ebook img

st334 actuarial methods PDF

214 Pages·2016·1.31 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview st334 actuarial methods

ST334 ACTUARIAL METHODS version2016/03 These notes are for ST334 Actuarial Methods. The course covers Actuarial CT1 and some related financial topics. Actuarial CT1 is called ‘Financial Mathematics’ by the Institute of Actuaries. However, we reserve the term ‘financial mathematics’ for the study of stochastic models of derivatives and financial markets which is con- siderablymoreadvancedmathematicallythanthematerialcoveredinthiscourse. There are 2 versions of these notes—one is in monochrome and is more suitable for printing and the other containsbookmarksandhyperlinksandisintendedforviewinginaPDFreadersuchasSumatraPDF. Contents 1 SimpleandCompoundInterest................................................................ 1 1.1 Simple interest 1. 1.2 Compound interest 3. 1.3 Exercises 8. 1.4 Discount rate and discount factor10. 1.5 Exercises15. 1.6 Timedependentinterestrates16. 1.7 Exercises18. 2 CashFlows,EquationsofValueandProjectAppraisal......................................... 21 2.1Cashflows21. 2.2Netpresentvalueanddiscountedcashflow22. 2.3Exercises27. 2.4Equa- tionsofvalueandtheinternalrateofreturn30. 2.5 Comparingtwoprojects33. 2.6 Exercises35. 2.7 Measuringinvestmentperformance38. 2.8 Exercises39. 3 Perpetuities,AnnuitiesandLoans............................................................. 43 3.1 Perpetuities43. 3.2 Annuities44. 3.3 Exercises51. 3.4 Loanschedules57. 3.5 Loansrepaid byspecifiedinstalments61. 3.6 Exercises62. 4 BasicFinancialInstruments .................................................................. 69 4.1 Markets, interest rates and financial instruments 69. 4.2 Fixed interest government borrow- ings 70. 4.3 Other fixed interest borrowings 71. 4.4 Investments with uncertain returns 73. 4.5 Derivatives74. 4.6 Exercises79. 5 Bonds,EquitiesandInflation ................................................................. 81 5.1 Bondcalculations81. 5.2 Exercises87. 5.3 Equitycalculations90. 5.4 Realandmoneyrates ofinterest91. 5.5 Exercises93. 6 InterestRateProblems...................................................................... 101 6.1 Spot rates, forward rates and the yield curve 101. 6.2 Exercises 107. 6.3 Vulnerability to interestratemovements111. 6.4Exercises116. 6.5Stochasticinterestrateproblems123. 6.6Ex- ercises125. 7 Arbitrage................................................................................... 131 7.1 Arbitrage131. 7.2 Forwardcontracts133. 7.3 Exercises138. Appendix1: SomeMathematicalPrerequisites.................................................. 143 Appendix2: Answers.......................................................................... 145 Exercises 1.3145. Exercises 1.5147. Exercises 1.7148. Exercises 2.3149. Exercises 2.6152. Exercises 2.8155. Exercises 3.3158. Exercises 3.6166. Exercises 4.6173. Exercises 5.2174. Exercises 5.5179. Exercises 6.2187. Exercises 6.4193. Exercises 6.6202. Exercises 7.3206. ST334 Actuarial Methods (cid:13)c R.J. Reed Sep 27, 2016(9:51) Page i Page ii Sep 27, 2016(9:51) ST334 Actuarial Methods (cid:13)c R.J. Reed Prologue OrderofTopics. Thereareargumentsforconsideringtheformulæforperpetuitiesandannuitiescoveredinchapter3before