ebook img

Stability and convergence analysis of the kinematically coupled scheme and its extensions for the fluid-structure interaction PDF

0.27 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Stability and convergence analysis of the kinematically coupled scheme and its extensions for the fluid-structure interaction

STABILITYANDCONVERGENCEANALYSISOFTHEEXTENSIONSOFTHEKINEMATICALLY COUPLEDSCHEMEFORTHEFLUID-STRUCTUREINTERACTION MARTINA BUKAC∗ ANDBORIS MUHA † Abstract. Inthisworkweanalyzethestabilityandconvergencepropertiesofaloosely-coupledscheme,calledthekinematicallycoupled 6 scheme,anditsextensionsfortheinteractionbetweenanincompressible,viscousfluidandathin,elasticstructure. Weconsiderabenchmark 1 problemwherethestructureismodeledusingageneralthinstructuremodel, andthecouplingbetweenthefluidandstructureislinear. We 0 derivetheenergyestimatesassociatedwiththeunconditionalstabilityofanextensionofthekinematicallycoupledscheme,calledtheb -scheme. 2 Furthermore,forthefirsttimewepresentaprioriestimatesshowingoptimal,first-orderintimeconvergenceinthecasewhenb =1.Wefurther discusstheextensionsofourresultstootherfluid-structureinteractionproblems,inparticularthefluid-thickstructureinteractionproblem.The g theoreticalstabilityandconvergenceresultsaresupportedwithnumericalexamples. u A Keywords.Fluid-structureinteraction,errorestimates,convergencerates,non-iterativescheme 9 AMSsubjectclassifications.Primary:65M15,74F10,Secondary:65M60,74S05,74H15,76M10 2 ] 1. Introduction. Theinteractionbetweenanincompressibleviscousfluidandanelasticstructurehasbeenof A greatinterestduetovariousapplicationsindifferentareas(seee.g.[8]).Thisproblemischaracterizedbyhighlynon- N linear couplingbetween two differentphysicalphenomena. As a result, a comprehensivestudy of such problems . remains a challenge [34]. The solution strategies for fluid-structure interaction (FSI) problems can be roughly h classifiedasmonolithicschemesandlooselyorstronglycoupledpartitionedschemes.Monolithicalgorithms,seefor t a example[7,29,41,27,43,35],consistofsolvingtheentirecoupledproblemasonesystemofalgebraicequations. m They, however, require well-designed preconditioners [27, 3, 33] and are generally quite expensive in terms of [ computational time and memory requirements. Hence, to obtain smaller and better conditioned sub-problems, 2 reducethecomputationalcostandtreateachphysicalphenomenonseparately,partitionednumericalschemesthat v solve the fluid problem separately from the structure problem have been a popular choice. The development of 4 partitionednumericalmethodsforFSIproblemshasbeenextensivelystudied[21,20,22,13,2,39,23,42,32,37,6, 6 5,24],butthedesignofefficientschemestoproducestable,accurateresultsremainsachallenge.Moreover,despite 6 therecentdevelopments,therearejustafewworkswheretheconvergenceisprovedrigorously[40,39,23,24]. 0 0 Aclassicalpartitionedscheme,particularlypopularinaerodynamics,isknownastheDirichlet-Neumann(DN) . partitionedscheme[17, 42, 26]. The DN scheme consistsof solvingthe fluid problemwith a Dirichletboundary 1 condition(structurevelocity)atthe fluid-structureinterface,andthestructureproblemwith a Neumannboundary 0 6 condition (fluid stress) at the interface. While the DN scheme features appealing properties such as modularity, 1 simpleimplementationandfastcomputationaltime, ithasbeenshownto bestable onlyif thestructuredensityis : muchlargerthanthefluiddensity. Thisrequirementiseasilyachievedinsomeapplicationslikeaerodynamics,but v i notin otherapplicationslike hemodynamicswhere the density of bloodis of the same order of magnitudeas the X density of arterial walls. In these cases, the energyof the discrete problemin the DN partitionedalgorithm does r notaccuratelyapproximatetheenergyofthecontinuousproblem,introducingnumericalinstabilitiesknownasthe a