instructions,orideascontainedinthematerialherein. LibraryofCongressCataloging-in-PublicationData AcatalogrecordforthisbookisavailablefromtheLibraryofCongress BritishLibraryCataloguing-in-PublicationData AcataloguerecordforthisbookisavailablefromtheBritishLibrary ISBN:978-0-08-100410-4(print) ISBN:978-0-08-100429-6(online) ForinformationonallWoodheadPublishingpublicationsvisit ourwebsiteathttps://www.elsevier.com/books-and-journals Publisher:MatthewDeans AcquisitionEditor:GwenJones EditorialProjectManager:CharlotteCockle ProductionProjectManager:StalinViswanathan Designer:AlanStudholme TypesetbyTNQBooksandJournals List of contributors HaimAbramovich Technion, I.I.T., Haifa, Israel MarianoArbelo ITA,AeronauticsInstituteofTechnology,S~aoJosédosCampos, Brazil Jan Błachut The University ofLiverpool, Liverpool,UnitedKingdom Saullo G.P. Castro Embraer,S~aoJosé dosCampos,Brazil F(cid:2)abioRibeiro Soaresda Cunha Embraer, S~ao José dos Campos, Brazil Richard Degenhardt German Aerospace Center (DLR), Institute for Composite Structures and Adaptive Systems, Braunschweig, Germany; PFH, Private University of Applied Sciences G€ottingen, Composite EngineeringCampusStade, Germany Michele D’Ottavio UPL, Université Paris Nanterre, Ville d’Avray, France FiorenzoA. Fazzolari University ofCambridge, Cambridge, United Kingdom Christian Hu€hne German Aerospace Center (DLR), Institute for Composite Structures and Adaptive Systems, Braunschweig,Germany Eelco Jansen Leibniz Universit€at Hannover, Hannover, Germany K. Kalnins Riga Technical University, Riga,Latvia Steffen Niemann German Aerospace Center (DLR), Institute for Composite Structures and Adaptive Systems, Braunschweig,Germany Adrian Orifici RMIT University, Melbourne, VIC, Australia Olivier Polit UPL, Université Paris Nanterre,Ville d’Avray, France TanvirRahman DIANA FEA BV,Delft, Netherlands Khakimova Regina INVENTGmbH, Braunschweig, Germany Ronald Wagner German Aerospace Center (DLR), Institute for Composite Struc- tures and Adaptive Systems,Braunschweig,Germany A. Wieder Griphus e Aerospace Engineering and Manufacturing Ltd., Tel Aviv, Israel 1 Introduction to composite materials Haim Abramovich Technion, I.I.T., Haifa, Israel 1.1 Introduction 1.1.1 General introduction Oneofthedefinitionsforacompositematerial,madeoftwoconstituents,oneisfiber (thereinforcement)andtheotherisglue(thematrix),statesthatacombinationofthe twomaterialswouldresultinpropertiesbetterthanthoseoftheindividualcomponents when they are used alone. The main advantages of composite materials over other existingmaterials,suchasmetalorplastics,aretheirhighstrengthandstiffness,com- binedwithlowdensity,allowingforweightreductioninthefinishedpart.Thevarious types of composites are usually referred in the literature, as a block diagram, as depicted in Fig. 1.1. In this chapter, when we are discussing a composite material, werestrictourselvestocontinuousfibers(reinforcements)beingembeddedinthema- trix in theform of an adequateglue. Examples of such continuous reinforcements include unidirectional, woven cloth, and helical winding (see Fig. 1.2). Continuous-fiber composites are often made into laminates by stacking single sheets of continuous fibers in different orientations to obtain the desired strength and stiffness properties with fiber volumes as high as 60%e70%.Fibersproducehigh-strengthcompositesbecauseoftheirsmalldiameter; Composites Particle - Fiber - Structural reinforced reinforced Large Dispersion Continuous Discontinuous Laminates Sandwich particles strengthened (aligned) (short) Randomly Aligned oriented Figure1.1 Typicalcompositematerials. StabilityandVibrationsofThin-WalledCompositeStructures.http://dx.doi.org/10.1016/B978-0-08-100410-4.00001-6 Copyright©2017ElsevierLtd.Allrightsreserved. 