the discussion of project appraisal in chapter 2. This has not been done in order to avoid starting with a long list of formulæ on nominal and effective interest rates and annuities. However, this does mean that the solutions of some of the problems on project appraisal in exercises 6 of chapter 2 (page 35) can be simplified by using resultsfromsection2ofchapter3(page44). Exercises Anenormousnumberofexercisesisincluded. Youarenotexpectedtodothemall—but, itisveryimportant that you practice solving exercises quickly and accurately. Only you can decide how many you need to do in ordertoachievetherequiredproficiencytopassthetestsandtheexamination. Books References. Brealey,R&S.Myers(2005,eighthedition)PrinciplesofCorporateFinance McGrawHill Brett,M.(2003,fifthedition)HowtoReadtheFinancialPages RandomHouse Donald,D.W.A.(1975)CompoundInterestandAnnuities-Certain Heinemann McCutcheon,J.J.&W.F.Scott(1986)AnIntroductiontotheMathematicsofFinance Butterworth Ross, S.M. (2002, second edition) An Elementary Introduction to Mathematical Finance CUP (Chapter 4) Steiner,R.(2007,secondedition)MasteringFinancialCalculations PrenticeHall Vaitilingam,R.(2001,fourthedition)TheFinancialTimesGuidetoUsingtheFinancialPages PrenticeHall Most of the exercises have been taken from past examination papers for the Faculty and Institute of Actuar- ies. The web reference is http://www.actuaries.org.uk/students/pages/past-exam-papers and they are copyrightTheInstituteandFacultyofActuaries. Pleasesendcorrectionsandsuggestionsforimprovementtor.j.reed@warwick.ac.uk. Index of Notation symbol page meaning a ora 43 §1.1 presentvalueofperpetuity ∞ ∞,i a¨ ora¨ 43 §1.1 valueattime1ofaperpetuity ∞ ∞,i a(m) anda¨(m) 52 §3(22) value at time 0 and at time t = 1/ of a perpetuity payable m times ∞ ∞ m peryear a ora 44 §2.1 presentvalueofanannuitywithnpayments n n,i a¨ ora¨ 44 §2.1 valueattime1ofanannuitywithnpayments n n,i a(m) ora(m) 45 §2.3 valueattime0ofanannuitywithmpaymentsperyearfornyears n n,i a¨(m) ora¨(m) 45 §2.3 valueattime 1/ ofanannuitywithmpaymentsperyearfornyears n n,i m a 49 §2.7 valueattime0ofacontinuouslypayableperpetuitywithρ(t) = 1 ∞ a 49 §2.7 value at time 0 of a continuously payable annuity with ρ(t) = 1 for n t ∈ (0,n) a and a¨ 47 §2.4 annuitypayableannuallyfornyearsanddelayedbyk years k| n k| n a(m) and a¨(m) 47 §2.4 annuitypayablemtimesperyearfornyearsanddelayedbyk years k| n k| n a 49 §2.7 value at time 0 of a continuously payable annuity with ρ(t) = 1 for k| n t ∈ (k,k+n) ACT/365 1 §1.4 actualnumberofdaysdividedby360 A(p) 4 §2.6 accumulatedvalueattimepofaninvestmentof1attime0 C 81 §1.1 redemptionvalueofabond CD 69 §1.3 certificateofdeposit c(i) 113 §3.5 convexity CP 69 §1.3 commercialpaper d = 1−ν 10 §4.1 discountrate d(m) 12 §4.5 nominaldiscountratepayablemtimesperyear d 12 §4.5 nominaldiscountratepayablepertimeperiod,p p (Da) 49 §2.6 presentvalueofadecreasingannuityfornyears n DCF 22 §2.1 discountedcashflow d(i) 113 §3.3 effectivedurationorvolatilityormodifiedduration d (i) 111 §3.2 durationorMacaulaydurationordiscountedmeanterm M DPP 33 §5.3 discountedpaybackperiod δ = ln(1+i) 6 §2.8 nominalrateofinterestcompoundedcontinuouslyor forceofinterestcorrespondingtotheeffectiveannualinterest,i δ : (0,∞) → [0,∞) 17 §6.1 forceofinterestfunction f 81 §1.1 