addedmasseffect[17].Apartialsolutiontothisproblemistosub-iteratethefluidandstructuresub-problemsateach timestepuntiltheenergyatthefluid-structureinterfaceisbalanced. However,schemesthatrequiresub-iterations, also knownas stronglycoupledschemes, are computationallyexpensiveand may sufferfrom convergenceissues forcertainparametervalues[17,26]. To circumventthese difficulties, and to retain the main advantagesof partitionedschemes, severalnew algo- rithmshavebeenproposed. Methodsproposedin[19,25,42]useamembranemodelforthestructurethatisthen embeddedinto the fluid problem where it appearsas a generalized Robin boundarycondition. In addition to the classicalDirichlet-NeumannandNeumann-Dirichletschemes,Robin-NeumannandaRobin-Robinalgorithms,that DepartmentofAppliedandComputational Mathematics andStatistics, UniversityofNotreDame,NotreDame,IN46556,USA.email: ∗ mbukac@nd.edu.PartiallysupportedbytheNSFundergrantsDMS1318763andDMS1619993.(Correspondingauthor.) †Department ofMathematics, University ofZagreb, 10000Zagreb, Croatia. email: [email protected]. Partially supported byCroatian ScienceFoundationgrantnumber9477andbytheNSFundergrantNSFDMS1311709. 1 convergewithoutrelaxationand needa smaller numberof sub-iterationsbetween thefluid and the structure,pro- videdthattheinterfaceparametersaresuitablychosen,havebeenproposedin[2,1,28]. Karniadakisetal.[4,45] proposedfictitious-pressureandfictitious-massalgorithms,inwhichtheaddedmasseffectisaccountedforbyin- corporatingadditionalterms into governingequations. However, algorithmsproposedin [2, 1, 42, 4, 45] require sub-iterationsbetweenthe fluid andthe structuresub-problemsin orderto achievestability. A differentapproach basedonNitsche’spenaltymethod[32]wasusedin[14,15]. Theformulationin[14,15]stillsuffersfromstability issues,whichwerecorrectedbyaddingaweaklyconsistentstabilizationtermthatincludespressurevariationsatthe interface. Thesplitting error,however,lowersthe temporalaccuracyof thescheme, whichwasthen correctedby proposingafewdefect-correctionsub-iterationstoachieveanoptimalconvergencerate. Recently,socalledadded- masspartitionedschemeswereproposedin[6,5]. UsingthevonNeumannstabilityanalysis, theauthorsshowed that the algorithmproposedin [6] is weakly stable undera Courant–Friedrichs–Lewy(CFL) condition, while the algorithmproposedin [5]is stableundera conditiononthetime stepwhichdependsonthestructureparameters. Eventhoughtheauthorsdonotderivetheconvergencerates,theirnumericalresultsindicatethatbothschemesare second-orderaccurateintime. Aloosely-couplednumericalscheme,calledthe“kinematicallycoupledscheme”,wasintroducedin[31]. The scheme is based on the Lie operatorsplitting, where the fluid and the structuresub-problemsare fully decoupled andcommunicateonlyviatheinterfaceconditions. Moreprecisely,ineachtime-steptheinitialinterfacevelocity in the structuresub-problemis takenfromthe fluidsub-problemand viceversa. Due to theappealingfeaturesof thekinematicallycoupledscheme,suchasmodularity,stability,andeasyimplementation,severalextensionshave beenproposedthatincludemodelingFSIbetweenartery,bloodflow,andacardiovasculardevicecalledastent[12], FSI with thick structures [9], FSI with composite structures [11], FSI with poroelastic structures [13], and FSI involvingnon-Newtonianfluids[36,37]. Thekinematicallycoupledschemehasbeenshowntobeunconditionally stable,circumventinginstabilitiesassociatedwiththeaddedmasseffect[31,16,23]. However,itsorderoftemporal convergenceis only O(√D t) [40, 23], and hencesub-optimal. In orderto improvethe accuracy, the extensionof thekinematicallycoupledscheme,so-calledb -scheme,wasintroducedbytheauthorsin[13]and“theincremental displacement correction scheme” was proposed by Fernandez in [23]. Better accuracy was achieved in [13] by introducingaparameterb