2 StabilityandVibrationsofThin-WalledCompositeStructures (a) (b) (c) 0° 0° / 90° ±30° Figure1.2 Typicalcompositematerials:(a)unidirectionalfiber,(b)wovencloth(two directions),and(c)filamentwinding. theycontainfarfewerdefects(normallysurfacedefects)comparedtothematerialpro- ducedin bulk. In addition, because oftheirsmall diameter the fibers areflexible and suitable for complicated manufacturing processes, such as small radii or weaving. Materials such as glass, graphite, carbon, and aramid are used to produce fibers (see typical properties in Table 1.1). The present usage of composite materials is mainly drivenby theaerospacesector,with alarge percentageofthe modern airplane struc- tures, such as Boeing 787 or Airbus A380 (see Fig. 1.3), being manufactured from carbon,glass,andaramidfibers.Themainmaterialforthematrixisapolymer,which haslowstrengthandstiffness.Themainfunctionsofthematrixaretokeepthefibersin properorientationandspacingandtoprotectthefiberfromabrasionandtheenviron- ment.Inpolymermatrixcomposites,thegoodandstrongbondbetweenthematrixand thereinforcementallowsthematrixtotransmittheoutsideloadsfromthematrixtothe fibersthroughshearloadingattheinterface.Two typesofpolymermatricesareavail- able: thermosets and thermoplastics. A thermoset starts as a low-viscosity resin that reacts and cures during processing, forming a solid. A thermoplastic is a high- viscosity resin that is processed by heating it above its melting temperature. Because athermosetresinsetsupandcuresduringprocessing,itcannotbereprocessedbyreheat- ing. A thermoplastic can be reheated above its melting temperature for additional processing. 1.2 Unidirectional composites Unidirectionalcompositesareusuallycomposedoftwoconstituents,thefiberandthe matrix(whichistheglueholdingthetwocomponentstogether).Basedontheruleof mixtures,onecancalculatethepropertiesoftheunidirectionallayerbasedontheprop- ertiesofthefibersandthematrixandtheirvolumefracture.Theassumptiontobemade whenapplyingtheruleofmixturesisthatthetwoconstituentsarebondedtogetherand theybehavelikeasinglebody.Thelongitudinalmodulus(orthemajormodulus),E , 11 of thelayer can bewritten as E11 ¼EfVf þEmVm (1.1) Introductiontocompositematerials 3 Table1.1 Typical properties of mostly used reinforced continuous fibers Young’s Tensile Density, Typicalfiber modulus, strength Material Tradename r(kg/m2) diameter(mm) E(GPa) (GPa) a-Al O (aluminum FP(US) 3960 20 385 1.8 2 3 oxide) Al O þSiO þB O Nextel480 3050 11 224 2.3 2 3 2 2 3 (mullite) (USA) Al O þSiO Altex(Japan) 3300 10e15 210 2.0 2 3 2 (alumina-silica) Boron(CVDaon VMC(Japan) 2600 140 410 4.0 tungsten) Carbon(PANb T300(Japan) 1800 7 230 3.5 precursor) Carbon(PANb T800(Japan) 1800 5.5 295 5.6 precursor) Carbon(pitchc ThornelP755 2060 10 517 2.1 precursor) (USA) SiC(þO)(silicon Nicalon(Japan) 2600 15 190 2.5e3.3 carbide) SiC(lowO)(silicon Hi-Nicalon 2740 14 270 2.8 carbide) (Japan) SiC(þOþTi) Tyranno(Japan) 2400 9 200 2.8 (siliconcarbide) SiC(monofilament; Sigma 3100 100 400 3.5 siliconcarbide) E-glass(silica) 2500 10 70 1.5e2.0 E-glass(silica) 2500 10 70 1.5e2.0 Quartz(silica) 2200 3e15 80 3.5 Aromaticpolyamide Kevlar49 1500 12 130 3.6 (USA) Polyethylene Spectra1000 970 38 175 3.0 (UHMW)d (USA) High-carbonsteel E.g.,Pianowire 7800 250 210 2.8 Continued 4 StabilityandVibrationsofThin-WalledCompositeStructures Table1.1 Continued Young’s Tensile Density, Typicalfiber modulus, strength Material Tradename r(kg/m2) diameter(mm) E(GPa) (GPa) Aluminum Electricalwire 2680 1670 75 0.27 Titanium Wire 4700 250 115 0.434 aCVD,chemicalvapordeposition. bPAN,polyacrylonitrile.About90%ofthecarbonfiberproducedworldwidearemadefromPAN. cPitchisaviscoelasticmaterialthatiscomposedofaromatichydrocarbons.Pitchisproducedbythedistillationofcarbon-based materials,suchasplants,crudeoil,andcoal. dUHMW¼ultra-high-molecular-weightpolyethylene(orpolyethene,themostcommonplasticproducedintheworld)isasubsetofthe