faceorparvalueofabond FRA 76 §5.5 forwardrateagreement f 103 §1.5 forwardinterestratep.a.formoneyattimeT inthefutureforlength T,k oftimek F = ln(1+f ) 103 §1.6 forwardforceofinterest T,k T,k f 104 §1.7 forward interest rate p.a. at time t for investment starting at time T t,T,k forlengthoftimek F = ln(1+f ) 105 §1.7 forwardforceofinterest t,T,k t,T,k F = lim F 105 §1.7 instantaneousforwardrateattimetforinvestmentstartingattimeT t,T k→0 t,T,k g = fr/ 83 §1.5 annualcoupondividedbyredemptionvalueofabond C ST334 Actuarial Methods (cid:13)c R.J. Reed Sep 27, 2016(9:51) Page iii i 1 §1.2 simpleinterest i 3 §2.1 compoundinterest i 4 §2.5 theeffectiveinterestrateovertheperiodp ep i(m) = i 4 §2.5 nominalrateofinterestcompoundedmtimesperyear 1/m i andi 91 §4.1 moneyandrealrateofinterest M R i 4 §2.5 nominalrateofinterestperperiodp p (Ia) and(Ia¨) 48 §2.5 valueattime0andattime1ofanincreasingannuityfornyears n n (Ia¯) 50 §2.8 increasingcontinuouslypayableannuitywithastepfunctionρ n (Ia) 50 §2.8 increasingcontinuouslypayableannuitywithρ(t) = tfort ∈ (0,n) n (Is) and(Is¨) 48 §2.5 valueattimenandattimen+1ofanincreasingannuityfornyears n n (Is¯) 50 §2.8 increasingcontinuouslypayableannuitywithastepfunctionρ n (Is) 50 §2.8 increasingcontinuouslypayableannuitywithρ(t) = tfort ∈ (0,n) n IRR 30 §4.1 internalrateofreturn LIBID 70 §1.4 LondonInter-BankBidRate LIBOR 70 §1.4 LondonInter-BankOfferedRate LIMEAN 70 §1.4 averageofLIBOR andLIBID LIRR 38 §7.3 linkedinternalrateofreturn MWRR 38 §7.1 moneyweightedrateofreturn NPV 22 §2.1 netpresentvalue ν = 1/(1+i) 10 §4.1 discountfactor ν : [0,∞) → [0,∞) 17 §6.2 presentvaluefunction P(n,i) 81 §1.1 currentpriceofabondwithnyearstomaturityandyieldi r 81 §1.1 couponrateperyearofabond ρ : (0,∞) → R 25 §2.5 continuouspaymentstream s ors 45 §2.2 valueattimenofanannuitywithnpayments n n,i s¨ ors¨ 45 §2.2 valueattimen+1ofanannuitywithnpayments n n,i s(m) ors(m) 45 §2.3 valueattimenofanannuitywithmpaymentsperyearfornyears n n,i s¨(m) ors¨(m) 45 §2.3 value at time n + 1/ of an annuity with m payments per year for n n,i m nyears s 49 §2.7 value at time n of a continuously payable annuity with ρ(t) = t for n t ∈ (0,n) TWRR 38 §7.1 timeweightedrateofreturn y 101 §1.2 t-yearspotrateofinterest t Y = ln(1+y ) 101 §1.2 t-yearspotforceofinterest t t CHAPTER 1 Simple and Compound Interest 1 Simple interest 1.1 Background. Theexistenceofamarketwheremoneycanbeborrowedandlentallowspeopletotransfer consumptionbetweentodayandtomorrow. Theamountofinterestpaiddependsonseveralfactors,includingtheriskofdefaultandtheamountofdepre- ciationorappreciationinthevalueofthecurrency. Interestonshort-termfinancialinstrumentsisusuallysimpleratherthancompound. 1.2 Thesimpleinterestproblemoveronetimeunit. Thismeansthereisonedeposit(sometimescalledthe principal)andonerepayment. Therepaymentisthesumoftheprincipalandinterestandissometimescalled thefuturevalue. Suppose an investor deposits c at time t and receives a repayment c at the later time t +1. Then the gain 0 0 1 0 (orinterest)ontheinvestmentc isc −c . Theinterestrate,iisgivenby 0 1 0 c −c 1 0 i = c 0 Notethat 1 c = c (1+i) and c = c 1 0 0 1 1+i The quantity c is often called the present value (at time t ) of the amount c at time t +1. The last formula 0 0 1 0 encapsulatesthemaxim“apoundtodayisworthmorethanapoundtomorrow”. Example 1.2a. Suppose the amount of £100 is invested for one year at 8% per annum. Then the repayment in poundsis c =(1+0.08)×100=108 1 Thepresentvalueinpoundsoftheamount£108inoneyear’stimeis 1 c = ×108=100 0 1+0.08 Of course, the transaction can also be viewed from the perspective of the person who receives the money. A borrowerborrowsc attimet andrepaysc attimet +1. Theinterestthattheborrowermustpayontheloan 0 0 1 0 isc −c . 