whichcontrolstheamountofthefluidpressureusedtoloadthestructuresub-problem. In[23]theaccuracyisimprovedbytreatingthestructureexplicitlyinthefluidsub-problemandthencorrectingit inthestructuresub-problem. Amoredetailedcomparisonbetweenthesetwobasicextensionsofthekinematically coupledschemeisgiveninSection3.1. Whiletheincrementaldisplacementcorrectionschemeissupportedbythe stabilityandconvergenceanalysis,theimprovedaccuracyofb -schemehadonlybeenobservednumerically[13]. Thegoalofthisworkistounderstandthemechanismwhichleadstoa betteraccuracyandprovetheoptimal convergenceresultfortheb -scheme. Weshowthattheoptimalconvergencerateisachievedwhenb =1,inwhich case the structure is loaded with the full fluid stress. The main result of the paper is Theorem 5.1, in which we derivetheerrorestimatesofthefullydiscreteproblem. Ourestimatesprovetheoptimal,first-orderconvergencein timeandoptimalconvergenceinspace.Theresultsareobtainedassumingthatthestructureundergoesinfinitesimal displacements. In this case, the couplingbetween the fluid and structure is linear. This is a standard assumption in the convergenceandstability analysisof the FSI problems(see e.g. [17, 23]) becausethe “added-mass”effect andstability issuesconnectedtoitare alreadypresentin thelinearcase. Eventhoughtheanalysisinthe paperis performedonalinearproblem,themainresultsarenumericallytestedandconfirmedonthefullnon-linearproblem. This paper is organized as follows: We introduce the linear fluid-structure interaction model in Section 2, derivingthe weakformulationofthemonolithicproblem. ThenumericalschemeispresentedinSection3, while thecomparisonwiththealternativeschemeproposedin[23]isgiveninSection3.1.Theenergyestimatesassociated withtheunconditionalstability arederivedinSection4. InSection5wederivetheapriorienergyestimatesand provefirst-orderconvergenceintime. InSection6wegeneralizetheobtainedresulttothecaseswhenthestructure isthickormulti-layered. TheoreticalresultsfromSections5and6aresupportedbythenumericalexperimentsin Section7. Finally,conclusionsaredrawninSection8. 2. Descriptionoftheproblem. Weconsideralinearfluid-structureinteractionproblemwherethestructureis describedbysomelowerdimensional,linearlyelasticmodel(forexamplemembrane,shell,plate,etc).Inthecases 2 of nonlinear, moving boundaryFSI problems, even the question of existence of a solution is challenging and we referthereaderto[40]andreferenceswithin. LetW Rd,d=2,3,beanopen,smoothsetand¶ W =S G ,whereG representselasticpartoftheboundary while S rep⊂resents artificial (inflow or outflow) of the bounda∪ry (see Figure 2.1). We assume that the structure undergoesinfinitesimal displacements, and that the fluid is incompressible, Newtonian, and is characterized by a laminarflowregime. FIG.2.1.FluiddomainW .ThelateralboundaryG representselasticstructure. Thus,wemodelthefluidbythetime-dependentStokesequationsinafixeddomainW r ¶ u=(cid:209) σ(u,p), (cid:209) u=0 inW (0,T), (2.1) f t · · × σ(u,p)n= p (t)n onS (0,T), (2.2) − in/out × u(.,0)=u0 inW , (2.3) whereu=(u) isthefluidvelocity,σ(u,p)= pI+2m D(u)isthefluidstresstensor,pisthefluidpressure, i i=1,...,d r isthefluiddensity,m isthefluidviscosity,nisthe−outwardnormaltothefluidboundary,p istheprescribed f in/out infloworoutflowpressureandD(u)=((cid:209) u+((cid:209) u)T)/2isthestrainratetensor. REMARK 1. We could also prescribe other types of boundaryconditionson various parts of S , for example symmetryboundarycondition,slipboundaryconditionorno-slipboundarycondition.Thesetypesofmixedbound- aryconditionsdonoteffectouranalysis. Howeversinceweareinterestedinsimulatingapressure-drivenflowand inordertokeepthenotationsimple,wechoosetoworkonlywithboundarycondition(2.2). Thelateralboundaryrepresentsathin,elasticwallwhosedynamicsismodeledbysomelinearlyelasticlower- dimensionalmodel,givenby r e¶ η+L η=f onG (0,T), (2.4) s tt s × η(.,0)=η0, ¶ η(.,0)=v0 onG , (2.5) t whereη=(h ) denotesthestructuredisplacement,f isavectorofsurfacedensityoftheforceappliedtothe i i=1,...,d thinstructure,r denotesthestructuredensityande denotesthestructurethickness. Moreover,wedefineabilinear s formassociatedwiththestructureoperator a (η,ξ)= L η ξdS andnorm η 2=a (η,η). s G s · k kS s Z WeassumethatoperatorL issuchthatnorm . isequivalenttotheH1(G )norm. Oneexampleofsuchoperator s S kk is the one associated with the linearly elastic cylindricalKoiter shell used in [13]. Finally, we prescribeclamped boundaryconditionsforthethinstructure: η(0,t)=η(L,t)=0, fort (0,T). (2.6) ∈ Thefluidandthestructurearecoupledviathekinematicanddynamicboundaryconditions: Thekinematiccouplingcondition(continuityofvelocity): u=¶ η onG (0,T). t Thedynamiccouplingcondition(balanceofcontactforces): f = σ(u,p×)n onG (0,T). − × 3 2.1. Weak formulation of the monolithic problem. For a domain A, we denote by Hk(A) the standard SobolevspaceandL2(A)thestandardspaceofsquareintegrablefunctions.TheseareHilbertspacesandwedenote by and thecorrespondingnorms. k·kHk(A) k·kL2(A) Vf =(H1(W ))d, Qf =L2(W ), Vs=(H01(G ))d, Vfsi={(ϕ,ξ)∈Vf×Vs|ϕ|G =ξ}, forallt [0,T),andintroducethefollowingbilinearforms ∈ a (u,ϕ)=2m D(u):D(ϕ)dx, b(p,ϕ)= p(cid:209) ϕdx. (2.7) f W W · Z Z Wedefinenormk·kF associatedwiththefluidbilinearformaskukF :=kD(u)kL2(W ), ∀u∈Vf. The variationalformulationof the monolithicfluid-structureinteraction problemnow reads: givent (0,T) find(u,η,p) Vf Vs Qf withu=¶ ηonG ,suchthatforall(ϕ,ξ,q) Vfsi Qf ∈ t ∈ × × ∈ × r ¶ u ϕdx+a (u,ϕ) b(p,ϕ)+b(q,u)+r e ¶ η ξdx+a (η,ξ)= p (t)ϕ ndS. (2.8) f t f s tt s in/out W · − G · S · Z Z Z 3. The numericalscheme. To solvethe fluid-structureinteractionproblempresentedinSection2, weuse a looselycouplednumericalscheme,calledthekinematicallycoupledb scheme.Theschemeisbasedonanoperator splitting method called Lie splitting [30], which separates the original problem into a fluid sub-problem and a structure sub-problem. The equations are split in a way such that the fluid problem is solved with a Robin-type boundary condition including the structure inertia. As we shall show later, this is the main key in proving the stabilityofthescheme. Thestructuresub-problemisloadedbyapartofthefluidnormalstressobtainedfromthe previoustimestep. Theamountofstressappliedtothestructureismeasuredbyaparameterb [0,1].Namely,we ∈ splitthenormalfluidstressas σn=σn b σn+b σn. − PartI PartII Part II in the equation above is used to load the t|hin s{trzuctu}re|, {wzhi}le Part I gives rise to a Robin-type boundary conditionforthefluidsub-problem. Thecaseb =0correspondstotheclassicalkinematicallycoupledschemewhichwasintroducedin[31],where in each time-step the fluid and structure sub-problemscommunicate only via the initial guesses for the interface conditions. Namely,the structureelastodynamicsis drivenonlybythe initialvelocity,settingit equalto the fluid velocityfromtheprevioustimestep. Includingsomeloadingfromthefluid,asdonein[10],wasshowntoincrease theaccuracyofthescheme.Theloadingonthestructureusedin[10]wasintroducedinasimilarfashionashere,but insteadofloadingthestructurewiththefluidnormalstress,itwasloadedonlybythefluidpressure. Thiswasdone becausethealgorithmpresentedtherewasmotivatedbybiomedicalapplications(bloodflowthroughthecompliant vessels),wherethepressureistheleadingordertermofthefluidstress. However,aswewillseelater,fortheoretical reasonsherewetakeintoaccountthefullnormalstress. Lettn:=nD t forn=1,...,N,whereT =ND t isthefinaltime. Todiscretizetheproblemintime,weusethe BackwardEulerscheme. Wedenotethediscretetimederivativebydϕn+1=D t 1(ϕn+1 ϕn). t − Thekinematicallycoupledb schemeforthetime-discreteproblemisgivenasfollows−(see[31,10]fordetails): Step1:Thestructuresub-problem. Findv˜n+1,andηn+1suchthat • v˜n+1 vn r se D −t +LSηn+1=−b