thermoplasticpolyethylene. FromB.Harris,EngineeringCompositeMaterials,TheInstituteofMaterials,London,UK,1999,193p.andR.M.Jones,Mechanicsof CompositeMaterials,seconded.,Taylor&Francis,Philadelphia,PA19106,USA,1999,519p. whereEfandEmarethelongitudinalmoduliforthefibersandthematrix,respectively, and Vfand Vm aretheirrespective volume fractions.1 The majorPoisson’s coefficient, y , isgiven by 12 y12 ¼yfVf þymVm (1.2) whereyfandymarethelongitudinalmoduliforthefibersandthematrix,respectively. TheminorPoisson’scoefficient,y ,willbecalculatedtobe 21 y y E 12 ¼ 21 0y ¼y 22 (1.3) E E 21 12E 11 22 11 The transverse modulus (or theminor modulus),E , ofthe layer isgiven as 22 E122 ¼VEff þVEmm 0E22 ¼VfEEmEmþVm ¼VfEEmþEðm1(cid:2)VfÞ (1.4) f f The shear modulus of thelayer, G , isgiven as 12 G112 ¼GVff þGVmm 0G12 ¼VfGGGmmþVm ¼VfGGmþGðm1(cid:2)VfÞ (1.5) f f 1 NotethatVf þVm¼1. Introductiontocompositematerials 5 Boeing 787 “dreamliner” composite structure (a) Materials used in 787 body Fiberglass Carbon laminate composite Total materials used Aluminum Carbon sandwich composite By weight Aluminum/steel/titanium Other Steel 5% Composites 10% 50% Titanium 15% Aluminum 20% By comparison, the 777 uses 12 percent composites and 50 percent aluminum. (b) Model aeroplane A380 composite components Outer wing Carbon fiber Wing box Allerons Vertical Tail cone Aramid fiber stabiliser Horizontal Glass fiber Flap-track stabiliser Hybrid (carbon + glass) fairings outer boxes Outer flap Fixed leading-edge Keel beam upper and lower panels Pressure bulkhead Belly fairing skins Over wing panel Trailing-edge upper and lower panels and shroud-box Spoilers Radome Main and centre landing-gear doors Nose landing- Main landing-gear gear doors Central leg-fairing door Pylon torsion box fairings Nacelle cowlings Figure1.3 Usageofcompositematerialsinaerospacestructures:(a)Boeing787and(b)Airbus A380. (a)BoeingIndustryand(b)AirbusIndustrie. whereGfand Gmare theshear moduli for the fibers andthe matrix, respectively. To assess and compare the differences between the properties of the fiber and the matrix, thereader isreferred toTable 1.2 . AsdescribedinRef.[1]thesimplemicromechanicsmodelusedintheruleofmix- turespredictswellthevaluesofthefourvariables,E ,E ,G ,andy ,ascompared 11 22 12 12 to experimentalvalues, ascan be seen inTable 1.3. 1.3 Properties of a single ply Aplyhastwomajordimensionsandanotherdimension,i.e.,thethickness,thatisvery small when compared to the two major ones. Therefore, the 3D presentation of an 6 StabilityandVibrationsofThin-WalledCompositeStructures Table1.2 Typical properties of T300 carbon fibers and 914 epoxy resin Property T300carbonfibers 914epoxyresinmatrix Young’smodulus,E(GPa) 220 3.3 Shearmodulus,G(GPa) 25 1.2 Poisson’sratio,y 0.15 0.37 FromB.Harris,EngineeringCompositeMaterials,TheInstituteofMaterials,London,UK,1999,193p. Table1.3 Predictions of unidirectional composite properties by the simple micromechanics model Predictedvalues Experimentalvalues Equations Relationship [moduliin(GPa)] [moduliin(GPa)] 1.1 E11¼EfVfþEm 124.7 125.0 (1(cid:2)Vf) 1.4 1 ¼Vf þð1(cid:2)VfÞ 7.4 9.1 E E E 22 f m 1.5 1 ¼Vf þð1(cid:2)VfÞ 2.6 5.0 G G G 12 f m 1.2 y12¼yfVfþym 0.25 0.34 (1(cid:2)Vf) AdaptedfromB.Harris,EngineeringCompositeMaterials,TheInstituteofMaterials,London,UK,1999,193p. orthotropicmaterialwillbesimplifiedtoa2Dpresentation(planestress)byassuming thats ¼0(seeRefs.[1,2]).Thisleadstoareducedcompliancematrixfortheplyin 33 the form 2 3 1 n 6 (cid:2) 21 0 7 8 9 6 E E 78 9 >><ε11>>= 66 1 2 77>><s11>>= 6 7 >>:ε22>>;¼6666(cid:2)nE112 E12 0 7777>>:s22>>; (1.6) g 6 7 s 12 4 1 5 12 0 0 G 12 Thethirdequationforthestraininthethicknessdirection,ε ,thatisseldomused 33 has thefollowing form g g ε ¼(cid:2) 13s (cid:2) 23s (1.7) 33 E 11 E 22 1 2

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.