1 0 1.3 The simple interest problem over several time units. Consider the same problem over n time units, wheren > 0isnotnecessarilyintegralandmaybelessthan1. Thereturntotheinvestorwillbe c = c +nic = c (1+ni) n 0 0 0 Itfollowsthatpresentvalue(attimet )oftheamountc attimet +nis 0 n 0 1 c = c 0 n 1+ni 1.4 Day and year conventions. Interest calculations are usually based on the exact number of days as a proportionofayear. Domestic UK financial instruments usually assume there are 365 days in a year—even in a leap year. This conventionisdenotedACT/365whichisshortforactualnumberofdaysdividedby365. ST334 Actuarial Methods (cid:13)c R.J. Reed Sep 27, 2016(9:51) Section 1 Page 1 Page 2 Section 1 Sep 27, 2016(9:51) ST334 Actuarial Methods (cid:13)c R.J. Reed Example1.4a. AssumingACT/365,howmuchinterestwillthefollowinginvestmentspay? (a) Adepositof£1000for60daysat10%p.a. (b) Adepositof£1000foroneyearwhichisnotaleapyearat10%p.a. (c) Adepositof£1000foroneyearwhichisaleapyearat10%p.a. Solution. (a)1000×0.1×60/365=16.44. (b) 1000×0.1=100. (c) 1000×0.1×366/365=100.27. UnderACT/365,adepositat10%foroneyearwhichisaleapyearwillactuallypayslightlymorethan10%—it willpay: 366 10%× = 10.027% 365 Mostoverseasmoneymarketsassumeayearhas360daysandthisconventionisdenotedACT/360. 1.5 The time value of money. In general, an amount of money has different values on different dates. Supposeanamountc isinvestedatasimpleinterestrateofi. Thetimevalueisrepresentedinthefollowing 0 diagram: nyears nyears (cid:122) (cid:125)(cid:124) (cid:123) (cid:122) (cid:125)(cid:124) (cid:123) ........................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................... pastvalue presentvalue futurevalue .............................................................. .............................................................. .............................................................. c 0 c0 c0(1+in) (1+in) Acalculationconcerningsimpleinterestcanonlybedonewithrespecttoonefixedtimepoint. Thisfixedtime pointissometimescalledthefocalpointorvaluationdate. Hereisanexampleofanincorrectvalueobtainedbyusingmorethanonefocalpoint: Considertheamountc attoday’stimet andsimpleinterestip.a. Thisamountc hadvaluex = c /(1+2i) 0 0 0 0 twoyearsagoattimet −2. Butthevaluexattimet −2hasvaluex(1+i) = c (1+i)/(1+2i)oneyear 0 0 0 later at time t −1. This argument is incorrect because two different focal points (t −2 and t −1) have 0 0 0 beenused. Infact,theamountc attimet hadvaluec /(1+i)attimet −1. 0 0 0 0 Simpleinterestmeansthatinterestisnotgivenoninterest—henceusingmorethanonefocalpointwillgivean error. Example1.5a. Apersontakesoutaloanof£5000at9%p.a.simpleinterest.Herepays£1000after3months(time t +1/4),£750afterafurthertwomonths(timet +5/12)andafurther£500afterafurthermonth(timet +1/2). 0 0 0 Whatistheamountoutstandingoneyearaftertheloanwastakenout(timet +1)? 