σ(un,pn)n onG , (3.1) dηn+1=v˜n+1 onG , (3.2) t withboundaryconditions: ηn+1(0)=ηn+1(L)=0. (3.3) 4 Thestructurevelocitycomputedinthissub-problemisthenusedasaninitialconditioninStep2.Notethat thevelocityofthefluiddoesnotchangeinthisstep. Step2. Thefluidsub-problem. Findun+1,pn+1andvn+1suchthat • r dun+1=(cid:209) σ(un+1,pn+1) inW , (3.4) f t · (cid:209) un+1=0 inW , (3.5) · vn+1 v˜n+1 r se D−t =−σ(un+1,pn+1)n+b σ(un,pn)n onG , (3.6) un+1=vn+1 onG , (3.7) withthefollowingboundaryconditionsonS : σ(un+1,pn+1)n= p (tn+1)nonS , (3.8) in/out − andtheinitialconditionsobtainedinStep1. Dotn=tn+1andreturntoStep1. REMARK 2. Combiningequation(3.7)with equation(3.6)givesrise toaRobin-typeboundaryconditionfor thefluidvelocity. Thestructuredisplacementremainsunchangedinthisstep. Todiscretizetheprobleminspace,weusethefiniteelementmethodbasedonaconformingFEMtriangulation withmaximumtrianglediameterh. Thus,weintroducethefiniteelementspacesVf Vf,Qf Qf,andVs Vs. h ⊂ h ⊂ h ⊂ Thefullydiscretenumericalschemeintheweakformulationisgivenasfollows: Step1.Giventn+1 (0,T],n=0,...,N 1,findv˜n+1 Vs,withdηn+1=v˜n+1,suchthatforallξ Vs • ∈ − h ∈ h t h h h∈ h wehave v˜n+1 vn r e h − h ξ dS+a (ηn+1,ξ )= b σ(un,pn)n ξ dS. (3.9) s G D t · h s h h − G h h · h Z Z Step2.Givenv˜n+1computedinStep1,find(un+1,vn+1) Vf Vs,withun+1 G =vn+1,and pn+1 Qf • h h h ∈ h × h h | h h ∈ h suchthatforall(ϕh,ψh,qh)∈Vhf×Vhs×Qhf,withϕh|G =ψh,wehave vn+1 v˜n+1 r dun+1 ϕ dx+a (un+1,ϕ ) b(pn+1,ϕ )+b(q ,un+1)+r e h − h ψ dS f W t h · h f h h − h h h h s G D t · h Z Z =b σ(un,pn)n ψ dS+ p (tn+1)ϕ ndS. (3.10) G h h · h S in/out h· Z Z 3.1. Comparison of the kinematically coupled b scheme and the incremental displacement-correction scheme. In this section we illustrate the differences between the kinematically coupled b scheme [10] and the incremental displacement-correction scheme [23]. It was proven in [40] that the original kinematically coupled scheme (case b =0) applied to the full, nonlinearmovingboundaryFSI problem is convergent. Moreover,even thoughnotexplicitly stated, it was proventhat the splitting error is of order at most√D t ([40], formula(67) and proofofTheorem2). Thesamewasprovenin[23]foralinearproblem(see[23],Theorem5.2). Wefirstconsidertheb schemeandsumequations(3.1)and(3.6),anduse(3.2),(3.4),(3.5),(3.7). Toshorten the notationin this section, we denoteσn :=σ(un,pn), n. Variablesun+1, vn+1 and ηn+1 satisfy the following ∀ equations: r dun+1=(cid:209) σn+1 inW , (3.11) f t · (cid:209) un+1=0 inW , (3.12) · vn+1 vn r se D −t +LSηn+1=−(σn+1n) onG , (3.13) 5 vn+1=un+1 onG , (3.14) dηn+1=vn+1+(v˜n+1 vn+1) onG . (3.15) t − NoticethatthisisexactlythemonolithicformulationoftheconsideredFSI problem(2.1)-(2.6)withanaddi- tionaltermin(3.15). Therefore,term(v˜n+1 vn+1)accountsforthesplittingerror.From(3.6)weobtain − D t D t v˜n+1 vn+1= σn+1n b σnn = b σn+1n σnn +(1 b )σn+1n onG . (3.16) − r se − r se − − (cid:0) (cid:1) h (cid:0) (cid:1) i The righthand side of (3.16) consists of two terms, one involvingσn+1n σnn and the other involvingσn+1n. − From the Taylor expansion, one can see that the first term will have first order accuracy in time, while no such estimatecanbeobtainedforthesecondterm.Therefore,thechoiceb =1yieldsthesmallestsplittingerrorbecause thelasttermwillequalzero.Hence,themaingoalinouranalysisistotakeadvantageofthecorrectionmadebythe fluidstress(withb =1)inordertogetbetterestimatesofthesplittingerrortermwhichyieldoptimalconvergence rate. In orderto remedythe problemofsub-optimalaccuracy,Fernadez[23] proposeda differentextensionofthe kinematically coupled scheme, so-called “incremental displacement-correction” scheme. In the first step of this scheme,onesolvestheFSIproblemwiththeexplicittreatmentofthestructureelasticityoperatorL ηn,correcting S itinthesecondstep. Insteadofaddingandsubtractingthenormalstressfromtheprevioustimestep,whichleads