0 Solution. Thequestionasksfortheamountoutstandingattimet +1. Hencewemusttaket +1asthefocalpoint. 0 0 Thisgives (cid:20) (cid:18) (cid:19)(cid:21) (cid:20) (cid:18) (cid:19)(cid:21) (cid:20) (cid:18) (cid:19)(cid:21) 9 7 1 5000[1+0.09]−1000 1+0.09 −750 1+0.09 −500 1+0.09 =3070.625 12 12 2 Here is another solution: £1,000 is borrowed for 3 months, £750 for 5 months, £500 for 6 months and £2,750 for 12months. Hencethetotalinterestpaymentis (cid:20) (cid:21) (cid:20) (cid:21) (cid:20) (cid:21) 0.09 0.09 0.09 1000× ×3 + 750× ×5 + 500× ×6 +[2750×0.09]=320.625 12 12 12 The total capital outstanding after 12 months is £2,750 and hence the total amount due is £2,750 + £320.625 = £3,070.625. Theissueroftheloanwouldroundthisupto£3,070.63. 1.6 Summary. • Terminology: simpleinterest;timevalueofmoney;presentvalue;ACT/365 • Simpleinterestformulæ: 1 c = (1+ni)c and c = c n 0 0 n 1+ni 1 Simple and Compound Interest Sep 27, 2016(9:51) Section 2 Page 3 2 Compound interest 2.1 Explanation of compound interest. Compound interest means that interest is given on any interest whichhasalreadybeencredited. Example 2.1a. Suppose aninvestor invests £720 fortwo yearsat acompound interestrate of 10%p.a. Findthe amountreturned. Solution. Theamountinpoundsisc =720(1+i)2 =720×1.12 =871.20. 2 In general, if c denotes the initial investment, i denotes the interest rate p.a. and c denotes the accumulated 0 n valueafternyears,then c = c (1+i)n n 0 The accumulated interest is clearly c [(1 + i)n − 1]. This formula assumes the interest rate is constant and 0 hencedoesnotdependonthetimepointortheamountinvested. 2.2 Simpleversuscompoundinterest. Withsimpleinterest,thegrowthoftheaccumulatedvalueislinear; withcompoundinterest,thegrowthisexponential. Exercise25showsthatfortheinvestor,simpleispreferable tocompoundforlessthan1yearwhilstcompoundispreferabletosimpleformorethat1year. Accounts which allow investors to withdraw and reinvest will pay compound interest—otherwise investors wouldcontinuallywithdrawandreinvest. 2.3 Presentvalue. Supposet1 ≤ t2 thenaninvestmentofc/(1+i)t2−t1 attimet1 willproduceareturnofc attimet . Itfollowsthat 2 c (1+i)t2−t1 isthediscountedvalueattimet oftheamountcattimet . 1 2 In particular, the expression “the present value (time 0) of the amount c at time t” means exactly the same as “thediscountedvalueattime0oftheamountcattimet.” Thus,ifthecompoundinterestrateisiperunittime,thenthepresentvalueoftheamountcattimetis c 1 = cνt where ν = iscalledthediscountfactor. (1+i)t 1+i Example2.3a. Inflationadjustedrateofreturn. Supposetheinflationrateisi perannum. Supposefurtherthatan 0 investmentproducesareturnofi perannum. Whatistheinflationadjusted rateofreturn,i ,oftheinvestment? 1 a Inparticular,ifi =0.04(or4%perannum)andtheinflationrateisi =0.02(or2%perannum),findi . 1 0 a Solution. Supposethecapitalattime0isc . After1year, theaccumulatedvaluewillbec (1+i ). Adjustingfor 0 0 1 inflation,thetime0valueoftheamountc (1+i )attime1is 0 1 c (1+i ) 0 1 (1+i ) 0 Hence 1+i i −i i = 1 −1= 1 0 a 1+i 1+i 0 0 Clearly,ifi issmalltheni ≈i −i . 0 a 1 0 Forourparticularcasei =0.02/1.02=0.0196or1.96%. Theusualapproximationisi −i whichgives2%. a 1 0 2.4 Nominal and effective rates of interest—a numerical example. Loan companies often quote a rate suchas15%perannumcompoundedmonthly. Thismeansthataloanof£100foroneyearwillaccumulateto (cid:18) 0.15(cid:19)12 £100 1+ = £100×1.1608 = £116.08. 12 Theeffectiveinterestrateperannumis16.08%. Similarly, supposeaninvestmentpaysarateofinterestof12%p.a. compounded12timesperyear. Thenthe correspondingeffectiveannualrateofinterestisdefinedtobetheratewhichwouldproducethesameamount ofinterestperyear;i.e. (cid:18) 0.12(cid:19)12 1+ −1 = (1+0.01)12−1 = 0.1268 or12.68%. 12 Page 4 Section 2 Sep 27, 2016(9:51) ST334 Actuarial Methods (cid:13)c R.J. Reed Example2.4a. Suppose£1000isinvestedfortwoyearsat10%perannumcompoundedhalf-yearly. Whatisthe amountreturned? Solution. Theamountis£1000×(1.05)4 =£1215.51. 2.5 Nominalandeffectiveratesofinterest—thegeneralcase. Ingeneral,i(m)andi denotethenominal 1/m rateofinterestperunittimewhichiscompoundedmtimesperunittimeandwhichcorrespondstotheeffective interestrateofiperunittime. Therelationbetweenthetwoquantitiesisgivenby: (cid:18) i(m)(cid:19)m i = 1+ −1 (2.5a) m (cid:2) (cid:3) Thequantityi(m) = m (1+i)1/m−1 isalsodescribedasanominalrateofinterestperunittimepaidmthly, orconvertiblemthly,orwithmthlyrests. Itisleftasanexercisetoprovethat i = i(1) > i(2) > i(3) > ··· If p = 1/m, the quantity i(m) is also denoted i and is called the nominal rate of interest per period p corre- p spondingtotheeffectiveinterestrateofiperunittime. Writingequation(2.5a)intermsofpgives 1 (1+i)p = 1+pi wherep = andi = i(m) (2.5b) p p m Thequantityi = pi = i(m)/miscalledtheeffectiveinterestrateovertheperiodp. Inparticular ep p i(1) = i = i e1 issimplycalledtheeffectiveinterestrateperunittime. Clearly, equivalent effective annual interest rates should be used for comparing nominal interest rates with differentcompoundingintervals. Example2.5a. Supposethenominalrateofinterestis10%p.a.paidquarterly. Find (a) theeffectiveannualrateofinterest; (b) theeffectiverateofinterestover3months. Solution. In this case p = 1/4 and i = 0.1. The answer to part (b) is i = 0.1/4 = 0.025. Hence the effective p ep annualrateisi=(1+i )4−1=(1+0.025)4−1=1.1038−1whichis10.38%. ep 2.6 Terminology. Herearetwospecialcases: • iftherateofinterestofferedona6monthinvestmentis10%, thenthismeansthattheinvestorwillreceive 5%ofhiscapitalininterestattheendofthe6months. Ingeneral,forasituationoflessthanoneyear,theequivalentsimpleinterestrateperannumisusuallyquoted. • a3yearinvestmentat10%meansthattheinvestorwillreceiveanamountofinterestofc ×1.13wherec is 0 0 hisinitialinvestment. Thisassumestheinterestcanbereinvested. Inthiscase,thequotedrateistheoneyear ratewhichiscompounded. The basic time unit is always assumed to be one year unless it is explicitly specified otherwise. Thus the phrase“a3yearinvestmentat10%”usedaboveisjustshorthandfor“a3yearinvestmentat10%p.a.” In general, to specify an interest rate, we need to specify the basic time unit and the conversion period. An interestrateiscalledeffective ifthebasictimeunitandtheconversionperiodareidentical—andtheninterest iscreditedattheendofthebasictimeperiod. Whentheconversionperioddoesnotequalthebasictimeperiod, theinterestrateiscallednominal. Twomoreexamples: • An effective interest rate of 12% over 2 years is the same as a nominal interest rate of 6% p.a. convertible every 2 years. There is one interest payment after 2 years and this payment has size equal to 12% of the capital1. • An effective interest rate of 3% per quarter is the same as a nominal interest rate of 12% p.a. payable quarterly. In general, for both p ∈ (0,1) and p > 1, an effective interest rate i over the period p is also described as a ep nominalinterestrateofi = i /pperannumconvertible1/ptimesayear. p ep 1 Inpractice,thisisnotquitethesameas6%p.a.simpleinterestbecausethesimpleinterestreceivedafteryearonecould beinvestedelsewhereforyeartwo. 