to the b scheme, the incrementaldisplacement-correctionscheme is obtainedby addingand subtractingthe elas- tic operatorL ηn appliedto the displacementfromthe previoustime step. This schemecan also be viewed as a S kinematicperturbationofthemonolithicschemeinthefollowingway. Letun+1,vn+1 andηn+1bethefluidveloc- ity, the structurevelocity,andthe structuredisplacement,respectively,obtainedin n+1thstep ofthe incremental displacement-correctionscheme. Then,theysatisfythefollowingequations: r dun+1=(cid:209) σn+1 inW , (3.17) f t · (cid:209) un+1=0 inW , (3.18) · vn+1 vn r se D −t +LSηn+1=−(σn+1n) onG , (3.19) vn+1+(v˜n+1 vn+1)=un+1 onG , (3.20) − dηn+1=vn+1 onG , (3.21) t Again,weseethatterm(v˜n+1 vn+1)accountsforthesplittingerror,butinthiscasethesplittingerrorismanifested − as the error in the kinematic coupling condition. Fernandez showed that this scheme has an optimal, first-order convergenceintime([23],Theorem5.2). Tosummarize,therearetwodifferentextensionsofthekinematicallycoupledschemepresentedintheliterature, both introducedto improvethe accuracy. Both of them correctthe splitting error, but in a differentmanner. The b scheme first solves the structure problem with the forcing from the fluid computed in the previous time step. Then,itsolvesthefluidproblemwithaRobin-typeboundaryconditioninvolvingthestructureinertia. Ontheother hand, in the incrementaldisplacement-correctionschemeonefirst solvesthewhole FSI problemwith the explicit treatmentoftheelasticoperator,andtheninthesecondstepcorrectsthestructuredisplacement. Bothschemehave thestructureinertiaincludedinthefluidstepwhichiscrucialforthestability. 4. Stabilityanalysis. Inthissectionwederiveanenergyestimatethatisassociatedwithunconditionalstability ofalgorithm(3.9)-(3.10). Basedonourpreviousresults[10]andargumentsinSection3.1,weexpecttheoptimal accuracywhenb =1. Namely,when0 b <1wehaveadditionalterminthesplittingerror(3.15)whichcauses ≤ suboptimal convergence rate of order 1/2. However, as we show in the Section with numerical experiments, in practicalcomputationsthistermcanbesmallforb closeto1. Hence,fromhereonweuseb =1inouranalysis. Leta.(&)b denotethatthereexistsa positiveconstantC, independentofthemeshsize handthetime step sizeD t,suchthata ( )Cb. LetE (un)denotethediscretekineticenergyofthefluid,E (vn)denotethediscrete ≤ ≥ f h v h 6 kineticenergyofthestructure,andE (ηn)denotethediscreteelasticenergyofthestructureattimeleveln,defined s h respectivelyby r r e 1 E (un)= f un 2 , E (vn)= s vn 2 , E (ηn)= ηn 2. (4.1) f h 2 k hkL2(W ) v h 2 k hkL2(G ) s h 2k hkS Thestabilityoftheloosely-coupledscheme(3.10)-(3.9)isstatedinthefollowingresult. holdsT:HEOREM 4.1. Let {(unh,pnh,v˜hn,vhn,ηhn}0≤n≤N be the solution of (3.10)-(3.9). Then, the following estimate E (uN)+E (vN)+E (ηN)+ D t2 σ(uN,pN)n 2 +r fD t2N(cid:229)−1 dun+1 2 f h v h s h 2r se k h h kL2(G ) 2 n=0k t h kL2(W ) +D t2N(cid:229)−1 dηn+1 2+m D tN(cid:229) −1 un+1 2 +r se N(cid:229)−1 v˜n+1 vn 2 2 k t h kS k h kF 2 k h − hkL2(G ) n=0 n=0 n=0 .E (u0)+E (v0)+E (η0)+ D t2 σ(u0,p0)n 2 +D tN(cid:229)−1 p (tn+1) 2 . (4.2) f h v h s h 2r se k h h kL2(G ) n=0k in/out kL2(S ) Proof. To provethe energyestimate, we test the problem(3.10) with (ϕ ,ψ ,q )=(un+1,vn+1,pn+1), and h h h h h h problem(3.9)withξ =v˜n+1=dηn+1.Then,afteraddingthemtogether,multiplyingbyD t,andusingidentity h h t h 1 1 1 (a b)a= a2 b2+ (a b)2, (4.3) − 2 −2 2 − weget r r e f un+1 2 un 2 + un+1 un 2 +2m D t D(un+1) 2 + s vn+1 2 vn 2 2 k h kL2(W )−k hkL2(W ) k h − hkL2(W ) k h kL2(W ) 2 k h kL2(G )−k hkL2(G ) (cid:16) r e (cid:17) 1 (cid:16)1 (cid:17) + s v˜n+1 vn 2 + vn+1 v˜n+1 2 + a (ηn+1,ηn+1) a (ηn,ηn) 2 k h − hkL2(G ) k h − h kL2(G ) 2 s h h −2 s h h 1 (cid:16) (cid:17) + a (ηn+1 ηn,ηn+1 ηn)=D t σ(un,pn)n vn+1 v˜n+1 dS+D t p (tn+1)un+1 ndS. 2 s h − h h − h G h h · h − h S in/out h · Z Z Since term rsv˜n+1 appearsin bothequations(3.9), (3.10)(cid:0), butwith the(cid:1)oppositesign, we used (4.3) to cancelthe D t h intermediatetermkv˜hn+1k2L2(G ) intheestimateabove. DenotebyI =D t G σ(unh,pnh)n· vhn+1−v˜hn+1 dStheterm thatcorrespondstothesplittingerror.From(3.6)wehave R (cid:0) (cid:1) D t vn+1 v˜n+1= σ(un+1,pn+1)n+σ(un,pn)n onG . (4.4) h − h r se − h h h h (cid:0) (cid:1) Now,wecanwriteI as D t2 I = σ(un,pn)n σ(un,pn)n σ(un+1,pn+1)n dS r se ZG h h · h h − h h D t2 (cid:0) (cid:1) = σ(un,pn)n 2 σ(un+1,pn+1)n 2 + σ(un,pn)n σ(un+1,pn+1)n 2 2r se k h h kL2(G )−k h h kL2(G ) k h h − h h kL2(G ) (cid:16) (cid:17) D t2 r e = σ(un,pn)n 2 σ(un+1,pn+1)n 2 + s vn+1 v˜n+1 2 . (4.5) 2r se k h h kL2(G )−k h h kL2(G ) 2 k h − h kL2(G ) (cid:16) (cid:17) Employingidentity(4.5)andsummingfromn=0toN 1,weobtain − E (uN)+E (vN)+E (ηN)+ D t2 σ(uN,pN)n 2 +r fD t2N(cid:229)−1 dun+1 2 +D t2N(cid:229)−1 dηn+1 2 f h v h s h 2r se k h h kL2(G ) 2 n=0k t h kL2(W ) 2 n=0k t h kS 7 N 1 r e N 1 +2m D t (cid:229)− D(un+1) 2 + s (cid:229) − v˜n+1 vn 2 =E (u0)+E (v0)+E (η0) k h kL2(W ) 2 k h − hkL2(G ) f h v h s h n=0 n=0 + D t2 σ(u0,p0)n 2 +D tN(cid:229)−1 p (tn+1)un+1 ndS. (4.6) 2r se k h h kL2(G ) n=0ZS in/out h · UsingtheCauchy-Schwarz,thetrace,andtheKorninequalities,wecanestimate CD t D t p (tn+1)un+1 ndS p (tn+1) 2 +m D t D(un+1) 2 . (4.7) S in/out h · ≤ 4m k in/out kL2(S ) k h kL2(W ) (cid:12) Z (cid:12) (cid:12) (cid:12) Combiningthela(cid:12)tterestimateswithequation((cid:12)4.6)weprovethedesiredenergyinequality. (cid:12) (cid:12) 5. ErrorAnalysis. Inthissection,weanalyzetheconvergencerateofthekinematicallycoupledb scheme(3.9)- (3.10)whenb =1. Weassumethatthetruesolutionsatisfiesthefollowingassumptions: u H1(0,T;Hk+1(W )) H2(0,T;L2(W )), uG H1(0,T;Hk+1(G )), (5.1) ∈ ∩ | ∈ p L2(0,T;Hs+1(W )), pG H1(0,T;Hs+1(G )), (5.2) ∈ | ∈ η W1,¥ (0,T;Hk+1(G )) H2(0,T;Hk+1(G )) H3(0,T;L2(G )). (5.3) ∈ ∩ ∩ To approximatethe problemin space, we applythe Lagrangianfinite elementsof polynomialdegreek for allthe variables, except for the fluid pressure, for which we use elements of degree s<k. We assume that our finite element spaces satisfy the usual approximation properties, and that the fluid velocity-pressure spaces satisfy the discreteinf-supcondition.Weintroducethefollowingtimediscretenorms: N 1 1/2 kϕkL2(0,T;X)= D t (cid:229)− kϕn+1k2X , kϕkL¥ (0,T;X)=0mnaxNkϕnkX, (5.4) (cid:18) n=0 (cid:19) ≤ ≤ whereX Hk(W ),Hk(G ),F,S ,wherenorm . isdefinedbelowequation(2.7),norm . isdefinedbelowequa- F S ∈{ } kk kk tion(2.5). Notethattheyareequivalenttothecontinuousnormssinceweusepiecewiseconstantapproximationsin time. LetI betheLagrangianinterpolationoperatorontoVs,andR betheRitzprojectorontoVs suchthatforall h h h h η Vs ∈ a (η R η,ξ )=0 ξ Vs. (5.5) s − h h ∀ h∈ h Then,thefiniteelementtheoryforLagrangianandRitzprojections[18]gives,respectively, kv−IhvkL2(G )+hkv−IhvkH1(G ).hk+1kvkHk+1(G ), ∀v∈Vs, (5.6) and kη−RhηkS.hkkηkHk+1(G ), ∀η∈Vs. (5.7) LetP beaprojectionoperatorontoQf suchthat h h kp−P hpkL2(W ).hs+1kpkHs+1(W ), ∀p∈Qf. (5.8) Followingtheapproachin[23],weintroduceaStokes-likeprojectionoperator(S ,P):Vf Vf Qf,definedfor h h → h × h allu Vf by ∈ (S u,Pu) Vf Qf, (5.9) h h ∈ h × h 8 (Shu)G =Ih(uG ), (5.10) | | f af(Shu,ϕh)−b(Phu,ϕh)=af(u,ϕh), ∀ϕh∈Vh suchthatϕh|G =0, (5.11) f b(q ,S u)=0, q Q . (5.12) h h ∀ h∈ h ProjectionoperatorS satisfiesthefollowingapproximationproperties(see[23],TheoremB.5): h ku−ShukF .hkkukHk+1(W ). (5.13) WeassumethatthecontinuousfluidvelocitylivesinthespaceVfd = u Vf (cid:209) u=0 .Sincethetestfunc- { ∈ | · } tionsforthepartitionedschemedonotsatisfythekinematiccouplingcondition,westartbyderivingthemonolithic variationalformulationwiththetestfunctionsinVf Vs Qf:Find(u,η,p) Vfd Vs Qf withun+1=¶ ηn+1 h × h× h ∈ × × t onG suchthatforall(ϕ ,ξ ,q ) Vf Vs Qf wehave h h h ∈ h × h× h r ¶ un+1 ϕ dx+a (un+1,ϕ ) b(pn+1,ϕ )+r e ¶ ηn+1 ξ dS+a (ηn+1,ξ ) f t h f h h s tt h s h W · − G · Z Z = p (tn+1)ϕ ndS+ σ(un+1,pn+1)n(ϕ ξ )dS. (5.14) S in/out h· G h− h Z Z Noticethatherethefluidandthestructuretestfunctionsareindependent,i.e. wedonotsatisfycondition(ϕh)G = ξh. Introducing variables vn+1 =¶ tηn+1 and v˜n+1 =un+1 G , we can rewrite the structure acceleration term| as | follows vn+1 v˜n+1 r se G ¶ ttηn+1·ξhdS=r se G ¶ tvn+1·ξhdS=r se G D−t ·ξhdS Z Z Z v˜n+1 vn +r se G D −t ·ξhdS+r se G (¶ tvn+1−dtvn+1)·ξhdS. (5.15) Z Z Takingintoaccountthelatterequation,theweakformulationofthemonolithicproblemcanbewrittenas v˜n+1 vn r f W dtun+1·ϕhdx+af(un+1,ϕh)−b(pn+1,ϕh)+as(ηn+1,ξh)+r se G D −t ·ξhdS Z Z vn+1 v˜n+1 +r se G D−t ·ξhdS=r f W (dtun+1−¶ tun+1)·ϕhdx+r se G (dtvn+1−¶ tvn+1)·ξhdS Z Z Z + σ(un+1,pn+1)n (ϕ ξ )dS+ p (tn+1)ϕ ndS. (5.16) G · h− h S in/out h· Z Z To analyze the error of our numericalscheme, we start by subtracting(3.9)-(3.10) from (5.16), giving rise to the followingerrorequations: r d(un+1 un+1) ϕ dx+a (un+1 un+1,ϕ ) b(pn+1 pn+1,ϕ ) b(q ,un+1)+a (ηn+1 ηn+1,ξ ) f W t − h · h f − h h − − h h − h h s − h h Z v˜n+1 vn v˜n+1 vn vn+1 v˜n+1 vn+1 v˜n+1 +r se ZG D −t − h D −t h!·ξhdS+r se ZG D−t − h D−t h !·ψhdS (σ(un,pn)n σ(un,pn)n) (ψ ξ )dS=Rf(ϕ )+Rs(ξ )+Ros(ψ ξ ), (5.17) − G − h h · h− h h h h− h Z forall(ϕh,ψh,ξh)∈Vhf×Vhs×Vhs suchthatϕh|G =ψh,where Rf(ϕ )=r (dun+1 ¶ un+1) ϕ dx (5.18) h f t t h W − · Z 9 Rs(ξ )=r e (dvn+1 ¶ vn+1) ξ dS, (5.19) h s t t h G − · Z vn+1 v˜n+1 Ros(ψ ξ )= σ(un+1,pn+1)n σ(un,pn)n+ − (ψ ξ )dS. (5.20) h− h G − D t · h− h Z (cid:18) (cid:19) Notethatthelasttermaccountsfortheoperator-splittingerror.Sincev˜n+1=un+1 G =¶ tηn+1=vn+1,wehave | Ros(ψ ξ )= σ(un+1,pn+1)n σ(un,pn)n (ψ ξ )dS. (5.21) h h h h − G − · − Z (cid:0) (cid:1) We split the error of the method as a sum of the approximation error q n+1 and the truncation error d n+1, for r r r f,v˜,p,s,v asfollows ∈{ } en+1=un+1 un+1=(un+1 S un+1)+(S un+1 un+1)=θn+1+δn+1, (5.22) f − h − h h − h f f en+1=v˜n+1 v˜n+1=(v˜n+1 I v˜n+1)+(I v˜n+1 v˜n+1)=θn+1+δn+1, (5.23) v˜ − h − h h − h v˜ v˜ en+1=pn+1 pn+1=(pn+1 P pn+1)+(P pn+1 pn+1)=q n+1+d n+1, (5.24) p − h − h h − h p p en+1=ηn+1 ηn+1=(ηn+1 R ηn+1)+(R ηn+1 ηn+1)=θn+1+δn+1, (5.25) s − h − h h − h s s en+1=vn+1 vn+1=(vn+1 I vn+1)+(I vn+1 vn+1)=θn+1+δn+1. (5.26) v − h − h h − h v v Themainresultofthissectionisstatedinthefollowingtheorem. THEOREM5.1. Considerthesolution(uh,ph,v˜h,vh,ηh)of (3.9)-(3.10),withdiscreteinitialdata(u0h,p0h,v˜h0,vh0,ηh0)= (S u0,P p0,I v˜0,I v0,R η0). Assumethatb =1andtheexactsolutionsatisfiesassumptions(5.1)-(5.3). Further- h h h h h more,weassumethat r e 1 g D t<1, g < s , g < , 1 8D t 2 4 whereg >0,g >0,g >0. Letg˜=max g ,g ,g .Then,thefollowingestimateholds 1 2 2 3 { } kuN−uNhkL2(W )+kuN−uNhkL2(0,T;F)+kvN−vhNkL2(G )+kηN−ηhNkS+kσ(uN,pN)n−σ(uNh,pNh)nkL2(G ) 1 1 .eg˜T D tA +D t2 D t1/2+ + +g D t A +hkB +hk+1B +hs+1B 1 g g 1 2 1 2 3 (cid:18) (cid:16) 2 1 (cid:17) 1 1 1 1 +D thk D t+ + +g D t2 C +D ths+1 D t+ + +g D t2 C , g g 1 1 g g 1 2 (cid:16) 2 1 (cid:17) (cid:16) 2 1 (cid:17) (cid:19) wherenorm . isdefinedbelowequation(2.7),norm . isdefinedbelowequation(2.5)and F S kk kk 1 1 1 A1=k¶ ttukL2(0,T,L2(W ))+g k¶ ttvkL2(0,T;L2(G ))+g k¶ ttηkL2(0,T;H1(G ))+g k¶ tσnkL2(0,T;L2(G )), 1 A2=k¶ tσnkL2(0,T;L2(G )), 1 1 B1= g kvkL2(0,T;Hk+1(G ))+k¶ tukL2(0,T;Hk+1(W ))+kukL2(0,T;Hk+1(W ))+g kukL2(0,T;Hk+1(G ))+kukL¥ (0,T;Hk+1(W )) 1 1 +kukL¥ (0,T;Hk+1(G ))+kηkL¥ (0,T;Hk+1(G )), B2= 1+g k¶ tvkL2(0,T;Hk+1(G ))+kvkL¥ (0,T;Hk+1(G )), (cid:18) 1(cid:19) 1 B3=kpk2L2(0,T;Hs+1(W ))+g kpk2L2(0,T;Hs+1(G ))+kpkL¥ (0,T;Hs+1(G )), 1 C = ¶ u 2 , C = ¶ p 2 . 1 k t kL2(0,T;Hk+1(G )) 2 k t kL2(0,T;Hs+1(G )) 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.