1 Simple and Compound Interest Sep 27, 2016(9:51) Section 2 Page 5 Calculations should usually be performed on effective interest rates—the nominal rate is just a matter of pre- sentation. Rememberthat: nominalrate = frequency×effectiverate or i(m) = m×i . ep Formanyproblems,youshouldfollowthefollowingsteps(orpossiblyasubsetofthefollowingsteps): • Fromi ,thenominalrateforperiodp,calculatei ,theeffectiverateforperiodp,byusingnominal p ep rate = frequency × effectiverate(wherefrequencyis1/p). • Converttotheeffectiverateforperiodq byusing(1+i )1/q = (1+i )1/p. eq ep • Converttothenominalrateforperiodq byusingnominalrate = frequency × effectiveratewhere frequencyis1/q. For p ≥ 0, the accumulation factor2 A(p) = (1+i)p = 1+pi gives the accumulated value at time p of an p investmentof1attime0. 2.7 Workedexamplesonnominalandeffectiveinterestrates. Example2.7a. Whatisthesimpleinterestrateperannumwhichisequivalenttoanominalrateof9%compounded six-monthly,ifthemoneyisinvestedfor3years? Solution. Now£1investedatanominalrateof9%compoundedsix-monthlywillaccumulateto(1.045)6 =1.302in 3years. Iftheannualrateofsimpleinterestisrthenweneed 1+3r =(1.045)6 andsor =0.100753givingasimpleinterestrateof10.08%. Example2.7b. Supposetheeffectiveannualinterestrateis41/%. Whatisthenominalannualinterestratepayable 2 (a)quarterly;(b)monthly;(c)every2years? Solution. (a)Now(1+i )4 =1+i=1.045impliesi =0.011065foronequarter. Henceanswer(a)isi(4) =4i = ep ep ep 0.04426ornominal4.426%p.a.payablequarterly. (b)(1+i )12 =1.045impliesi(12) =12i =0.04410. Hence ep ep answer(b)isnominal4.410%p.a.payablemonthly. (c)Finally,(1+i )1/2 = 1.045impliesi = 0.0920. Hence ep ep answer(c)isi =i /2=0.0460,ornominal4.6%p.a.payableevery2years. p ep Example2.7c. Aninvestorinvestsandwithdrawsthefollowingamountsinasavingsaccountatthestatedtimes date investment withdrawal 1April2000 £1,500 1April2001 £1,000 1April2002 £1,800 1April2003 £1,500 Between 1 April 2000 and 1 April 2001, the account paid nominal 6% per annum convertible quarterly. Between 1April2001and1October2002,theaccountpaid5%perannumeffective. From1October2002,theaccountpaid 4% per annum effective. Interest is added to the account after close of business on 31 March each year. Find the accumulatedamountat1October2003. Solution. Therearetwopossibleapproaches. • Calculatetheamountintheaccountateverytimepointwherethereisatransaction. At31March2001,amountintheaccountis1,500×1.0154. Henceattheendoftheday1April2001,theamount is1,500×1.0154−1,000. Proceedinginthismannergivestheanswer (((1500×1.0154−1000)×1.05+1800)×1.051/2×1.041/2+1500)×1.041/2 =4110.41 (2.7a) • Converteveryamountintothevalueat1October2003andthenaddtheseamountstogether. So the deposit on 1 April 2000 is worth 1,500×1.0154 ×1.053/2 ×1.04 on 1 October 2003. The withdrawal on 1April2001isworth −1,000×1.053/2×1.04on1October2003. Andsoon. Thisleadstothesameanswer. In fact,thesecondapproachisjustthesameasexpandingoutequation(2.7a)inthefirstapproach. 2 Thetermfactor isusedbecausetheaccumulatedvalueisc A(p)iftheinitialcapitalisc . SomebooksuseA(t ,t )to 0 0 1 2 denotetheaccumulatedvalueattimet ofaninvestmentmadeattimet . WethenhaveA(0,t )=A(0,t )A(t ,t )andso 2 1 2 1 1 2 A(0,t ) A(t ) A(t ,t )= 2 = 2 1 2 A(0,t ) A(t ) 1 1 HencetherearenorealadvantagesinusingthisalternativenotationA(t ,t )andwestickwithA(t). 1 2 Page6 Section2 Sep27,2016(9:51) ST334ActuarialMethods(cid:13)cR.J.Reed Example2.7d. Supposeafinancialinstrumentpaysanominalinterestrateof21/%p.a.convertibleevery2years. 2 (a)Whatistheeffectiveinterestrateover2years. (b)Whatistheequivalenteffectiveannualinterestrate? Solution. (a)Theeffectiveinterestrateover2yearsis5%. (b)Letidenotetheequivalenteffectiveannualinterest rate. Then(1+i)2 =1.05andsoi=0.0247. Hencetheeffectiveannualinterestrateis2.47%. Example2.7e. Thenominalinterestratesforlocalauthoritydepositsonaparticulardayareasfollows: Term Nominalinterestrate(%) overnight 103/ 16 onemonth 93/ 4 3months 97/ 8 6months 10 Findtheaccumulationof£1000for(a)onemonthand(b)3months. Solution. For(a),wehave 1000(1+0.0975/12)=1008.12 For(b),wehave 1000(1+0.09875/4)=1024.69 Notethattheonemonthnominalratecorrespondstoaneffectiveannualrateof (cid:18) 0.0975(cid:19)12 1+ −1=0.1019772 or10.20%. 12 The3monthnominalratecorrespondstoaneffectiveannualrateof (cid:18) 0.09875(cid:19)4 1+ −1=0.1024674 or10.25%. 4 Onereasonforthisapparentinconsistencyisthatthemarketallowsforthefactthatinterestrateschangeovertime. Ifbothratescorrespondedtothesameeffectiveannualrateofinterest,thenthe3monthratecouldbeobtainedfrom the1monthratebydoingthecalculation: (cid:34)(cid:18) 0.0975(cid:19)3 (cid:35) 4× 1+ −1 =0.09829433 12 whichisslightlylessthantherateof97/%inthetableabove. 8 Example2.7f. Showthataconstantrateofsimpleinterestimpliesadecliningeffectiverateofinterest. Solution. Letidenotetherateofsimpleinterestperunittime. Thentheeffectiverateofinterestfortimeperiodnis: (1+in)−(1+i(n−1)) i = 1+i(n−1) 1+i(n−1) whichdecreaseswithn. Itisifortimeperiod1andi/(1+i)fortimeperiod2,etc. Example2.7g. Showthataconstantrateofcompoundinterestimpliesaconstantrateofeffectiveinterest. Solution. Letidenotetherateofcompoundinterestperunittime. Thentheeffectiverateofinterestfortimeperiod nis: (1+i)n−(1+i)n−1 (1+i)−1 = =i (1+i)n−1 1 2.8 Continuouscompounding: theforceofinterest. Fromequation(2.5a)wehave (cid:104) (cid:105) i(m) = m (1+i)1/m−1 (2.8a) Now lim n(x1/n −1) = lnx if x > 1 (see exercise 22). Using this result on equation (2.8a) shows that n→∞ lim i(m) existsandequalsln(1+i). Denotethislimitbyδ. Hence m→∞ δ = ln(1+i) or i = eδ −1 where δ = lim i(m) = lim i is called the nominal rate of interest compounded continuously or the m→∞ p→0 p forceofinterestcorrespondingtotheeffectiveannualrateofinterest,i. Itfollowsthatifanamountc isinvestedatarateδ perannumcompoundedcontinuously,thenafter1 0 yearitwillhavegrowntoc = c eδ andafterpyearsitwillhavegrowntoc epδ,wherepisnotnecessarily 1 0 0 aninteger.

Description:
Actuarial CT1 is called 'Financial Mathematics' by the Institute of Actuaries. However, we 4.1 Markets, interest rates and financial instruments 69.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.